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ABSTRACT

Chromatin immunoprecipitation followed by se-
quencing (ChIP-seq) is the most popular assay to
identify genomic regions, called ChIP-seq peaks, that
are bound in vivo by transcription factors (TFs).
These regions are derived from direct TF–DNA in-
teractions, indirect binding of the TF to the DNA
(through a co-binding partner), nonspecific binding
to the DNA, and noise/bias/artifacts. Delineating the
bona fide direct TF–DNA interactions within the ChIP-
seq peaks remains challenging. We developed a ded-
icated software, ChIP-eat, that combines computa-
tional TF binding models and ChIP-seq peaks to au-
tomatically predict direct TF–DNA interactions. Our
work culminated with predicted interactions covering
>4% of the human genome, obtained by uniformly
processing 1983 ChIP-seq peak data sets from the
ReMap database for 232 unique TFs. The predictions
were a posteriori assessed using protein binding mi-
croarray and ChIP-exo data, and were predominantly
found in high quality ChIP-seq peaks. The set of
predicted direct TF–DNA interactions suggested that
high-occupancy target regions are likely not derived
from direct binding of the TFs to the DNA. Our predic-
tions derived co-binding TFs supported by protein-
protein interaction data and defined cis-regulatory
modules enriched for disease- and trait-associated
SNPs. We provide this collection of direct TF–DNA
interactions and cis-regulatory modules through the
UniBind web-interface (http://unibind.uio.no).

INTRODUCTION

The transcription of DNA into RNA is mainly regulated
through a complex interplay between proteins and the chro-
matin at cis-regulatory regions such as promoters and en-
hancers. Transcription factors (TFs) are key proteins specif-

ically binding short DNA sequences, known as TF binding
sites (TFBSs), to ensure transcription at appropriate rates in
the correct cell types (1). Therefore, genome-wide identifica-
tion of TFBSs is a critical step to decipher transcriptional
regulation, and how this process is altered in diseases (2).

Classically, genome-wide in vivo TF binding regions are
identified through the chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq) assay (3). The genomic
regions obtained with ChIP-seq, the so-called ChIP-seq
peaks, are usually a few hundred base pairs (bp)-long and
should encompass the TFBSs (∼10 bp-long), where di-
rect TF–DNA interactions occur. However, ChIP-seq peaks
derive from either direct TF–DNA interactions, protein-
protein interactions with other regulators such as co-
factors, or unspecific binding. Moreover, ChIP-seq exper-
iments are prone to artifacts and delineating bona fide TF-
bound regions is still an ongoing challenge (4–6) (Wreczy-
cka et al., bioRxiv, 10.1101/107680).

As TFs specifically recognize DNA sequence motifs,
computational tools have been instrumental in the predic-
tion and characterization of direct TF–DNA interactions
(7). TFBSs are commonly modelled with position weight
matrices (PWMs), which represent the probability of each
nucleotide to be present at each position within bona fide
TFBSs (7). While PWMs work well (8), more sophisticated
approaches have recently been designed to model com-
plex features of TF–DNA interactions captured by next-
generation sequencing data (e.g. (9–13)). However, the best
performing model varies for different TFs or TF families
(8,14,15).

While multiple resources collecting TF binding regions
derived from ChIP-seq exist (16–19), a limited number store
genome-wide identification of TFBSs (17,20,21). The TFBS
Conserved Track of the UCSC Genome Browser combined
phylogenetic sequence conservation and PWMs to iden-
tify TFBSs (22) while the MANTA resource (23) integrated
ChIP-seq peaks from ReMap (16) with PWMs from JAS-
PAR (24) for TFBS predictions. A strong limitation of
these approaches is that they use the same pre-defined score
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thresholds for all PWMs and all data sets. The ORegAnno
database provides TFBSs obtained through literature cura-
tion (21), but the number of TFBSs available for human is
limited to ∼8000.

A previous study showed that ChIP-seq data sets fall
within one of three categories: (i) data sets enriched for
the TF canonical binding motif close to the ChIP-seq peak
summit (where the highest number of ChIP-seq reads map),
(ii) data sets lacking enrichment for the canonical binding
motif close to the peak summit and (iii) data sets having
a combination of peaks with and without the TF canoni-
cal binding motif proximal to the peak-summit (25). Most
ChIP-seq data sets were observed in category (iii). As direct
TF–DNA interactions are expected to be enriched at ChIP-
seq peak summits (25–30), Worsley Hunt et al. developed a
heuristic approach specifically based on PWMs to automat-
ically identify, in each ChIP-seq data set, this enrichment
zone. The method determines the thresholds on the PWM
scores and distances to the peak summits delimiting the en-
richment zone that contains direct TF–DNA interactions.
However, this method does not work with some more re-
cent TFBS computational models (15,31,32).

In this study, we mapped direct TF–DNA interactions in
the human genome in a refined manner by capitalizing on
uniformly processed TF ChIP-seq data sets and computa-
tional tools modelling TFBSs. We provide (i) a new soft-
ware to predict direct TF–DNA interactions within ChIP-
seq peaks along with (ii) genome-wide predictions of such
interactions in the human genome. Using an entropy-based
algorithm, we have developed ChIP-eat, a tool that auto-
matically identifies direct TF–DNA interactions using both
ChIP-seq peaks and any computational model for TFBSs.
We applied ChIP-eat to 1983 human ChIP-seq peak data
sets from the ReMap database (16), accounting for 232 dis-
tinct TFs. The set of predicted direct TF–DNA interactions
derived from PWMs covers >4% of the human genome. To
make this resource available to the community, we have cre-
ated UniBind (http://unibind.uio.no/), a web-interface pro-
viding public access to the predictions. We validated a pos-
teriori these TFBS predictions using protein binding mi-
croarray (33) and ChIP-exo (34) data, and multiple ChIP-
seq peak-callers. We used these TFBSs to (i) confirm that
hotspots of ChIP-seq peaks (also known as high occupancy
target regions (35)) are likely not derived from direct TF–
DNA interactions, (ii) predict co-binding TFs and (iii) de-
fine cis-regulatory modules, which are enriched for disease-
and trait-associated SNPs.

MATERIALS AND METHODS

ChIP-seq data

The ChIP-seq data sets considered were retrieved, pro-
cessed, and classified as part of the last update (2018) of
the ReMap database (16) (Supplementary Figure S1).

TF binding profiles

For 1983 ChIP-seq data sets used in the last ReMap update,
we were able to manually assign TF binding profiles corre-
sponding to the ChIP’ed TFs as position frequency matrices
(PFMs) from the JASPAR (2018) database (24).

Training data sets

To train the TFBS computational models (see below), we
considered 101 bp sequences centered around the peak sum-
mits as positive training sets. When required for training,
negative training sets were obtained by shuffling the pos-
itive sequences using the g subcommand of the BiasAway
(version 0.96) tool to match the %GC composition (25).

TFBS computational models

Position weight matrices. JASPAR PFMs were converted
to PWMs as previously described in (36). For each ChIP-
seq data set, PWMs were optimized using DiMO (ver-
sion 1.6; default parameters with a maximum of 150 op-
timization steps) using the corresponding training sets (37).
For TFBS predictions, we considered PWM relative scores,
which were computed as relative score = 100 × (absolute
score – min)/(max – min) where absolute score corresponds
to the PWM absolute/raw score and min and max to the
minimal and maximal absolute/raw PWM scores, respec-
tively.

Binding energy models. JASPAR PFMs were converted
to binding energy models (BEMs; (32)) using the im-
plementation from the MARS Tools (https://github.com/
kipkurui/MARSTools; Kibet and Machanick, bioRxiv,
doi:10.1101/065615). We modified the implementation to
return a BEM score corresponding to 1 – (original score) to
consider the best site of the DNA sequence as the one with
the highest BEM score (instead of the lowest one).

Transcription factor flexible models. First-order transcrip-
tion factor flexible models (TFFMs) (version 2.0) were
initialized with the DiMO-optimized PFMs and trained
with default parameters (https://github.com/wassermanlab/
TFFM; (31)) on the positive training sets.

DNAshapedTFBS models. The DNA shape-
based models were trained on the training sets
using the DNAshapedTFBS tool (version 1.0;
https://github.com/amathelier/DNAshapedTFBS/; (15)).
We trained three types of DNAshapedTFBS models with
the following features: (i) DiMO-optimized PWM + DNA
shape, (ii) first-order TFFM + DNA shape and (iii) 4-bits
encoding + DNA shape following (15). We considered the
first and second order DNA shape features helix twist,
propeller twist, minor groove width, and roll with values
extracted from GBShape (38).

Landscape plots

Each TFBS computational model was applied to each
ChIP-seq data set independently. Following the strategy de-
scribed in (25), we considered 1001 bp sequences centered
around the peak summits, obtained using the bedtools (ver-
sion 2.25) slop subcommand (39). The trained computa-
tional models were used to extract the best (maximal score)
site per 1001 bp ChIP-seq peak region. For each ChIP-seq
data set, landscape plots were constructed from the corre-
sponding sites following the TFBS Visualization tool (25).
These scatter plots were also converted into heat maps using
the kde2d function from the MASS R package (40).
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Automated identification of the enrichment zone

To define the enrichment zone for each landscape plot, we
automatically identified the thresholds for the TFBS com-
putational model scores and distances to peak summits us-
ing the entropy-based algorithm from (41). The algorithm
aims at identifying two classes of elements. Given a his-
togram, the algorithm selects the threshold that maximizes
the within-class sum of the Shannon entropies for the ele-
ments in two classes (42). The two classes of elements identi-
fied are defined by the elements with values (i) above and (ii)
below the threshold, respectively. This procedure optimally
separates the input elements in two classes. Given a ChIP-
seq data set, we applied the algorithm to the histograms
of the TFBS computational model scores and distances to
peak summits, independently. The maximum entropy im-
plementation of the algorithm available in ImageJ (43) was
used with default parameters.

The source code of the ChIP-eat software used to pro-
cess ChIP-seq peak data sets to predict direct TF–DNA
binding events is freely available at https://bitbucket.org/
CBGR/chip-eat. Specifically, ChIP-eat trains a TFBS com-
putational model and automatically defines the enrichment
zone in the landscape plots to predict the underlying direct
TF–DNA interactions. The identification of the enrichment
zone has been applied to each TF ChIP-seq peak data set
independently, allowing for the automatic detection of the
thresholds that are specific to each data set with each TFBS
computational model. Note that only the best hit per ChIP-
seq peak has been considered to identify the enrichment
zones and for all the downstream analyses.

Assessing the robustness of the enrichment zone identification

Random noise. For each ChIP-seq data set, we sampled
the set of peaks using the seqtk (version 1.0) (https://github.
com/lh3/seqtk) sample subcommand. The sequences of the
sampled peaks were shuffled using the fasta-shuffle-letters
subcommand of the MEME suite (version 4.11.4) (44) and
added to the original set of ChIP-seq peaks. The auto-
matic thresholding algorithm was applied to this new set.
We tested the addition of shuffled peaks representing 10%,
25%, and 50% of the original set peaks.

Window size variability. For each ChIP-seq data set, we
considered the region around the peak summit by extend-
ing with 300, 400, and 500 bp on each side using the bed-
tools slop subcommand. We considered ChIP-seq data sets
where at least one TFBS was predicted within the enrich-
ment zones obtained for all three window sizes.

Comparison with the heuristic approach to pre-
dict the enrichment zone. ChIP-eat was com-
pared to the heuristic approach described in (25)
and implemented in the TFBS Visualization tool
https://github.com/wassermanlab/TFBS Visualization
using the default parameters. The centrality of the TFBSs
within the enrichment zones predicted by ChIP-eat and
TFBS Visualization was assessed using centrality P-value
computations as described in the CentriMo tool (27).
The statistical difference between the centrality P-values

obtained with the heuristic method and ChIP-eat was
assessed using a Mann-Whitney signed-rank test.

Genome coverage. The entire set of predicted TFBSs
(within enrichment zones) was concatenated and then
sorted using the cat and sort commands of the Unix oper-
ating system. The resulting set of locations was merged us-
ing the bedtools merge subcommand with default parame-
ters. The genome coverage of the corresponding merged and
non-overlapping positions was calculated as the percentage
of the total number of nucleotides covered out of the to-
tal number of nucleotides in the hg38 version of the human
genome.

TF–DNA binding affinity assessment with protein binding
microarray data. Protein binding microarray (PBM) (45)
data were retrieved from UniProbe (http://the brain.bwh.
harvard.edu/uniprobe/; (46)) for 40 TFs with available
ChIP-seq data. For each ChIP-seq data set landscape plot,
we extracted the DNA sequences at the sites within and out-
side of the predicted enrichment zone. The binding affinity
of a TF to each site was computed as the median PBM in-
tensity value of all the de Bruijn sequences containing the
site sequence. The statistical difference between the distri-
bution of PBM binding affinities from sites within and out-
side the enrichment zone was assessed using a two samples
Mann-Whitney U test (47) implemented in the R package
stats. A Bonferroni correction was applied to the computed
P-values. The P-value density plot in Figure 3B was gen-
erated with the density R function with default parameters
and the corresponding computed bandwidth was used to
plot Supplementary Figure S10.

ChIP-exo data. ChIP-eat was applied with DiMO-
optimized PFMs to the ChIP-exo data sets from (48),
which were lifted over to hg38 using the liftOver tool (20).
As for ChIP-seq peaks, we considered 1 001 bp regions
centered around the peak summits.

ChIP-seq peaks from HOMER and BCP peak-callers. We
successfully applied the HOMER (version 4.7.2) (49) and
BCP (version 1.1) (50) peak-callers to 670 ENCODE
ChIP-seq data sets (Supplementary Table S1). ChIP-eat
was applied to the corresponding ChIP-seq peak regions
with DiMO-optimized PFMs as described above. ChIP-seq
peaks predicted to contain a direct TF–DNA interaction
or not (using the enrichment zones) from the three peak-
callers (MACS2 (51), HOMER, and BCP) were overlapped
using the bedtools intersect subcommand. Hypergeometric
tests were performed to assess the significance of the inter-
sections using the R phyper function for every combination
of two peak-callers with the following contingency matrix:

number of overlapping peaks
with TFBSs from two
peak-callers - 1

number of peaks without TFBSs
from the two peak-callers

number of peaks with TFBSs
from the two peak-callers

number of overlapping peaks from
the two peak-callers
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HOT/XOT regions. The high occupancy target (HOT)
and extreme occupancy target (XOT) regions in all
contexts were downloaded through the ENCODE
data portal at http://encode-ftp.s3.amazonaws.com/
modENCODE VS ENCODE/Regulation/Human/
hotRegions/maphot hs selection reg cx simP05 all.
bed and http://encode-ftp.s3.amazonaws.com/
modENCODE VS ENCODE/Regulation/Human/
hotRegions/maphot hs selection reg cx simP01 all.bed.
ChIP-seq peaks were overlapped with the HOT/XOT
regions using the bedtools intersect subcommand. The
enrichment for overlap was assessed with a hypergeomet-
ric test using the R phyper function with the following
contingency matrix:

number of peaks without TFBSs
overlapping HOT/XOT
regions - 1

number of peaks with TFBSs

number of peaks without TFBSs total number of peaks

Identification of TFs with co-localized TFBSs. For each
pair of distinct TFs (TFA, TFB), we extracted the closest
TFBS associated with TFB for each TFBS associated with
TFA and computed the geometric mean distance between
midpoints of the paired TFBSs. With this approach, the ge-
ometric mean mAB for the pair (TFA, TFB) is different from
the geometric mean of the pair (TFB, TFA). With 232 TFs
available in our analyses, we computed geometric means for
53 592 ordered pairs of TFs.

The colocalization of TFBSs for each TF pair was as-
sessed using a Monte Carlo-based approach as follows. The
number of TFBSs per TF ranged from 1 to 404 566, with
455 as the fifth percentile. We uniformly discretized the
range [455, 414 172] to consider 50 TFBS set sizes (Si for
i in [1, 50]). We chose 414 172 as the maximum value to be
able to compute a P-value for the set of 404 566 TFBSs. For
each set size Si, we created 500 sets of TFBSs by randomly
selecting TFBSs from the total pool. Using these random
sets, we computed null distributions for 500 Monte Carlo
samples of geometric mean distances for each of the 2601 set
size combinations. Specifically, this computation led to 2601
distributions of 500 geometric means. For the TF pair (TFA,
TFB) with NA and NB TFBSs, respectively, we extracted the
Monte Carlo sample of geometric mean distances M ob-
tained from the random sets with SA and SB TFBSs, where
SA = min(Si) with Si > NA and SB = min(Si) with Si >
NB. The empirical P-value associated with the pair (TFA,
TFB) was computed as the number of times we observed a
geometric mean smaller than mAB from M over the 500 pre-
computed geometric means; if no smaller geometric mean
was observed, the empirical P-value is defined as <0.002
(i.e. 1/500).

Since the expected geometric mean distance increases
with a decreasing number of TFBSs, this P-value computa-
tion is conservative (under-estimated significance). The ob-
tained P-values were corrected for multiple testing using the
Benjamini–Hochberg method (52), only the TF pairs with
a FDR <5% were considered significant.

The detailed null distribution values can be down-
loaded and reproduced at https://hyperbrowser.uio.

no/geirksa sandbox/u/gsandve/h/null-distributions-for-
manuscript-a-map-of-direct-tf-dna-interactions-in-the-
human-genome. These computations are based on
running the static methods ‘ConcatenateNullDistribu-
tionsTool.execute’ and ‘ComputeNullDistributionForE-
achCombinationFromSuiteVsSuiteTool.execute’ (with
argument values corresponding to parameter settings
annotated in the Galaxy (53) history above) in the code
provided at https://hyperbrowser.uio.no/geirksa sandbox/
static/hyperbrowser/files/div/hb.zip. The source code for
the comparison with null distributions is available at
https://bitbucket.org/CBGR/co-binding/.

GeneMANIA. We used the GeneMANIA software (54) to
extract known protein–protein interactions from the list of
TFs with significant co-localized TFBSs and plot the corre-
sponding network.

Prediction of cis-regulatory modules. The TFBSs predicted
by ChIP-eat were sorted and merged using the bedtools
sort and merge subcommands. The CREAM tool (Madani
Tonekaboni et al., bioRxiv, doi:10.1101/222562) was ap-
plied to the merged TFBSs to define cis-regulatory modules
(CRMs) as genomic regions enriched for clusters of TFBSs.

GWAS trait- and disease-associated single nucleotide poly-
morphism enrichment analysis. We assessed the enrich-
ment for GWAS trait- and disease-associated single nu-
cleotide polymorphisms (SNPs) at CRMs using the traseR
R package (version 1.10.0 (55)). CRM genomic positions
were lifted over to the hg19 version of the human genome to
perform the analyses. The set of SNPs (as of 30 April 2018)
considered by traseR combined data from dbGaP (56) and
NHGRI (57) as described in the corresponding bioconduc-
tor package vignette (https://bioconductor.org/packages/
release/bioc/vignettes/traseR/inst/doc/traseR.pdf).

Conservation analysis. The hg38 phastCons (58) scores
for multiple alignments of 99 vertebrate genomes to
the human genome were retrieved as a bigWig file
at http://hgdownload.cse.ucsc.edu/goldenpath/hg38/
phastCons100way/hg38.phastCons100way.bw. The TFBSs
predicted by ChIP-eat were sorted and merged using the
bedtools sort and merge subcommands. The locations over-
lapping CRMs were obtained using the bedtools intersect
subcommand. The corresponding genomic locations (for
all TFBSs and TFBSs in CRMs) in BED format were
decomposed into 1 bp intervals using bedops v.2.4.14 (59)
with the –chop 1 option. The phastCons scores at every bp
were extracted with the ex subcommand of the bwtool (60)
using the corresponding BED and phastCons bigWig files.

The UniBind web interface. All the TFBS predictions, cor-
responding ReMap ChIP-seq peaks, trained TFBS com-
putational models, and CRMs are available through the
UniBind database at http://unibind.uio.no/. The UniBind
web interface was developed in Python using the model-
view-controller framework Django. It uses MySQL to store
TFBS metadata and Bootstrap as the frontend template en-
gine. The source code is available at https://bitbucket.org/
CBGR/unibind.
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Statistical analyses. All statistical analyses were per-
formed in the R environment (version 3.4.4).

RESULTS

Predicting direct TF–DNA interactions in the human genome
from ChIP-seq data

Given a set of ChIP-seq peaks and a TFBS computational
model such as a PWM, one can extract the best site per
peak, which corresponds to the DNA subsequence of the
peak with the highest score for the model. The higher the
score, the stronger the computational evidence that the site
is similar to TFBSs known to be bound by the TF (36).
Moreover, it has been shown that the closer the site to
the peak summit, the more likely it is to represent a direct
TF–DNA interaction with experimental evidence from the
ChIP-seq assay (25,27,30). Hence, direct TF–DNA interac-
tions captured by ChIP-seq are enriched for high scores and
small distances to the peak summits (Figure 1A,B). These
characteristics have previously been used to automatically
predict direct TF–DNA interactions by selecting score and
distance thresholds defining these enrichment zones using
a heuristic approach (25). This approach used pre-defined
parameter values and was specifically designed for PWMs,
but is not applicable to more recent TFBS computational
models such as binding energy models (BEMs) (32), tran-
scription factor flexible models (TFFMs) (31), and DNA
shape-based models (DNAshapedTFBS) (15).

We aimed to predict direct TF–DNA interactions (TF-
BSs) within ChIP-seq peaks and developed the ChIP-
eat software that automatically identifies the enrichment
zone for any TFBS computational model. It uses a non-
parametric, entropy-based algorithm originally designed to
separate background/noise from foreground/signal in im-
age processing (41) (Supplementary Figure S2). We applied
this algorithm to the distributions of site scores and distance
to peak summits independently to separate direct TF–DNA
interaction events from other binding subtypes and ChIP-
seq artifacts (Figure 1C,D; Materials and Methods). The
two thresholds define the enrichment zone, which delimits
the sites that are predicted as TFBSs with both experimen-
tal and computational evidence of direct TF–DNA interac-
tions. With this approach, we automatically adjust the en-
richment zone discovery specifically for each TF ChIP-seq
peak data set and for each computational model. The iden-
tified enrichment zone defines the thresholds on the TFBS
computational model scores and distances to the peak sum-
mits in a data set-specific manner.

We retrieved 1983 ChIP-seq peak data sets from ReMap
(16), accounting for 232 TFs with a PFM available in the
JASPAR database (24). Using DiMO-optimized PWMs,
we compared the enrichment zones predicted by ChIP-eat
with the ones obtained with the heuristic approach devel-
oped in (25). The enrichment zones predicted with ChIP-eat
were more stringent than with the heuristic algorithm (Sup-
plementary Figure S3A,B,D,E). The corresponding TFBSs
predicted in the enrichment zones were more central to the
peak summits with ChIP-eat than with the heuristic method
as evaluated with CentriMo (27) (Supplementary Figure
S3C, F). Moreover, ChIP-eat does not require any fixed val-
ues such as a predefined bin size (25) to predict the enrich-

ment zones. Finally, ChIP-eat is not restricted to work with
PWMs only and can be used with any TFBS computational
model.

We applied ChIP-eat to the 1983 human ChIP-seq
data sets with four types of computational TFBS mod-
els: DiMO-optimized PWMs, BEMs, TFFMs, and
DNAshapedTFBS. These models were optimized for
each ChIP-seq data set, independently (see Materials and
Methods). In the following analyses, we focused on the
predictions obtained with the DiMO-optimized PWMs
(see Materials and Methods). This set of direct TF–DNA
interactions (TFBSs) extracted from the enrichment zones
covers ∼4% of the human genome, encompassing 8 304
135 distinct TFBS locations.

Predicted direct TF–DNA interactions are likely bona fide
TFBSs

Robustness of the enrichment zone identification. The ro-
bustness of the method was first evaluated by applying
ChIP-eat to genomic regions of ±300, 400, and 500 bp
around the peak summits. The median distance threshold to
the peak summit shifted from 72 bp using ±500 bp to 64 and
55 using ±400 and 300 bp, respectively. The median PWM
scores thresholds were 85, 84.6 and 83.9 with ±500, 400,
and 300 bp regions, respectively (see Supplementary Figure
S8 for a visual representation using the 10 most frequent
ChIP’ed TFs). The variability of the predicted enrichment
zone when using different window sizes is similar to the vari-
ability between ChIP-seq data sets for the same TF (see be-
low). Further, the number of predicted TFBSs within the
enrichment zones were similar when using the different re-
gion sizes (Supplementary Figure S9). These analyses con-
firmed the robustness of the entropy-based thresholding al-
gorithm to the window size considered. As previously used
in (25), we considered the ±500 bp regions around the peak
summits in the following analyses.

Considering the ChIP-seq data sets for the 10 most fre-
quently ChIP’ed TFs, we observed that the thresholds on
the PWM scores and distances to peak summits, defining
the enrichment zones, were consistent between data sets for
the same TF (Figure 2A,B). Namely, the median pairwise
difference between PWM score thresholds for the same TF
ranged from 1.7 to 3.7 and the median distance thresholds
from 12 to 35 bp. As expected, the thresholds identified for
distinct TFs are different (Figure 2C, D). Taken together,
these results highlight that the entropy-based algorithm al-
lows for the identification of enrichment zones specific to
each TF and ChIP-seq data set, with consistent predictions
between data sets for the same TF. Results were consistent
with BEM, TFFM, and DNAshapedTFBS models (Sup-
plementary Figures S4–S6).

We further evaluated the robustness of the method to
noise by adding 10%, 25%, and 50% of shuffled sequences
to the initial set of ChIP-seq peaks for all ChIP-seq peak
data sets (see Materials and Methods). The median thresh-
old on the distances to peak summits shifted from 73 bp in
the initial set of ChIP-seq peaks to 70 bp with 10% noise,
67 bp with 25% noise, and to 63 bp when adding 50% noise.
The median PWM score threshold was 85.2 for the initial
set of ChIP-seq peaks and shifted to 85 when adding 10%
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Figure 1. Automatic detection of the TFBS enrichment zone. Landscape plots (25) obtained with SRF ChIP-seq peaks using the DiMO-optimized PWM
MA0083.3 from JASPAR are presented as scatter (A) and heatmap (B) plots. The enrichment zone (defined within the red and green dashed line boundaries,
A-B) is automatically obtained by ChIP-eat with thresholds on PWM scores (red dashed lines; C) and distances to peak summits (green dashed lines; D).
The enrichment zone provides TFBSs in ChIP-seq peaks (points in A) with supporting evidence for direct TF–DNA binding from the ChIP-seq assay
(close distance to peak-summits, A-B, x-axis) and the computational model (PWM score, A-B, y-axis). Distances to peak summits in A, B and D are
provided using a base pair unit.

of noise, to 84.8 when adding 25% of noise, and to 84.4
when adding 50% of noise. A visual representation for the
10 most frequently ChIP’ed TFs is available in Supplemen-
tary Figure S7. The variability of the thresholds defining the
enrichment zones when adding noise is limited, within the
range of variability between ChIP-seq peak data sets for the
same TF (Figure 2). Taken together, these results show that
the entropy-based thresholding algorithm delimiting the en-
richment zones, as implemented in ChIP-eat, provides con-
sistent results between data sets for the same ChIP’ed TF
and is robust to the window sizes considered and random
noise.

Validation using in vitro DNA binding affinities. To confirm

a posteriori the high quality of our set of TFBS predictions,
we assessed the TF binding affinity to DNA sequences
derived experimentally from protein binding microarrays
(PBM) (61). The PBM assay quantifies the binding affin-
ity of a protein to all possible combinations of 8-mer DNA
sequences. We retrieved PBM data from the UniPROBE
database (46) for 40 different TFs present in our collec-
tion, corresponding to 249 ChIP-seq data sets (Supplemen-
tary Table S2). Note that the JASPAR PFMs for the ATF1,
ATF3, and FOXJ2 TFs were originally derived from PBM
data. For each ChIP-seq data set, we tested if the sites lo-
cated in the enrichment zone presented higher binding affin-
ity than sites outside (see Materials and Methods). The
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A B

C D

Figure 2. Assessment of the thresholds predicted by ChIP-eat across data sets. Boxplots of the pairwise differences for DiMO-optimized PWM score
thresholds and distances to peak summits thresholds between ChIP-seq data sets for the same TF are provided in panels (A) and (B), respectively. Absolute
variations of DiMO-optimized PWM score thresholds and distances to the peak summits within all data sets for the same TF are provided in panels (C)
and (D), respectively. The ten TFs with the highest number of data sets were selected; the number of data sets for each TF is provided between brackets.

distributions of the binding affinity scores for sites within
and outside the enrichment zones were compared using a
Mann-Whitney U test (Figure 3A; Materials and Meth-
ods). Predicted direct TF–DNA interactions (sites within
the enrichment zone) had significantly higher binding affin-
ity than the other sites for 75% of the data sets with P-value
<0.01 and 81% with P-value <0.05 (Figure 3B). Similar re-
sults were obtained when considering BEM, TFFM, and
DNAshapedTFBSs computational models (Supplementary
Figure S10). This analysis emphasizes that the sites pre-
dicted in the defined enrichment zones are likely to corre-
spond to direct TF–DNA interactions.

Predicted direct TF–DNA interactions are found in high con-
fidence ChIP-seq peaks. We hypothesized that the ChIP-
seq signal at ChIP-seq peaks containing a predicted direct
TF–DNA interaction were more likely to be higher than
at the other peaks. To test this hypothesis, we looked at (i)
the quality of the peaks based on P-values assigned to the
peaks by the MACS2 peak-caller and (ii) the reproducibility
of calling these peaks with multiple peak-callers (MACS2,
HOMER, and BCP; see Materials and Methods).

We observed that the distribution of P-values assigned
by MACS2 to the peaks containing a predicted TFBS were
significantly (P-value < 0.01; Mann–Whitney U test) lower
than for the rest of the peaks for 1862 (96%) data sets (Fig-
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Figure 3. Binding affinity assessment for the predicted direct TF–DNA interactions. (A) Distribution of the median PBM intensity scores for the
ENCSR000BMX GATA3 ChIP-seq data set between sequences at TFBSs (i.e. sites within the enrichment zone; in red) and sites outside the enrich-
ment zone (in blue). (B) Distribution of Mann–Whitney U test P-values across the 249 data sets, showing distinct distributions of PBM intensity scores
between sites within and outside the enrichment zones.

Figure 4. Quality assessment of the ChIP-seq peaks derived from direct
TF–DNA interactions. Distribution of the median MACS2 P-values (y-
axis) across all data sets. Values for peaks containing a predicted TFBS
are provided in blue and values for the other peaks in grey. 1939 ChIP-seq
data sets were predicted to contain direct TF–DNA interactions (x-axis).

ure 4). The other 77 data sets contained a reduced number of
peaks (median of 837 compared to 18 968 for the complete
set of ChIP-seq data sets), which can explain the lack of sta-
tistical significance. These results confirm that the predic-
tions of direct TF–DNA interactions were found in ChIP-
seq peaks of higher quality as assessed by MACS2.

To test ChIP-seq peak-calling reproducibility, we used
two other peak-callers (HOMER and BCP) on 670 ChIP-
seq data sets from ENCODE. Our choice of peak-callers
was motivated by their distinct statistical approaches for
peak prediction. While MACS2 and HOMER are based
on an empirical model supported by a Poisson distribution,
BCP uses a Bayesian approach implementing infinite-state
hidden Markov models. We applied ChIP-eat to the ChIP-
seq peaks to predict TFBSs. For each pair of peak-callers,
we assessed whether the peaks predicted to contain a di-
rect TF–DNA interaction were more prevalent (P-value <
0.01, hypergeometric test) in the set of peaks called by both

peak-callers. This was observed for 63% of the data sets for
MACS2 and BCP, 70% for MACS2 and HOMER, and 66%
for HOMER and BCP. The data sets without significant en-
richment had a median number of peaks predicted to be
derived from direct TF–DNA interactions that was ∼7 fold
smaller (e.g. 3358 compared to 22 499 between MACS2 and
BCP) than for the data sets with significant enrichment, and
a median number of peaks without TFBS ∼2 fold larger
(e.g. 40 050 compared to 21 256 between MACS2 and BCP)
(Supplementary Table S3). Moreover, the median quality
scores assigned by the peak-callers to the peaks from the en-
riched data sets were significantly (P-value < 0.01, Mann–
Whitney U test) higher than for the peaks in the other data
sets (Supplementary Figure S11). It suggests that the data
sets enriched for reproducible peaks containing predicted
direct TF–DNA interactions are of better quality than the
rest of the data sets.

Taken together, these results highlight that the ChIP-seq
peaks in which ChIP-eat predicts direct TF–DNA interac-
tions are of higher quality than the other peaks. Note that
the ChIP-eat tool does not consider the peak quality when
predicting direct TF–DNA interactions. These observations
reinforce the confidence in the predicted TFBSs by ChIP-
eat.

Predictions of direct TF–DNA interactions in ChIP-exo data

The ChIP-exo assay has been developed to provide a higher
resolution than ChIP-seq to identify TFBSs in vivo (34).
We aimed at assessing the performance of ChIP-eat on pre-
dicting direct TF–DNA interactions using ChIP-exo data.
The ChExMix tool has recently been introduced to char-
acterize protein-DNA binding event subtypes from ChIP-
exo peak (48). ChExMix predicted different binding event
subtypes for ChIP-exo data obtained for the TFs ESR1 and
FOXA1, one of these subtypes corresponding to direct TF–
DNA interactions (48). We applied ChIP-eat on the same
ESR1 and FOXA1 ChIP-exo data sets. We compared the set
of peaks identified to contain direct TF–DNA interactions
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predicted by ChExMix and ChIP-eat in these two data sets.
We found that 93.6% (for ESR1) and 91.3% (for FOXA1)
of the peaks predicted to contain TFBSs by ChIP-eat were
also predicted as direct binding events by ChExMix (Sup-
plementary Table S4). The high overlaps between the pre-
dictions from ChExMix and ChIP-eat were confirmed by
Jaccard similarity indexes of 63.7% and 68.7% for ESR1
and FOXA1, respectively. The similar results obtained with
the two tools suggest that ChIP-eat, designed for the more
noisy and less precise ChIP-seq data, is able to capture di-
rect binding events from ChIP-exo data.

High-occupancy target regions are likely not derived from di-
rect TF–DNA interactions

High-occupancy target (HOT) and extreme-occupancy tar-
get (XOT) regions are genomic regions where ChIP-seq
peaks were observed for a large number of distinct ChIP’ed
TFs (35,62,63). These regions are observed across species
(63) and contain an unusually high frequency of ChIP-seq
peaks (35,62,63). We used our set of high quality TFBS
predictions to confirm that HOT/XOT regions were de-
pleted of direct TF–DNA interactions. Indeed, we found
that ChIP-seq peaks that do not contain a predicted TFBS
were significantly enriched at HOT/XOT regions (odds ra-
tio = 1.43 for HOT and 1.44 for XOT, P-value < 2.2e–16,
hypergeometric test, Supplementary Table S5). Similar re-
sults were obtained when considering the three other com-
putational models (BEM, TFFM, and DNAshapedTFBSs;
Supplementary Table S5). This observation, combined with
a previous study describing that HOT/XOT regions are
likely to be derived from ChIP-seq artifacts (Wreczycka
et al., bioRxiv, 10.1101/107680), suggests that HOT/XOT
regions are not derived from the direct binding of the
ChIP’ed TFs.

Predicted direct TF–DNA interactions reveal co-binding TFs
and cis-regulatory modules enriched for disease- and trait-
associated SNPs

TFs are known to collaborate through specific co-binding
at cis-regulatory modules (CRMs) to achieve their func-
tion (1,36). Hence, identifying co-binding TFs is critical
to decipher transcriptional regulation of gene expression.
We aimed at using our predicted direct TF–DNA interac-
tions to reveal co-binding TFs and CRMs. We hypothesized
that the distances between TFBSs of cooperating TFs are
smaller than expected by chance. We tested this hypothe-
sis for all pairs of TFs for which we predicted TFBSs (232
TFs, 53 592 pairs tested; see Materials and Methods). For
each TF pair, we used a conservative Monte Carlo-based
approach to compare the geometric mean of the distances
between their TFBSs to the geometric mean distance ex-
pected by chance for a similar number of TFBSs randomly
selected from the complete pool of TFBSs (see Materials
and Methods). This approach predicted 150 pairs of TFs
(accounting for 112 distinct TFs) with TFBSs closer in the
genome than expected by chance (FDR < 5%; Supplemen-
tary Table S6). For 82% of the predicted TF pairs, we con-
firmed that the corresponding TFs physically interact us-
ing the protein-protein interaction networks from the Gen-

eMANIA tool (54) (Supplementary Figure S12). This anal-
ysis further supports the biological relevance of the TFBSs
predicted by ChIP-eat.

Next, we aimed to automatically identify CRMs,
which correspond to clusters of direct TF–DNA inter-
actions, using the clustering of genomic regions analysis
method (CREAM; (Madani Tonekaboni et al., bioRxiv,
doi:10.1101/222562)). When considering our complete set
of TFBSs, CREAM detected 61 934 CRMs in the human
genome, encompassing 2 474 587 distinct TFBS locations.
We found that the predicted CRMs were significantly en-
riched (FDR-corrected P-value = 2.9e−150) for disease- and
trait-associated SNPs using traseR (55). Further, we ob-
served that the TFBSs lying within the CRMs were more
conserved than the TFBSs predicted outside (Supplemen-
tary Figure S13). Taken together, these results indicate a po-
tentially functional role of the CRMs identified as clusters
of direct TF–DNA interactions.

The UniBind web interface to access our collection of direct
TF–DNA interactions

We catalogued the complete set of TFBS predictions from
each prediction model, trained models, original ChIP-seq
peaks from ReMap, and computed CRMs, and made them
publicly available through UniBind at http://unibind.uio.
no/. UniBind provides an interactive web interface with easy
browsing, searching, and downloading for all our predic-
tions (Figure 5). For instance, users can search for predic-
tions for specific TFs, cell lines, and conditions.

The data can be searched by using the case insensitive
search option available on the homepage. The database
can be searched for each of the four TF binding models,
cell/tissue type, and TF name using the ‘Advanced Op-
tions’, available on the homepage (Figure 5A). Search re-
sults are presented in a responsive and paginated table
along with metadata information (Figure 5B), which can
be clicked to view the detailed information and download
TFBSs, summary plots, and ReMap ChIP-seq peaks (Fig-
ure 5C-D). All the metadata in the responsive tables can be
downloaded as CSV files. UniBind displays by default the
results obtained with the DiMO-optimized PWMs, but re-
sults obtained from all TFBS computational models along
with the trained models are available for browsing and/or
download.

DISCUSSION

To summarize, we have uniformly processed 1983 ChIP-
seq peak data sets to predict high quality direct TF–DNA
binding interactions in the human genome. The predictions
were obtained using a non-parametric, entropy-based algo-
rithm that automatically detects thresholds for TFBS com-
putational model scores and distances to peak summits for
each ChIP-seq data set. This new approach identified TF-
BSs supported by strong experimental and computational
evidences for direct TF–DNA interactions. The accuracy
of the predictions was a posteriori validated using the PBM
in vitro assay, ChIP-exo data, and multiple ChIP-seq peak-
calling algorithms. Our set of direct TF–DNA interactions
confirmed that HOT genomic regions are likely not de-
rived from direct binding of the TFs to the DNA. We used
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Figure 5. Overview of the UniBind user interface with interactive searching activity. (A) A quick and detailed search feature on the homepage. (B) A
responsive table lists the searched data set(s), which can be clicked to view the details. (C) A detailed page shows the analysis for the JUND TF in cell-line
A549, which is divided into sub-panels including the TF summary, external links, summary plots, and download options for each computational TFBS
model. (D) Statistical details of the results.
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our TFBSs to predict TFs with proximal binding events in
the human genome, which could cooperate to achieve spe-
cific functions. Further, we defined cis-regulatory modules,
which are clusters of TFBSs, that were enriched for disease-
and trait-associated SNPs from GWAS. The complete set
of predictions is publicly and freely available through the
UniBind web-interface (http://unibind.uio.no/), in an effort
to provide the community with an unprecedented collection
of high quality direct TF–DNA interaction events in the hu-
man genome.

The output of ChIP-seq assays is generally com-
posed of direct protein-DNA interactions, indirect bind-
ing of the protein to the DNA (through a co-binding
partner), nonspecific protein binding to the DNA, and
noise/bias/artifacts (4–6). Here, we specifically aimed at
identifying direct TF–DNA interaction events by using an
entropy-based algorithm (41). This algorithm was origi-
nally developed to discriminate between foreground and
background in image processing. Hence, it assumes the
presence of background (or noise) in the data. As a con-
sequence, our approach is limited by the assumption that
there is background/noise in the ChIP-seq data sets ana-
lyzed. We assume that this noise represents indirect bind-
ing of TFs, nonspecific binding, or ChIP-seq experimen-
tal artifacts. Moreover, our approach considered the best
site per ChIP-seq peak (defined using TFBS computational
models), which represents the best candidate. We recognize
that other sites with lower scores could represent direct TF–
DNA interactions. These limitations denote that our ap-
proach is stringent for the prediction of direct TF–DNA
interactions, favoring specificity over sensitivity. The ChIP-
seq peaks that our method did not predict to contain direct
TF–DNA binding events could be further analyzed to dis-
criminate other mechanisms for protein-DNA interactions
from background noise, as proposed in the ChExMix tool
established for ChIP-exo data (48).

The ChIP-eat pipeline developed for this study used four
TFBS computational models to predict TF–DNA bind-
ing events. These models were specifically trained for each
ChIP-seq data set to improve the quality of the predictions,
as the best-performing computational model varies for dif-
ferent TFs or TF families (8,14,15). As a consequence, we
advocate that a ‘one-fits-all’ TFBS prediction model is not
optimal and that one should compare results from multiple
models. With the predictions available through UniBind,
users can assess which model would perform better for each
data set. Of course, it requires to use a specific metric to
compare performance. As our methods aimed at identifying
enrichment zones centered around ChIP-seq peak summits,
we suggest to rely on a centrality measure as implemented
in the CentriMo method (27). In UniBind, we provide cen-
trality P-values computed following (27) for the predictions
from each model in each ChIP-seq data set. Moreover, the
ChIP-eat pipeline is generalizable and users can incorporate
other TFBS computational models to predict direct TF–
DNA interactions and compare them to the ones already
stored in UniBind.

While studies alike focus on determining where TFs
directly interact with DNA, our understanding of how
these TF–DNA interactions influence expression is limited.
Surely, it is critical to decipher the relationship between TF–

DNA interactions and transcriptional regulation (64). It is
expected that a large portion of the TFBSs identified in our
study are not functional, as suggested by the futility the-
orem (36). Nevertheless, functional TF binding events are
likely to be clustered (65–68) and associated with stronger
ChIP-seq peak signals (12,69). We expect that the direct
TF–DNA interactions predicted in cis-regulatory modules
and stored in UniBind are more likely to be enriched for
functional events. Determining the specific set of functional
TF–DNA interactions would require dedicated computa-
tional models and experiments.

DATA AVAILABILITY

Source code of the ChIP-eat software is available at https:
//bitbucket.org/CBGR/chip-eat and of UniBind at https:
//bitbucket.org/CBGR/unibind. The source code used for
the identification of co-localized TFs is available at https://
bitbucket.org/CBGR/co-binding. Users can browse and/or
download the data through the UniBind web interface at
http://unibind.uio.no/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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