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ABSTRACT 

This paper presents a new graphical algorithm to carry 

out the rule of structured residuals, in order to enhance the 

internal component faults isolation of linear and linearized 

dynamical systems. For this aim, it is shown that the 

diagnostic bond graph; which allows generating residuals 

by using the ARRs scheme also allows handling their 

structuration. The residuals structuration is achieved 

through the fault structural decoupling leading to selective 

sensitivity to subsets of faults. To deal with the fault 

structural decoupling, a new bond graph bicausal element is 

introduced; it is termed Effort and Flow Propagator (or join) 

element. This approach is within the frequency domain, so, 

the process of residuals generation is homogenized by using 

solely the rule of the transfer function in s-form. 

Keywords: Component Faults Detection and Isolation 

(CFDI); isolation enhancement; structured residuals; 

structural analysis; bond graph; diagnostic bond graph 

(DBG); fault decoupling; unknown input decoupling; 

analytical redundancy relations (ARRs). 

1. INTRODUCTION 

The problem addressed here is the isolation 

enhancement of the internal component (or plant) faults by 

performing the fault structural decoupling, from linear and 

linearized bond graphs [2, 13, 23]. Regarding the output 

detectors (or sensors) and the power sources (or actuators), 

they are supposed either working normally, or they have 

their own FDI systems [4, 28]. In the considered problem, 

the complexity is due to the large number of internal 

components of dynamical systems w.r.t. that of output 

detectors. Face this complexity, thanks to the powerful rule 

of the structured residuals [11]; the fault isolation can be 

enhanced. It is then possible to generate the primary 

residuals, directly from the rearranged original (or initial) 

model. And in order to enhance the faults isolation, the 

primary residuals are transformed, by structuring them to be 

sensitive to specific faults, while being insensitive to others. 

So doing so, the effects of faults upon the residuals become 

distinguishable, and the faults can be isolated. 

 

 

 

 

The task of residuals structuration is carried out off-line 

during the phase of residuals generation, it is performed by 

means of faults decoupling [4, 5, 8, 11, 12], and the resulted 

residuals are termed secondary residuals [11, 14]. 

For the aim of internal component FDI problem 

formulation, figure (1) recalls the arrangement of the basic 

elements of the bond graph model, where the Simple 

Junction Structure (SJS) is chosen [32]. It is easy to 

understand that the internal physical components of 

dynamical systems are mapped in the following discrete set 
{           }; where each basic element has a specific 

treatment of the incoming energy. Indeed, these elements 

share a common property; their behavioural constitutive 

laws involve similar quantities; i.e. an output variable, an 

input variable and a physical parameter. 

It is assumed that parametric (or multiplicative) as well 

as structural (or additive) component faults acting, in a 

similar way, as unknown inputs supplied by power sources, 

see figure 1. So then, a new fault structural decoupling 

algorithm is proposed to generate sufficient secondary 

residuals to enhance the component faults isolation. It is 

based on the annihilation of the influences of non-isolated 

faults on variables of the DBG that furnish ARRs, and its 

main tool is the bond graph bicausality concept [10]. 
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Figure 1. SJS of a faulty linear bond graph 

In graphical models based FDI literature, there are 

researches that have addressed the problem of component 

fault isolation enhancement by fault decoupling. In [1], 

assuming the modeling of component faults as unknown 

inputs, thus the inverse bond graph model is used to allow 

output detectors to the specified component faults 

inversion, consequently the faults can be estimated and their 
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effects can be decoupled. Noting that, here the 

computational derivative causality is preferred. In [9] and 

[31], still with the same fault hypothesis modeling as 

previously, but by using the Unknown Input Observer 

(UIO) scheme from bond graphs; where for each 

component fault, a single UIO is dedicated to its estimation. 

Also, for the same issue of fault isolation enhancement, but 

this time by using the bipartite graph model [29], deep 

knowledge about the time-dependency of faults (abrupt 

fault, incipient fault) are integrated in faults modeling to get 

further ARRs allowing decoupling the ffects of non-isolated 

faults [6] [7]. In this case, the isolability matrix is used to 

identify which faults require further modeling effort. 

Moreover, the bond graph computational tools used in 

this paper are shared by some researches, but for the 

purpose of ARRs generation; so that in [24], the bicausality 

benefit; which is separating the causality assignment to the 

effort and flow variables of the same power bond, is 

employed especially to handle nonlinear constitutive laws 

singularities. Likewise as in [2], the preferred integral 

causality is assigned to the diagnostic bond graph to avoid 

computing the unknown variables arising after the 

construction of the fault indicators (or residual sinks). 

This paper is organized as follows: Section II introduces 

the four hydraulic tanks system benchmark, through which 

the development of the CFDI algorithm is processed. It 

provides the bond graph model and it models the 

component faults to get the faulty behavior. Section III 

generates the primary residuals and particularly it points out 

their insufficiency to ensure the component faults isolation. 

Section IV presents the core of this paper, that is, the 

generation of secondary residuals by structural decoupling 

the primary residuals from non-isolated faults, where the 

bicausal diagnostic bond graph is the fundamental used 

tool. Section V runs the simulation example to prove the 

theoretical developments. Finally, section VI concludes 

with some benefits of the faults structural decoupling from 

the bond graph modeling. 

2. BENCHMARK SYSTEM TO CFDI SYSTEM DESIGN 

The nonlinear four hydraulic tanks system proposed for 

CFDI system design is shown in figure (2). The tanks   ; 
with      , have the same section         and they 

are coupled by nonlinear valves. The flow rate through the 

valve is given by Torricelli law:   
   (       ); with 

   is in (   ⁄ ),    and      are liquid levels in ( ) on 

either side of the valve and         . 

The input of the hydraulic system is the inflow    : 

                
      ( )                                     ( ) 

The linearized bond graph model around the equilibrium 

point, denoted  , is shown by figure (3). It should be noted 

that, the prime symbol standing for linearization is omitted 

for equations clarity. The tanks are represented by linear 

storage C-elements with parameters,     ; with   
   , but the nonlinear valves become linear and  they are 

represented by R-elements with the same parameter 

         ⁄ . 

Let the complementary state variables at the storage C-

elements in integral causality be denoted    ;      , and 

they represent liquid levels in the corresponding tanks: 

  (        )                                                            ( ) 

The output variables are furnished by effort detectors 

     ; with      , and they are defined as follows:  

  (      )  (      )                                   ( ) 

While, the input variable is supplied by the unique flow 

power source       . 

Only for the clarity of the bond graph model, the state 

initial conditions,   ,  are not represented. Still, it should be 

noted that, they can be modeled as power sources acting on 

the output variables of storage elements,   and  , in integral 

causality by means of adequate simple junctions [2, 10]. 

Qin

 T1  T3 T2  T4
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Figure 2. Four hydraulic tanks system. 

2.1. Internal component (or plant) faults modelling 

In the presence of the internal component (or plant) 

faults, the bond graph model of the faulty behaviour is 

depicted by figure 4. It displays the parametric faults,     
and    ; with      , they are modelled by additive 

increments added to the nominal parameter,    and   , and 

they represent changes in physique properties of the 

components [24]. Moreover, it is taken into account the 

structural faults that are modelled as flow sources,          ; 
with      , they acting as inputs to the storage   

elements and they represent leakage in different tanks [24]. 
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Figure 3. Linearized bond graph model   in integral causality of the four hydraulic tanks system. 
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Figure 4. Faulty linearized bond graph   in integral causality of the four hydraulic tanks system. 

 

The individual treatment of each fault of each 

component makes the problem of faults isolation very 

complex to formulate [5, 12]. To overcome this complexity, 

the components are regrouped in a set of equivalence 

classes, where each equivalent class involves bond graph 

elements linked by causal loop of order 1 with a storage 

element in integral causality (in this case,   elements), and 

it is recognizable by the label of this storage element. The 

table (1) highlights the different found equivalence classes. 

Storage element in 

integral causality 

Equivalence 

classes 

Sets of basic 

elements  

   [  ] {       } 

   [  ] {          } 

   [  ] {          } 

   [  ] {          } 

Table 1. Equivalence classes of components 

To each storage element in integral causality,   ; with 

     , a set of component faults is associated, it 

includes at once the parametric and structural faults of the 

components belonging to its own equivalence class and 

they are recognized as its own faults, denoted    
 ; with 

     . The table (2) highlights the component faults 

associated to the storage elements. 

Faults of storage 

element in integral 

causality 

Sets of component faults 

associated to storage element 

in integral causality  

   
  {      

           } 

   
  {      

                } 

   
  {      

                } 

   
  {      

                } 

Table 2. Faults associated to storage elements in integral 

causality 

In the end of the component faults modelling task, the 

simplified faulty linearized bond graph model is depicted 

by figure (5), where the possible component faults 

associated to the storage elements in integral causality are 

modelled as unknown inputs supplied by flow power 

sources       
 ; with      , and they acting at junctions 

to which the storage elements in integral causality are 

attached. 

Remark 1. For clarity, henceforth, the component faults 

associated to the storage elements in integral causality are 

simply called component faults and the flow power sources 

representing them are simply called component fault 

sources. 

 Since the linearized bond graph model,  , contains four 

storage elements in integral causality; there are four 

component faults to be detected and isolated; which are 

regrouped and put in the following component faults vector: 

   (   
    

    
    

 )                                                     ( ) 

From now, the problem of component faults detection 

and isolation from linear and linearized bond graphs is 

posed and the rule of structured residuals is chosen to 

ensure the fault isolation.  

3. PRIMARY RESIDUALS GENERATION 

The Diagnostic Bond Graph (DBG), which is denoted 

here  ̆, is introduced in [16, 24]; it is the basis of residuals 

generation based on ARRs scheme. It is established by 

simple rearrangement of the causality in the original bond 

graph model  , in order to generate straightly analytical 

constraints equal to zero [19]. The causality rearrangement 

is obtained by substituting the output detectors      ; with 

     , by modulated power sources   ̆    ; with 

     , where the modulate signals are the measured 

outputs; see for this figure (6). 

Noting that the diagnostic bond graph,  ̆, is assigned the 

preferred integral causality, in order to carry out the rule of 

the transfer function in s-form (see rule 1, in the appendix). 
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Figure 5. Component faults modeling as unknown inputs supplied by flow power sources. 

 

For the sake of CFDI problem formulation [25, 26], the 

new emerged modulated power sources are termed imposed 

output sources, and the junctions resulting after the 

redistribution of the causal strokes are termed null junctions 

and noted   ; these latter are so called, because their net 

power are in principle identically zero. The response of the 

bond graph model to the solicitation of the imposed output 

sources are termed null signals and denoted   . 

Remark 2. The DBG  ̆ is a generalized bond graph, due to 

the presence of storage elements (  and  ) in derivative 

causality. Therefore, this property must be considered by 

the algorithms of the analytical models derivation. 

The null junctions are labeled by the number of their 

original junctions from which they are issued: 

   {              }                                                          ( ) 

Whereas, the null signals are labeled by the same 

number of the null junctions to which they belong and they 

are put in a vector: 

   (            )
                                                 ( ) 

Through the process of the null signals construction, the 

following important remark can be made.  

Remark 3. It is possible to say that the null signals, in 

order,     ,      and      are due respectively to the 

output detectors,      ,       and      . 

In s-domain, by applying the rule of the transfer 

function in s-form, the null signals   ( ) can be expressed 

from the input variables   ̆( ) of the DBG  ̆, which are  

specified in the equation (7) and that are; the input variables 

 ( ), the imposed output variables  ( ), the initial 

conditions   ( ) and the component faults   ( ), following 

rational transfer matrix accordingly to the equation (8): 

  ̆  {        
 }                                                                      ( ) 

  ( )  
 

 ( )
[   ( ) ( )     ( ) ( )   

     ( ) 
 ( )        ( )]             ( ) 

Where    ( ),    ( ),     ( ) and     ( ) are 

polynomial matrices in the Laplace variable ( ) with 

appropriate dimensions and  ( ) is the characteristic 

polynomial of  ̆ and it is a common denominator to all the 

elementary transfer functions. 

To get the polynomial form of the ARRs, the two sides 

of the equation (8) are multiplied by the common 

denominator  ( ), and after that by neglecting the effects of 

initial conditions   , because they are transient in time [5], 

it results then the equation (9): 

     ( )     ( ) ( )     ( ) ( )                                  

                                                          ( ) 
 ( )               ( )

 

Where      ( ) are the primary ARRs generated from 

the original DBG  ̆, in the frequency domain [26]. Their 

numerical values are supposed in the neighborhood of zero 

due to measurement noises, parameter uncertainties and 

linearization errors. 

Let the primary residuals be defined as follows: 

  ( )     ( ) ( )     ( ) ( )                                 (  ) 

Where, the part of the equation (10) involving known 

and measured variables is the residual computational form 

[28], thus it can be computed on line for fault detection and 

isolation. While, the part of the equation (9) involving the 

component faults is termed residual evaluation form [28].  

Corollary 1. From the DBG  ̆, by using the rule of the 

transfer function in s-form, three is a need only to compute 

the denominator of the null signals    to get ARRs in 

polynomial form. 
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Figure 6. Diagnostic bond graph  ̆. 



Corollary 2. A component fault,    
 ; with      , can 

influence an ARR that is generated from a null signal    ; 

with      , if its faults source        
  is causally linked 

through at least one causal path to the null signal    .  

Corollary 3. Modeling the component faults as unknown 

inputs leads to direct separation between the computational 

and the evaluation forms. 

In [26], a graphical algorithm entitled the influences 

approach is provided to generate symbolically the 

polynomial form of the ARRs, by computing the influence 

(or contribution) due to each input variable    of  ̆; with 

     ̆  {  }, following the formulas (11-12): 

    
 ( )  ∑∑    (  

 
→   )

  

                                 (  ) 

    (  
 
→   )   ̃ ( )  ( )  ( )                                 (  ) 

Where     
 
 is the primary ARR generated from the     

null signal    ,      is the elementary influence due to the 

    elementary causal path linking the     input    to    , 

 ̃ ( ) is the numerator of the gain   ( ) of the     causal 

path,   ( ) is the characteristic polynomial of the reduced 

DBG to the     causal path. The second sum is taken over 

all elementary causal paths and the first sum is taken over 

all the input variables,   , of  ̆; with      ̆  {  }. For the 

calculation of all these terms, see the appendix. 

By analyzing the residual computation form, the 

following corollary (4) can be made: 

Corollary 4. A component fault is structurally detectable if, 

and only if, the component fault source is linked at least to 

one output detector. 

The primary ARRs generated from the DBG  ̆ of figure 

(6) are of number three; since there are three null signals    
due to three linearly independent detectors (see rule 3, in 

the appendix). Only their final expressions are given: 
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Clearly, the primary residuals   
 

,   
 

 and   
 

 are limited 

to parts of       of equations (13-15) involving the 

known input and measured output variables. 

The Fault Signature Matrix (FSM) summarizing the 

sensitivity of the primary residuals to the component faults 

is illustrated by table (3); where the binary value 1 (resp. 0) 

indicates that the considered component fault affects (resp. 

doesn’t affect) the considered primary residual. 

                Faults 

 

Residuals 

   
     

     
     

  

  
 
 1 1 0 0 

  
 
 0 1 1 0 

  
 
 0 0 0 1 

Table 3. FSM of the primary residuals 

The analysis of the FSM reveals that the effect of the 

component fault    
  is not distinguishable from those of the 

faults    
  and    

 , since it affects both the residuals   
 

 and 

  
 

. So, to overcome the insufficiency of the primary 

residuals to isolating all the component faults, the 

enhancement of fault isolation is required and it is ensured 

by the secondary residuals. 

4. SECONDARY RESIDUALS GENERATION 

There is only one component fault,    
 , concerned by 

the enhancement of isolation. Thus, only one secondary 

residual, which is structurally insensitive w.r.t. the 

considered fault, is sufficient to ensure this task. 

It is the fault structural decoupling that ensures the 

insensitivity condition of the secondary residual in respect 

to the non–isolated fault, and its principle from bond graphs 

is clarified by the definition (1). 

Definition 1. The principle of the fault structural 

decoupling is to perform causal transformations on the 

DBG  ̆, in order to annihilate any causal link, in the sense 

to interdict any causal path that may cause a transfer (or 

influence), between the component fault source to be 

decoupled and the null signals    that furnish ARRs. 

For showing the causal transformations needed by the 

structural decoupling in order to make the null signals of 

the DBG  ̆ insensitive to the component fault source 

       
 , let the bicausal DBG devoted to generate the 

structurally decoupled secondary residual be denoted  ̆    
   

and it is written as the equation below: 

 ̆    
    ̆    

 (  )     ̆    
 (  )                                            (  ) 

Where  ̆    
 (  ) is the estimator bicausal DBG,  ̆    

 (  ) 

is the decoupled bicausal DBG and (   ) is the binary 

causal joining operation that consists to attach, to each 

other, both the previous bicausal DBG. The subscript (     ) 

means that: (1)  ̆    
  must be structurally decoupled from the 

component fault    
  ; and (2)  ̆    

  must furnish an 



estimation of the unknown complementary state variable 

  ; whilst for a reason that will be argued in the 

subparagraph (4.1), the estimation must be structurally 

decoupled from the effect of    
 . The subscript (   ) means 

that the joining operation is made through the variable   . 

The next subparagraphs outline the elements involved in 

the expression (16) of the bicausal DBG for the secondary 

residual generation,  ̆    
  , and through them, the causal 

transformations needed to the faults structural decoupling 

are highlighted. 

4.1. Decoupled bicausal diagnostic bond graph 

The decoupled bicausal DBG,  ̆    
 , which is structurally 

decoupled from the component fault,    
 , in the sense of the 

definition (1), is established by operating the following 

causal transformations on the original DBG  ̆ of figure (6): 

1. The component fault source,       
 , to be decoupled 

must be substituted by the bicausal double detectors 

element         
  ; 

2. The storage element in integral causality,   , which is 

the origin of the component fault    
 , must be 

substituted by the bicausal double sources element 

      , and; 

3. To satisfy the causal half-strokes distribution, the 

bicausality is propagated from        until reaching 

        
  . 

At the end of the previous succession of causal 

transformations, it results the decoupled DBG  ̆    
  depicted 

by the figure (7). 

The following properties show what happened in the 

SJS of  ̆    
 , as a result of component fault structural 

decoupling. 

Property 1. The variables belonging to the decoupled 

bicausal DBG,  ̆   
 
 , have the subscript (  ), and this does 

not change their meaning and values. 

Property 2. The assigned value (?) to the bicausal double 

sources element,       , means that, from now, the values 

of its effort and flow variables depend from an external 

environment to the decoupled bicausal DBG,  ̆    
 . 

Property 3. The component fault,    
  , to be decoupled 

becomes an output variable to the SJS of  ̆    
 . Thus, all the 

null signals     of  ̆    
  are structurally decoupled from the 

considered fault, in the sense of the definition (1). 

Property 4. The unknown complementary state variable, 

  
 , becomes an input variable to the SJS of  ̆    

 . As a 

result, the null signals     belonging to  ̆    
 , which are 

causally linked to   
  become dependent on its value. 

From the property (3), the structurally decoupled ARRs 

from the effect of the component fault    
  must be 

generated by calculating the null signals     belonging to 

the decoupled DBG  ̆    
 . However, accordingly to the 

property (4), due to the unknown complementary state 

variable,   
 , it results that the null signals     can’t be 

calculated and they can’t furnish ARRs. So, from now, the 

problem of unknown variables elimination is posed. 

Here, the unknown variables elimination proceeds with 

the estimation of the unknown complementary state 

variable,   
 , by expressing it from known inputs,  , and 

measured outputs,  . But, due to the fact that   
  is an input 

variable to the SJS of the decoupled bicausal DBG  ̆    
 , 

thus the estimation must be structurally decoupled from the 

component fault    
 , so that, its effect is not propagated 

through the estimated value of   
  to the null signal     

that furnish the structurally decoupled ARRs. 

Let the estimated value of the unknown complementary 

state variable be denoted   
  and the following subparagraph 

is concerned by its graphical calculation. 

4.2. Estimator bicausal diagnostic bond graph 

The estimator bicausal DBG,  ̆    
 (  ), which is devoted 

to furnish a structurally decoupled estimation of the 

unknown complementary state variable   
 , is established 

by performing the following causal transformations on the 

original DBG,  ̆, of the figure (6): 

1. The storage element,   , which is the origin of the 

component fault to be decoupled    
 , is substituted by 

the bicausal double detectors element        ; 
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Figure 7. Decoupled bicausal DBG  ̆   

 
  from the component fault    

 . 



2. Arbitrary, choosing one of the two following imposed 

output sources,   ̆    or   ̆    , which are causally 

linked to the complementary state variable   , and 

substituting it by the bicausal double sources element, 

  ̆      
  or   ̆      

 . Let’s choose the first one; 

3. To satisfy the causal half-strokes distribution, the 

bicausality is propagated from   ̆      
  until reaching 

       . 
In the end, of the previous succession of causal 

transformations, the estimator bicausal DBG,  ̆   
 
 (  ), is 

established and it is depicted in the figure (8). 

The following properties show what happened in the 

SJS of  ̆   
 
 (  ), as a result of the structurally decoupled 

estimation of the unknown complementary state variable. 

Property 5. The variables belonging to the estimator 

bicausal DBG,  ̆   
 
 (  ), have the subscript (  ), and this 

does not change their meaning and their values. 

Property 6. The assigned value (!) to the bicausal double 

detectors element,       , means that the values of its 

effort and flow variables depend from the internal 

environment of the estimator bicausal DBG  ̆   
 
 (  ). 

Property 7. The estimated value of the unknown 

complementary state variable,   
 , is an output variable to 

the SJS of  ̆   
 
 (  ). 

Property 8. The estimated value of the unknown 

complementary state variable,   
 , is not causally linked to 

the component fault,    
  , meaning that the estimation is 

structurally decoupled from the considered fault. 

From the property (8), the alone condition on the 

estimation is hold. Indeed, when the estimation is 

structurally decoupled from the component fault in interest, 

this implies that the estimation error is consequently 

structurally decoupled from the same fault. 

Property 9. There is no null signal at the 01-junction of the 

estimator bicausal DBG  ̆   
 
 (  ). 

From the property (9), the remark (4) is deduced. 

Remark 4. It is possible to say that the null signal     
  

belonging to the estimator bicausal DBG,  ̆   
 
 (  ), is used 

to furnish the estimated value of the unknown 

complementary state variable,   
 . 

At this stage, there is one fundamental result of the fault 

structural decoupling from bond graphs that must be shown. 

For this aim, let us recall the following ideas, in the order:  

1. Remark (3) stats that the output detector       
  is used 

to construct the null signal     
 ; 

2. Remark (4) states that the null signal     
  provides the 

estimated value   
  ; 

3. From the properties (1) and (5), it is possible to state 

that   
  is numerically equivalent   

 ; 

4. In the end, the property (4) states that   
  is used for the 

structural decoupling of the fault    
  . 

By relating the previous ideas, it is possible to conclude 

that, indeed, it is the output detector       
 , which was 

used for the structural decoupling of the fault in interest. 

From what has been said, the corollary (5) pointes out 

the first fundamental result of the fault structural 

decoupling from bond graphs. 

Corollary 5. One output detector is needed to the structural 

decoupling of one additive component fault (or unknown 

input). 

Corollary (5) agrees with one of the fundamental result 

in additive faults (or unknown inputs) decoupling from 

analytical approaches [8, 11]. 

Remark 5. It should be noted that the estimation procedure 

does not extend to numerically calculate the estimated 

value of the unknown complementary state variable,   
 . 

Corollary 6. The construction of the estimator bicausal 

DBG requires at least one causal path linking the 

complementary state variable to be estimated to an output 

detector. And, the state structural observablity is a strong 

structural condition to ensure this property, since it 

necessitates causal link between the complementary state 

variables and the output detectors. 

For state structural observability checking, see [23, 27, 30]. 
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Figure 9. Bicausal DBG  ̆   
 
   for secondary residual generation. 

4.3. SECONDARY RESIDUALS GENERATION 

The bicausal DBG for the secondary residual generation 

 ̆   
 
   is depicted by figure (9), where at the top, it is the 

estimator bicausal DBG  ̆   
 
 (  ), and at the bottom, it is 

the decoupled bicausal DBG  ̆   
 
  and both they are joined 

by the Effort and Flow Propagator (EFP) element with gain 

   . 

The EFP element is the bond graph realization of the 

binary causal joining operation and it is defined below: 

Definition 2. An Effort and Flow Propagator element, 

noted EFP, is shown by figure (10). It is a two port and 

bicausal element, it has two inputs variables at its inward 

bond, two output variables at its outward bond and its gain 

is  . Its constitutive law is: 

     {
      

      
                                                                    (  ) 

k


EFP





f

e e

f
 

Figure 10. Effort & Flow Propagator (or join) element. 

The EFB element is unidirectional; so it doesn’t account 

for the feedback effect. Also, it is termed join element; this 

name is taken from the structural approach of ARRs 

generation based on relational algebra [21], whose the 

joining relational operator is the fundamental tool. 

Indeed, the secondary residual, denoted   
 , is the 

computational part of the secondary analytical redundancy 

relation, denoted     
 , which must be generated from the 

null signal     
 , but not from the null signal     

 . This last 

one doesn’t contain any term and it furnishes precisely 0; its 

terms reconcile with each other and they vanish all; because 

accordingly to remark (4), the null signal     
  belonging to 

 ̆   
 
 (  ) is used to furnish the estimated value of the 

unknown complementary state variable,   
 . 

Here also, the secondary analytical redundancy relation, 

    
 , is generated by the influences approach applied to 

the null signal     
 . Consequently, the causal analysis of 

 ̆   
 
   reveals six input variables causally linked to the null 

signal     
 , that are:  

  ̆   {      
     ̆      

         
                               

                    ̆    
    ̆    

        
  }

     (  )  

The first three input variables belong to  ̆   
 
 , but the last 

three input variables belong to  ̆   
 
 . 

Remark 6. Neither the component fault source       
  , nor 

the component fault source       
  , appear in the set   ̆   

of the input variables causally linked to the null signal 

    
 . So, they have no influence on     

 . 

From the remark (6), one has to agree the annihilation of 

the influence of the component fault    
  on the null signal 

    
 ; which furnishes in turn an insensitive secondary 

residual w.r.t. the same fault. 



Let us show how to calculate the influence due to the 

input variable   ̆      
 . In effect, there are two 

elementary causal paths from this input variable to the null 

signal     
 , which are respectively determined by the 

equations (19) and (20), as successions of variables and 

edges and where each edge is augmented by its causal gain. 
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       (  ) 

The elementary influence due to the first elementary 

causal path is calculated as follows: 

    
 (  

 
   

→     
 )   ̃ ( )  ( )  

 ( )                            (  ) 

Where: 

  ̃ ( ): is the part that does not contain integrators in the 

first causal path gain,   ( ). Since, the causal path 

doesn’t travers any storage element in integral causality, 

then  ̃ ( ) is identical to   ( ) and it is to  
  

  
   ;  

   ( ): is the characteristic polynomial of the reduced 

bicausal DBG; which is obtained by supressing the first 

elementary causal path from  ̆   
 
  , and it is equal to  ; 

because the reduced bicausal DBG (not shown) doesn’t 

contain any storage element in integral causality; 

Accordingly to the equation (21), the elementary 

influence due to the first elementary causal path is: 

    
 (  ̆      

 
   

→     
 )   

  
  
     

 ( )                  (  ) 

Following the same steps of symbolic calculus, the 

elementary influence due to the second elementary causal 

path is obtained and it is given below: 

    
 (  ̆      

 
   

→     
 )   

 

  
  
 ( )                       (  ) 

In the last step, by total summating the influences due to 

all the input variables   ̆   of  ̆   
 
   and after deleting the 

subscripts, (  ) and (  ), it results the final expression in 

the polynomial form of the     
  and it is given hereafter: 

    
  { 

  

  
    (

  

  
    

 

  
)    (    

 

  
 

 

  
)    

 

  
   

  

  
   
     

                                                                  (  )  

Clearly, the secondary residual,   
 , is reduced to the part 

of the     
 , which involves only known input and 

measured output variables. 

From the previous development, it has been stated that  

1. The decoupled secondary residual   
  is generated from 

the null signal     
 , and; 

2. The null signal     
  is due the output detector       , 

Then it is possible to conclude that the output detector 

      , itself, which was used for generating the decoupled 

secondary residual. 

At this stage, from what has been said and by taking into 

account the corollary (5), then the second fundamental 

result of the fault structural decoupling from bond graphs is 

pointed out by the corollary (7). 

Corollary 7. To generate a secondary residual that is 

structurally decoupled from one additive component fault 

(or unknown input), two output detectors are necessary. The 

first one is used to structurally decoupling the fault (or 

unknown input), and the second one is used to generate the 

decoupled secondary residual itself. 

The corollary (7) agrees well with the principle of 

additive faults isolation (or unknown inputs robustness) by 

means of perfect unknown inputs decoupling from the 

analytical approaches [8, 11]. 

Figure (11) shows, by means of the secondary residual, 

another benefit of the influences approach for computer 

implementation of the residuals. It is the parallel realisation 

of the computational form, where the elementary influences 

due to the different elementary causal paths are taken such 

that as they are generated and summated to get the 

computer implemented form of the secondary residual; 

which means that there are no additional algebraic 

manipulations to be performed. 
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Figure 11. Parallel realization of the secondary residual. 



 

 

Figure 12. Trajectories of the residuals, in order,   
 
,   
 
,   
 
 and   

 , in the presence of the component fault    
 . 

 

Figure 13. a) Simulated and estimated trajectories of   , b) Estimation error. 

5. SIMULATION RESULTS 

The simulation runs the residuals that are normalized in 

the interval [    ]. To handle measurement noises and 

input fluctuations, the residuals are followed by a State 

Variable Filter (SVF); with the cutoff frequency    
    ⁄ , and where          is the time response of the 

four hydraulic tanks system. The simulation is achieved 

with Matlab/Simulink software, version 7.10.0 (R2010a). 

The validity of the proposed fault structural decoupling 

algorithm is tested through an abrupt structural fault at the 

junction (02); as a leakage in the tank 2, with magnitude 3% 

of     and it is introduced at time         . 

The simulation results validate the developed theory. In 

effect, the figure (12) shows that after a transient behavior 

due to initial conditions, all the residuals tend to zero, 

indicating that the linearization has no effect. And, from the 

apparition of the considered component fault, the following 

observations can be deduced: 

 The residuals   
 

 and   
 

 persist different from zero; 

since they are both structurally sensitive to the 

component fault    
 . 

 The residual   
 

 exhibits a transient behavior and it 

returns to its initial normal behavior; because it is 

structurally insensitive to the fault    
 , and;  

 The secondary residual,   
 , returns to its initial and 

normal behavior after a short transient; because it is 

made structurally insensitive to the considered 

component fault by structural decoupling. This confirms 

well the success of fault structural decoupling. 

The figure (13.a) illustrates both the structurally 

decoupled estimation and the simulated trajectories of the 

unknown complementary state variable,   . While, the 

figure (13.b) shows the estimation error that is structurally 

decoupled from the considered component faults; because it 

is zero in steady state. 

6. CONCLUSION 

The proposed new structural algorithm of ARRs design, 

from linear and linearized bond graphs, in the frequency 

domain, for component FDI system, has achieved its 

objectives; so that it presents the following characteristics: 

From FDI issues point of view: (1) it’s structural; so it 

can be used at the design stage; (2) it is iterative; so it treats 

component by component; (3) it doesn’t necessitate 

unknown variables elimination for the primary residuals 

generation, even if, for the secondary residuals it does. 

Fortunately, the estimation doesn’t extend to numerical 

calculation; (4) it uses structural fault decoupling to carry 

out the rule of structured residuals for the aim of component 

faults isolation enhancement. Here, the fault structural 

decoupling, itself, requires structurally decoupled 

estimation from the component fault in interest; and (5) the 

fault structural decoupling is robust w.r.t. parameters 

uncertainties; since it is based on simple causality breaking 

rather than polynomial, rational or numerical matrices 

annihilator. 
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From implementation issues point of view: (6) the 

residuals generation is homogenized by using the rule of the 

transfer function in s-form; and (7) the generated residuals 

can be implemented, such that, in parallel scheme without 

any additional algebraic manipulations. 

Due to the advantages provided by the new structural 

algorithm for component fault detection and isolation, from 

one hand, and due to its automated calculus, from other 

hand, it is possible to conclude that the efficiency of the 

proposed structural approach is comparable to that of the 

analytical ones. 
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Appendix 

The rule of the transfer function in s-form [22] uses the 

concept of causal cycle families, in order to write the 

numerator and the denominator as polynomials in the 

integer power of the Laplace variable ( ). It is then an 

alternative to the graphical rule furnished in [3]; which uses 

the Mason’s loop rule to get the transfer function, but in 

   -form. This last one writes the nominator and the 

denominator as sum of terms in the integer power of (   ), 
which needs consequently extra algebraic manipulations to 

get the transfer function in its classical s-form. 

The following given rule is a general one, since it 

handles both the regular and the generalized bond graphs. It 

should be noted that the generalized bond graphs contain 

storage elements (  and  ) in derivative causality. This new 

rule is similar to that given in [18], but it rewrites the 

coefficients in a different manner. 

Rule 1. Transfer function in s-form 

Let   be a linear (or linearized) bond graph in preferred 

integral causality, it may be regular or generalized and it 

has   storage elements in integral causality; i.e. its order is 

 . It is supposed fitted with the two sets of output detectors, 

 , and power sources,  , that are defined as follows:  

{
  {             |   (        )}                     (  )

   {             |   (        )}                          (  )
 

Where   (resp.  ) stands for an output detector (resp. 

power source) with unspecified causality,    (resp.   ) 

stands for an effort output detector (resp. power source),    
(resp.   ) stands for a flow output detector (resp. power 

source),    (resp.   ) is the output (resp. input) variable 

measured (resp. supplied) by the output detector    (resp. 

power source   )  and ( ) stands for “equivalent to”. 

Then, the output variable   , with      , can be 

expressed from the input variables   , with      , 

following the formula hereafter: 

   ∑∑   (  
 
→  )

 

 

 

 

 

                                                  (  ) 

Where, the elementary influence,    (  
 
→  ), due to the 

    elementary causal path, (  
 
→  ), is:  

   (  
 
→  )  

 ̃ ( )  ( )

 ( )
                                               (  ) 

With  ̃ ( ) is the numerator of the gain   ( ) of the 

elementary causal path that is determined as follows: 

  ( )  
   

  
                                                                           (  ) 

Where   is the constant term of the gain and   (resp.  ) is 

the number of integrators (resp. derivatives) traversed by 

the causal path. 

And  ( ) is the characteristic polynomial of the whole 

bond graph   and   ( ) is the characteristic polynomial of 

the reduced (or complementary) bond graph   ; it is 

obtained by suppressing the     elementary causal path. 

Rule 2. Characteristic polynomial of a bond graph 

model 

The characteristic polynomial, of a linear (or linearized) 

bond graph model that may be regular or generalized, is 

given by the formula hereafter: 

 ( )     
     

(   )     
(   )                     (  ) 

Where   is the order of the bond graph model,   is the 

symbolic Laplace variable. The coefficient      and the 

coefficients   ; with         , are given by the equation 

(31): 

   ∑ (  ) 
 

 ̃ 
( )( )                                                         (  ) 

Where: 

  : is the order of the causal cycle family; with 

     . And      ; with   (resp.  ) is the 

number of integrators (resp. derivatives) traversed 

by the causal cycles (or loops) involved in the     

causal cycle family. 

  : is the number of disjoint causal cycles (or loops) 

involved in the     causal cycle family. 

 ̃ 
( )

 : is the constant term of the gain   
( )( ) of the     

causal cycle family of order  . 

The causal gain of the     causal cycle family of order   is: 

  
( )( )     ∏ ̃ 

 

 

                                                              (  ) 

Where  ̃  is the constant term of the gain of the     causal 

cycle (or loop) and the product is taken over all the disjoint 

causal cycles (or loops) involved in the causal cycle family 

of order  . 



Particularly, the coefficient    is the graph (or Mason’s) 

determinant of the bond graph model  , and it is given by 

the equation (33): 

     ∑  
 

 

 ∑  
   

 

   

 ∑  
   

   
 

     

           (  )  

Where   
  is the constant term of the disjoint causal 

loops gain of order 0 taken one by one,   
   

  is the product 

of the constant terms of the gains of disjoint loops of order 

0 taken two by two and   
   

   
  is the product of the 

constant terms of the gains of disjoint causal loops of order 

0 taken three by three, and so on... 

Remark 7. If there is no causal loop of order 0 in the linear 

(or linearized) bond graph, then the coefficient    is 

reduced to 1.  

Remark 8. If in addition to the causal cycle family of order 

 , the linear (or linearized) bond graph model contains 

causal cycles (or loops) of order 0, then the causal cycle 

family is given by the equation (34). 
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Where   
( )

 is the product of the gains of disjoint causal 

cycles (or loops) of order zero. 

In the end, in the general case where the general 

junction structure (GJS) of the linear (or linearized) bond 

graph model involves bond loops; the gain of the causal 

cycle family must be multiplied by the Mason’s 

determinant of the GJS, see for this [15]. 

The rule 3 is dedicated to recognizing the linearly 

independent output detectors, directly from the bond graph 

model in integral causality, by simple causal manipulations. 

It is fundamental tools are the bicausality and the state-to-

output causal paths concepts. 

Rule 3. Linear independency of output detectors  

Let   be a linear (or linearized) bond graph model, in 

preferred integral causality and it has   storage elements in 

integral causality; i.e. its order is  . It is supposed fitted by 

a set of output detectors   that is defined by the equation 

(35): 

  {                     |   (        )} (  ) 

Where   stands for an output detector with unspecified 

causality,    (resp.   ) stands for an effort (resp. flow) 

detector,    is the output variable measured by the output 

detector    and ( ) stands for equivalent. 

Then, the output detectors are linearly independent if, 

and only if, when they are substituted by bicausal double 

sources elements        ; with      , the following 

three properties hold simultaneously: 

1. There exists   storage elements (  and  ) in integral 

causality that accept to be substituted by bicausal double 

detectors elements       ; 
2. The propagation of the bicausality, from         until 

reaching       , is satisfied, and; 

3. The resulted bicausal bond graph is solvable. 

The figures (14) and (15) show how operate the causal 

transformations to be performed to the output detectors and 

the storage elements (  and  ) to carry out the rule (2). 

Indeed, the rule (3) point out the conditions that allow 

expressing the complementary state variables from the 

output variables. It should be noted that a quasi-similar 

graphical rule based on the bicausality is announced in [20] 

to check the invertible sub matrix of the observation matrix 

of the state space model, except that the solvability 

condition is not mentioned. Or, this condition is necessary 

to correctly performing numerical calculus. 

Remark 9. If the number   of the output detectors is 

greater than the order   of the bond graph model, then the 

output detectors are linearly structurally dependent. 

Also, there is a need to distinguish between the linearly 

independent output detectors from the linearly dependent 

ones. The following remark advises about this kind of 

output detectors and it is based on the violation of the 

conditions of the rule 2. 

Remark 10. The output detectors, for which there are no 

state-to-output causal paths to propagate the bicausality 

half-strokes, they are said linearly dependents. 
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Figure 14. Substitution of output detectors by bicausal 

double sources elements 
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Figure 15. Substitution of storage (I and C) elements by 

bicausal double detector elements 



By applying the duality principle to the rule 3, it is 

possible to deduce the rule 4, which is dedicated to 

recognizing the linearly independent power sources. Its 

fundamental tools are the bicausality and the input-to-state 

causal paths concepts. 

Rule 4. Linear independency of power sources 

Let   be a linear (or linearized) bond graph model, in 

integral causality, and it has   storage elements in integral 

causality; i.e. its order is  . It is supposed fitted by a set   

of power sources that is defined by the equation (35): 

  {                     |    (        )}     (  ) 

Where   stands for a power source with unspecified 

causality,    (resp.   ) stands for an effort (resp. flow) 

power source,    is the input variable supplied by the power 

source    and ( ) stands for equivalent to. 

Then, the power sources are linearly independent if, and 

only if, when they are substituted by bicausal double 

detectors elements        ; with      , the following 

three properties hold simultaneously: 

1. There exist   storage elements (  and  ) in integral 

causality that accept to be substituted by bicausal double 

sources elements       ; 
2. The propagation of the bicausality, from        Until 

reaching        , is satisfied, and; 

3. The resulted bicausal bond graph is solvable. 

The figures (16) and (17) show the causal 

transformations to be performed to the power sources and to 

the storage elements (  and  ) to carry out the rule (4). 

The remark (11) identifies a particular case for which 

the output detectors are structurally linearly dependent 

because of their number. 

Remark 11. If the number   of the power sources is greater 

than the order   of the bond graph model, then the power 

sources are linearly structurally dependent. 

There is a need to distinguish between the linearly 

independent power sources from the linearly dependent 

ones. The following remark advises this particular kind of 

power sources and it is based on the violation of the 

conditions of the rule 4. 

Remark 12. The power sources, for which there are no 

input-to-state causal paths to propagate bicausality half-

strokes, they are said structurally linearly dependent. 

In the end, the following concepts intervene in the rule 

of the transfer function in s-form, they are recalled 

succinctly. The interested reader may find more detail in [2, 

17, 24].  

Definition 3. A causal path between two ports is an 

alternation of bonds and basic bond graph elements such 

that (i) all elements have a correct and complete causality, 

and (ii) two bonds of the path have opposite causal stroke 

direction. 

Definition 4. The causal path gain is the product of all the 

gains (or influence coefficients) of its edges. Where, the 

gain of each edge is equal to (  ) or (  ), when 

respectively there is or not a change of bond orientations at 

the   (resp.  ) junction, by following the flow (resp. effort) 

variable, but, if a bond graph element is traversed; the gain  

is equal to the element transmittance expressed in symbolic 

Laplace operator ( ). 

Definition 5. A causal loop is a closed causal path starts 

and ends at the same element. It can exist between two 

elements of  ,  , or   type.  

Definition 6. A causal cycle is a closed causal path that can 

contain more than two storage (   ) elements (with any 

causality). 

Definition 7. Two closed causal paths are disjoint if they 

have neither junctions nor bonds in common while 

following the same type of variable. 

Definition 8. A causal cycle family is a set of disjoint 

causal cycles. The family is said to be of order      , if 

it contains   (resp.  ) storage elements (  and  )  in integral 

(resp. derivative) causality. 

The gains of causal loops and the causal cycles are 

calculated similarly as for the causal path. 
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Figure 16. Substitution of power sources by bicausal 

double detectors elements. 
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Figure 17. Substitution of storage (I and C) elements by 

bicausal double sources element. 
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