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Abstract

In the Mediterranean region, the long-term provision of agro-ecosystem services is threat-
ened by accelerating climate change, unsustainable farming practices and other pressures. Al-
ternative management practices such as conservation agriculture could be expected to ensure
sustainability of ecosystem services from Mediterranean agro-ecosystems. Conservation agri-
culture is characterized by minimal soil disturbance, permanent soil cover, and diversification
of crop species. We analyzed the impacts of several forms of alternative agricultural manage-
ment practices (conservation tillage, cover cropping, mulching, manual weed management,
organic fertilizer use, no-irrigation system) on multiple ecosystem services based on 155 pub-
lished case studies (1994-2015). The effect size of various management options on four pro-
visioning and four regulating ecosystem services were quantified. Impacts of conservation
management options are not uniform. All regulating services were positively affected by the
conservation management options except for the system without irrigation. In contrast, the
provisioning services were inconsistently influenced by the conservation management options.
For crop yield, environmentally sustainable soil management was beneficial, but organic fertil-
ization (effect size = -0.17), manual weed management (effect size = -0.35) and no-irrigation
system (effect size = -0.5) led to lower crop yields. The impact on crop biomass was mainly
negative but not significant. Water availability was especially important to enhance both pro-
visioning and regulating services. Overall, alternative agriculture management practices led to
more positive than negative effects on ecosystem services in the study region. Stimulating the
application of conservation management practices is therefore an important policy option for
decision makers given the vulnerability of ecosystem services in the Mediterranean basin.
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1. Introduction

Ecosystems in the Mediterranean basin provide numerous ecosystem services to society
and host high levels of biodiversity (Pretty, 2008; Martín-López et al., 2016; Malek and Verburg,
2017). Yet, they are threatened by both climate change and socio-economic factors (Giorgi,
2006; Hill et al., 2008; Bajocco et al., 2012). The Mediterranean climate is characterized by wet
and mild winters and hot and dry summers (Perez, 1990; Sanz-Cobena et al., 2017), generating
strong seasonal dryness with increased water stress. Due to climate change, many Mediter-
ranean ecosystems are threatened by potentially severe water shortages (Wimmer et al., 2015;
Holman et al., 2017) and drought-related loss of ecosystems in the future (Guiot and Cramer,
2016). At the same time, unsustainable rural land management accelerates land degradation in
the Mediterranean basin (Geist and Lambin, 2004; Hill et al., 2008; Bajocco et al., 2012; van Vliet
et al., 2015). For example, intensified agriculture with a high application of fertilizers and pesti-
cides, along with machinery, has degraded the quality of soil and water (Zalidis et al., 2002; De-
bolini et al., 2018). The combination of climate change and land degradation increases the vul-
nerability of agro-ecosystems and the economy depending on them (Berry et al., 2006; Thomas,
2008). It is likely that demand for agricultural production in the Mediterranean basin increases
in the future (Iglesias et al., 2011), which requires necessary mitigation and adaptation actions
(Foley et al., 2011; Smith et al., 2013).

Agricultural management affects ecosystem services in different ways (Andersen et al., 2013;
Palm et al., 2014). Although yields may increase in the short term with intensive management,
qualitative relationships between ecosystem services may often indicate negative effects of in-
tensive farming on regulating services, such as air and water quality regulating services (Pilgrim
et al., 2010). To meet food security as well as environmental objectives in agro-ecosystem man-
agement, sustainable solutions will need to enhance multiple ecosystem services and minimize
trade-offs effects (Kroeger and Casey, 2007; Pretty, 2008; Foley et al., 2011; Smith et al., 2013).

Conservation agriculture is now increasingly recognized for its capacity to minimize trade-
offs between ecosystem services and maximize synergies between them (Hobbs et al., 2008;
Pretty, 2008; Palm et al., 2014). Conservation agriculture is characterized mainly by minimal
soil disturbance, permanent soil cover, and diversification of crop species (FAO, 2008). It aims
to improve biodiversity and biological processes in soils, and encourages applications of or-
ganic fertilizers to limit interference with soil biological processes (FAO, 2015b). Conservation
agricultural practices therefore provide an alternative for preserving multiple ecosystem ser-
vices provided in agricultural land (Poisot et al., 2004; Howden et al., 2007). Several conservative
practices were reviewed for the Mediterranean Basin (e.g., Kassam et al., 2012; Aguilera et al.,
2013a,b). However, these review studies focused either on a single ecosystem service (e.g., car-
bon sequestration, Aguilera et al. (2013a)) or a limited number of management options (e.g.,
fertilization and irrigation, Aguilera et al. (2013b)) – this limits their use for a comprehensive
overview of relationships between multiple services affected by farming practices.

The objective of this study is to fill this knowledge gap by conducting a meta-analysis on
the impact of conservative management practices on ecosystem services in the Mediterranean
basin based on published literature. Our goal is to identify the positive and negative impacts
of conservation farming practices on ecosystem services in the Mediterranean basin, provid-



ing evidence-based recommendations for sustainable land management in the Mediterranean
basin in the future.

2. Material and methods

2.1. Literature selection

For a systematic and reproducible literature review, we followed a four-step procedure (Col-
laboration for Environmental Evidence, 2013). Target literature was selected following the Pre-
ferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) framework: Iden-
tification, Screening, Eligibility, Inclusion (Moher et al., 2009) (Supplementary Fig. SF1). Lit-
erature searches were conducted in the ISI Web of Knowledge core database targeting peer-
reviewed articles published online until April 30th, 2015 in two steps. In a first query, we tested
it by including a specific management option such as ‘irrigation’ because water shortage is con-
ceived as a potential threat to the Mediterranean agricultural system (Fader et al., 2016; Malek
and Verburg, 2017). The search terms for the first query was thus (“agro*” OR “agri*” Or “farm*”)
AND (mediterranean*) AND (ecosystem*) AND (management*) AND (irrigat*) in the topic field.
This query yielded 45 papers. Then, we strove to capture the diversity of farming practices
studied in case studies by not including any à priori restrictive search terms. This additional
query was made with combinations of keywords including (“agro*” OR “agri*” Or “farm*”) AND
(mediterranean*) AND (management*) in the topic field. Similarly, we strove to include all pa-
pers that contained relevant information on ecosystem services, and a large number of indi-
cators that were used in the literature to quantify the supply of those services. We therefore
refrained from using ‘ecosystem services’ as a search term. Doing so helped to include relevant
papers such as traditional agronomy research out of the domain of ecosystem services. The
additional query returned data records for 1,881 peer-reviewed articles.

The first (n = 45) and the second query (n = 1,881) resulted in total 1,926 papers (Identifi-
cation). After removing duplicate articles (n = 17) and adding one relevant article manually as
suggested by a contacted author (Roper et al., 2013), a total of 1,910 articles was used as the
initial data base. From this initial database, we screened articles using title, abstract and full
text (Supplementary Fig. SF1, (Screening, Eligibility). We selected empirical case studies which
measured ecosystem services-related properties both for conservation (treatment) and conven-
tional (control) management options. This step excluded pure simulation modeling studies and
reviews. We focused on papers reporting results from the Mediterranean Basin but included
six well-designed papers (see the caption of Supplementary Fig. SF1) reporting from Mediter-
ranean climate regions outside the basin (i.e., South and South West Australia, the Cape of South
Africa, Central Chile, and California (di Castri and Mooney, 1973; Perez, 1990)). Finally, a total of
155 publications were included in the main analysis (The geolocations of studied management
practices are provided in Supplementary Fig. SF2). For the full list of the included papers, the
reader is referred to the Supplementary materials.).

2.2. Identification of management and ecosystem services

2.2.1. Management types and options
We considered six major management types (i) tillage, (ii) mulching, (iii) use of cover crops,

(iv) fertilization, (v) weed management, and (vi) water management (Table 1), all of which had
more than 10 case studies in our literature database. In the following, we describe shortly each



management type and the corresponding pairwise conventional (control) and conservation
(treatment) management options.

Tillage. Conservative tillage aims to minimize soil disturbance. Tillage physically disturbs up-
per soil layers, thereby facilitating soil aeration, water infiltration as well as inhibiting weeds
growth (Phillips et al., 1980). However, it is also known that tilling damages soil structure and
harms soil organisms, which can lead to soil quality degradation (Six et al., 2000; Montgomery,
2007a). The effect of tillage in yield and biomass production has also been questioned (Alvarez
and Steinbach, 2009). In the Mediterranean region, heavy tillage using machinery is prevailing
as it is in many other agricultural regions. However, conservation tilling (i.e., reduced tillage fre-
quencies or tillage depths) or no-tilling has also been applied in the region (Sartori and Peruzzi,
1994; Vita et al., 2007). For our analysis, we considered conservation tillage including no-tillage
and reduced-tillage as treatment and the conventional tillage as control.

Mulch. Mulching is another alternative soil management practice. It helps to maintain more
vegetation cover on the topsoil, thereby protecting the soil surface. This practice is known to
help maintain the soil structure, benefiting many soil organisms (FAO, 2015a). It also protects
the soil from erosion and keeps soil moisture (García-Orenes et al., 2009). Generally, organic
materials such as plant residues, straw, and leaves are used for mulching, but non-organic ma-
terials such as a plastic cover are also applied as well (Kasirajan and Ngouajio, 2012). In our
study, mulch was regarded as a conservation practice, thus considered as a treatment. No-
mulch was used as the control in the meta-analysis.

Use of cover crops. Cover crops are planted after harvesting and before planting of cash crops to
cover the ground, to prevent the soil loss and to maintain soil quality, water retention, and soil
nutrients (Reeves, 1994). Cover crops may positively affect soil water relationships depending
on climate and management (Unger and Vigil, 1998). To meet those objectives, cover crops
should have rapid growth rates and good disease tolerance (Reeves, 1994, p. 137-138). They also
contribute to weed suppression (Amossé et al., 2013). Legumes, herbal crops, and grain crops
are often cultivated as cover crops (e.g., Ruiz-Colmenero et al., 2013; Campigli et al., 2014; Njeru
et al., 2014), legumes being particularly interesting in organic farming for their improvement of
N nutrition (Amossé et al., 2014). In our analysis, use of cover crops was considered as treatment
and no use of cover crops as control.

Fertilization. Use of organic fertilizer has been reported to have less impact on environmental
conditions, which potentially secures more ecosystem services (Sandhu et al., 2010). Several re-
views of the effect of organic practices on environmental impacts revealed that organic fertilizer
use improves soil quality, typically by leading to higher soil organic matter content (Mondelaers
et al., 2009; Tuomisto et al., 2012). For the effect of fertilizer management, we compared organic
fertilizer or non-fertilizer with inorganic fertilizer as control. We did not distinguish between
different types of input organic materials in our analysis because of insufficient data.

Weed management. Weeds are plants competing with crops for water and nutrient during the
growing season (Hager, 2015). A significant yield loss can occur due to the light and nutrient
competition between crops and weeds (Slaughter et al., 2008) - therefore weed control is criti-
cally important in agriculture. In conventional agriculture, farmers often control weeds using



agro-chemicals. Since negative effects of chemical weed management methods on ecosystems,
biodiversity and human health have been reported (Cox and Surgan, 2006; Buchanan et al.,
2011; Blair et al., 2015; Holt et al., 2016), there have been many efforts to reduce their usage. In
our analysis, we compared the impact of conservative weed management practices which do
not require chemicals such as mow, manual controlling (treatment) against practices involving
chemical applications (control).

Water management. Irrigation provides a controlled amount of water to the crop to reduce
water stress (Walker, 1989). In semi-arid regions such as the Mediterranean basin, irrigation
increases productivity compared to rain-fed agriculture (Iglesias et al., 2011). Yet, irrigation can
have negative side effects. For example, poor management can lead to salinization by overusing
groundwater (Baldock et al., 2000; Bouarfa et al., 2009). In our analysis, we contrasted rain-fed
systems as treatment with irrigated systems as the control group. Various irrigation systems
including surface, drip, and sprinkler methods were all regrouped as ‘irrigation’, for simplicity.
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2.2.2. Ecosystem services indicators
The linkage between indicators and ecosystem services was done based on several estab-

lished frameworks (Dale and Polasky, 2007; Stott et al., 2009; Dominati et al., 2010; de Groot
et al., 2010; Verhulst et al., 2010; Palm et al., 2014) (Supplementary Table ST1). Ecosystem
service categories were defined using the Common International Classification of Ecosystem
Services (CICES) classification V4.3 (Haines-Young and Potschin, 2013). The CICES follows a
nested hierarchical structure of ecosystem services, which includes the levels of ‘section’, ‘di-
vision’, ‘group’, and ‘class’ (Haines-Young and Potschin, 2013). For our analysis we chose the
CICES ‘group’ level to aggregate indicators (Supplementary Table ST2). We made short names
for the ecosystem services categories based on the CICES description for readability (Supple-
mentary Table ST1). From now on, the short names refer to the CICES ‘group’ level unless men-
tioned otherwise. For the detailed CICES classification, we refer readers to the Supplementary
table ST3.

The mean, standard deviation, and sample size for indicators studied in each case study
were extracted from texts, figures, and tables of the original literature. If a study presented the
data only on the figures, we used WebPlotDigitizer (Rohatgi, 2017) to extract the data.

2.3. A meta-analysis: impacts of management options on ecosystem services

We analyzed the impact of different management options on ecosystem services from pub-
lications through a meta-analysis. A meta-analysis is a statistical method to summarize the re-
sults from findings across multiple case studies by calculating effect sizes (Higgins et al., 2002;
Vetter et al., 2013). The effect size is a measure of the magnitude of effects of a treatment group
(Lipsey and Wilson, 1993). We calculated the response ratio as an effect size unit for each in-
dicator (Hedges et al., 1999; Borenstein et al., 2009) (Eq. 1). This metric has been widely used
for meta-analyses in ecology and agricultural studies (e.g., Aguilera et al., 2013a; Curran et al.,
2014; Torralba et al., 2016). The response ratio was calculated as a proportionate change in the
indicator value of the treatment group (XC S) compared to the pairwise control group (XC ). We
used the natural logarithm of the response ratio (log(RR); lRR) for the analysis:

log (Response Ratio) = ln(XCS/XC) = ln(XCS)− ln(XC). (1)

Positive values indicate a higher value in the treatment group (conservation practices), whereas
negative values indicate a lower in the treatment group (conservation practices).

To account for differences in measures reported in different studies, we calculated the weighted
mean of lRR from individual studies for deriving representative response ratio per indicator.
In the meta-analysis, numbers from the studies are weighted by the inverse of the reported
standard deviation/standard error of the indicators, thereby, a case study which is more cer-
tain about the estimated effect is weighed higher during aggregation (Borenstein et al., 2009).
Weighting by the standard deviation is the standard approach in the meta-analysis as it explic-
itly accounts for the variance, however the standard deviation was not reported in all case stud-
ies. We contacted the corresponding authors of the studies which did not provide uncertainty
information (n = 33) but obtained answers only from five authors. Moreover, the uncertainty in-
formation actually provided was often incompatible among the studies due to heterogeneous
criteria (e.g., the standard deviation of the sampled raw data or the standard error of the aggre-
gated mean). To secure statistical significance by keeping a sufficient sample size, we decided



to weight observations using the sample sizes: studies with larger sample sizes were weighted
higher during aggregation (Adams et al., 1997). With this simpler approach, the weighted log
response ratio (WlRR) of management option i is calculated as

WlRRi = 1

Ni

∑
lRRij ×Wij, (2)

where Ni is the number of the studies for the management i , l RRi j is the log response ratio of
the management i in study j , and Wi j is the weight, which is defined as

Wij =
NCS

ij NC
ij

NCS
ij +NC

ij

, (3)

where NC S
i j and NC

i j are the sample size of the conservation option and the conventional option
of the management i in study j , respectively (Hedges and Olkin, 1985; Adams et al., 1997). Note
that if a study had not provided the sample size, we excluded the study from the analysis (n=1).

For the uncertainty analysis, we report the means and 95% confidence intervals (CIs) of
the WlRR. The CIs were constructed by non-parametric bootstrapping (nboot = 10,000) (Adams
et al., 1997) using the percentile method (Davison and Hinkley, 1997). The bootstrapping was
only conducted for management options with more than seven case studies (n ≥ 8) as the boot-
strap is unreliable when the sample size is too small (Efron and Tibshirani, 1994). For those
with the sample size less than 8 (n < 8), we reported the mean weighted response ratio (WlRR)
without estimated CIs. We considered the effect of treatment as significant if the 95% bootstrap
CI did not overlap with zero. To aid interpretation, mean response ratios and lower and up-
per limits of CIs were graphically examined using violin plots (n ≥ 8) (Adler, 2005). When the
sample size was less than 8 (n < 8), the strip chart was constructed to visualize data points. All
calculations were done in R version 3.3.1 (R Core Team, 2016) using the packages boot (Canty
and Ripley, 2017) and vioplot (Adler, 2005).

3. Results

3.1. Management types

The final selection of publications included 155 articles covering 189 observed locations
(Supplementary Fig. SF2): most of the case studies were located in the Mediterranean basin
(96.2%); there were four study sites in the Mediterranean climate located in North America,
two in South America, and one in Australia. In the Mediterranean basin, case studies were
concentrated in European Mediterranean countries. The majority of the studies (92.9%) were
implemented on agricultural land, 59.6% among which analyzed cereal crops, 22.6% orchard,
and 12.3% horticulture. A small portion (4.5%) of the studies analyzed silvopastoral and dehesa
systems, which is a typical extensive multifunctional agro-silvopastoral system in the Mediter-
ranean region especially in Spain and Portugal (Joffre et al., 1988; Fra-Paleo, 2010).

Ten different management options were found. The most frequently studied management
was ‘Tillage’ (n = 87) followed by ‘Fertilization’ (n = 47), ‘Mulch’ (n = 23), ‘Water management’
(n = 22), ‘Cover Crop’ (n = 21), and ‘Weed management’ (n=14). We took these six major man-
agement types (n > 10) in the following analysis. Less frequently encountered management



options included ‘Crop rotation’ (n = 10), ‘Grazing’ (n=5), ‘Planting density’ (n = 1), and ‘Inter-
cropping’ (n=1).

As it is shown by the main diagonal of the matrix, the majority of case studies focused on
a single management type (n = 95; 60.9%, Supplementary Fig. SF4). In some studies multiple
management options were jointly investigated in combinations. Some pairs were distinctive:
tillage and mulch (n = 15) and tillage and cover crop (n = 10). Several soil management prac-
tices were often studied together. Tillage was most frequently studied with other management
practices (n = 19). At most four management practices were analyzed in a same study (n = 1).

3.2. Indicators used in the literature

In the selected case studies, 167 indicators were used. The most frequently measured in-
dicator was ‘yield’ (n = 70) followed by ‘soil organic carbon (SOC)’ (n = 40), ‘biomass’ (n = 28),
and ‘total nitrogen (TN)’ (n = 24). Among all the studied indicators only 7.8% indicators (n = 13)
appeared in more than 10 case studies. About 60% of the indicators appeared only in a single
case study (n = 100). The use of the indicators was related to management types (Fig. 1). For
example, ‘bulk density’ was frequently measured in studies dealing with the cover crop man-
agement, whereas studies about weed or water management hardly considered bulk density
simultaneously (Fig. 1). Likewise, for water management, ‘pH’ and ‘harvest index (HI)’ were
frequently measured, and ‘soil loss’ and ‘runoff’ were often used in the studies that investigated
the use of cover crops.
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Figure 1: Top 20 indicators addressed across the case studies for each management practices. The colors represent
the number of case studies; Y-axis refers to management types; x-axis refers to indicators: SOC: Soil Organic Car-
bon, TN: Total Nitrogen, MBC: Microbial Biomass Carbon, TOC:Total Organic Carbon, BulkDensity: Bulk density,
DHA: Dehydrogenase Activity, BetaGlu: beta-Glucosidase, WSC: water soluble carbon, HI: Harvest Index, SOM:
Soil Organic Matter, AS: Aggregate stability, WUE: Water Use Efficiency, Shannon: Shannon Index. The explana-
tion of indicators is given in Supplementary Table ST2.

The indicators were assigned to nine different ecosystem services described in Supplemen-
tary Table ST1: four types of provisioning and five types of regulating services (Fig 2). Cultural
services were not analyzed in the selected case studies. The ‘Pest control’ regulating service was
only observed in studies that were excluded from further analysis due to seldom encountered



management options. The majority of studies analyzed one type of ecosystem service (66.4%, n
= 103), whereas 33.5% of studies analyzed multiple ecosystem services in a study (48 studies an-
alyzed two services, 4 studies analyzed three services). The most frequently studied ecosystem
service was ‘Soil formation’ regulating services (n = 76) followed by ‘Food’ provisioning service
(n = 68) (Fig 2).

Number of studies

0 20 40 60 80

Food

Fodder

Water

Energy

Climate regulation

Erosion control

Lifecycle
maintainance

Pest control

Soil formation

Figure 2: The frequency with which ecosystem services were included across the case studies. The color indi-
cates the different ecosystem services groups: Provisioning ecosystem services are depicted green and regulating
ecosystem services blue.

3.3. Impacts of conservative management practices on ecosystem services

Overall, conservation management increased yield and biomass. The yield was even slightly
higher in reduced soil disturbance systems as a result of conservation tillage, mulch, and cover
crops. However, the effect of tillage itself was not significant (Fig. 3, (a)).

For mulching, water content was higher than in conventional farming systems (Fig. 3, (b)),
which might explain the increased yield when mulching is applied. Exceptions of the positive
effect on yield were the use of organic fertilizer and organic weed management (mow, man-
ual controlling), as well as rain-fed. WlRR was -0.14 and -0.24 for the organic fertilizer and the
manual weed management, respectively. Under the rain-fed system, yield was most negatively
affected (WlRR = -0.501, significant). Indicators related to ‘Soil formation’ regulating service
showed an overall positive effect size by the conservative practices (Fig. 3, (a)-(d)). ‘Soil organic
carbon’ as an indicator for ‘Climate regulation’ or ‘Soil formation ’ services was affected posi-
tively by reduced tillage (WlRR = 0.088, significant), use of organic fertilizers (WlRR = 0.15, sig-
nificant) and cover crop (WlRR = 0.213) and mulch (WlRR = 0.403). ‘Species richness’ was only
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Figure 3: Violin plot (a, d, f) with overlaid boxplot of the mean effect size (log response ratio; log(RR)) of the con-
servation management options on different indicators for ecosystem services from Table ST2. The variance was
constructed by non-parametric bootstrapping (nboot = 10000) when the sample size was lager than seven (n ≥ 8).
When the sample size is less than eight (n < 8), strip chart (b, c, e) of the effect size was plotted (jittered for clarity).
Blue hyphens indicate the mean weighted response ratio for those with the sample size less than eight. A dashed
line at zero distinguishes between situations where conservation management options are better than conven-
tional management options (log(RR) > 0) and situations where conventional management options are better than
conservation management options (log(RR) < 0). We considered the effect of treatment as significant if the violin
plot did not overlap with zero. SOC: Soil organic carbon, SOM: Soil organic matter, TOC: Total organic carbon, TN:
Total nitrogen, MBC: Microbial biomass carbon, HI: Harvest Index.



found in case studies that considered the weed management, and the WlRR positive, 0.246. It
should be noted that the sample size for mulching, cover cropping, organic weed management
was less than eight ((Fig. 3, (b), (c), (e)).

The aggregated results showed a positive effect on regulating services by all types of conser-
vation practices (Table 3). The provisioning services showed mixed results and the relationships
between provisioning and regulating services were mixed thereby. For example, the results
showed positive changes in both ‘Food’ and ‘Water’ provisioning services. Note that this result
does not necessarily include a causal relationship between them. The use of organic fertilizer
or non use of fertilizer had a positive impact on regulating services, whereas it had a negative
impact on provisioning services. Non-irrigated system had a negative impact on all types of
services. Among other regulating services, ‘Erosion control’ was affected by cover crops. Cover
crop application reduced the sediment loss as well as run off (Fig. 3).



Table 2: Summary results of the weighted response ratio (WlRR) and the bootstrap confidential intervals

Variables Weighted response ratio (WlRR) Standard Error 5 % CI 95 % CI Sample size

A. Conservation tillage
Yield 0.066 0.0281 0.011 0.122 32
Biomass -0.01 0.021 -0.0498 0.0328 10
Total nitrogen (TN) 0.084 0.01 0.065 0.1038 14
Soil organic carbon (SOC) 0.088 0.013 0.0751 0.1262 28
Beta - Glucosidase 0.161 0.0126 0.1374 0.187 11
Bulk Density 0.024 0.003 0.0181 0.0296 13
Microbial biomass carbon (MBC) 0.233 0.0117 0.2102 0.2555 15
Dehydrogenase activity 0.261 0.0164 0.229 0.294 14

B. Mulch
Yield 0.1462 5
Water Content 0.284 3
Soil organic matter (SOM) 0.423 - - - 2
Soil organic carbon (SOC) 0.4034 - - - 2
Shannon Index 0.0398 - - - 2
Beta-Glucosidase 0.212 - - - 1
Microbial biomass carbon (MBC) 0.101 - - - 1

C. Cover cropping
Yield 0.299 - - - 5
Biomass -0.141 - - - 4
Soil organic carbon (SOC) 0.213 - - - 2
Runoff -1.041 - - - 2
Sediment -1.239 - - - 3
Bulk Density -0.0076 - - - 2
Shannon Index 0.021 - - - 1
Soil Loss -1.068 - - - 1

D. Organic fertilization
Yield -0.1724 0.019 -0.208 -0.135 22
Biomass -0.1421 0.0147 -0.1565 -0.0941 8
Total nitrogen (TN) 0.0437 0.0053 0.033 0.0539 10
Soil organic carbon (SOC) 0.15 0.024 0.105 0.1976 8
Beta-Glucosidase -0.0012 - - - 5
Microbial biomass carbon (MBC) 0.129 - - - 6



Table 2: Summary results of the weighted response ratio (WlRR) and the bootstrap confidential intervals (cont.)

Variables Weighted response ratio (WlRR) Standard error 5 % CI 95 % CI Sample size

E. Weed management
Yield -0.3571 - - - 4
Microbial biomass carbon (MBC) 0.159 - - - 2
Species Richness 0.246 - - - 3
Shannon Index 0.529 - - - 1
Total organic carbon (TOC) 0.09 - - - 1
Total nitrogen (TN) 0.0883 - - - 1

F. Rain-fed (no irrigation)
Yield -0.501 0.019 -0.539 -0.463 10
Biomass -0.391 - - - 5
Total organic carbon (TOC) -0.1475 - - - 2
pH -0.021 - - - 2
Harvest Index -0.193 - - - 2

4. Discussions

Benefits from the application of multifunctional agriculture have been studied earlier (e.g.,
Labarthe, 2009; Renting et al., 2009; Andersen et al., 2013; Balbi et al., 2015). Yet, impacts of var-
ious management practices have not been analyzed quantitatively so far. Here, we synthesize
agricultural indicators to test the impacts of different farming practices on multiple ecosystem
services. The goal was to focus not only on a specific indicator (Supplementary Table ST2),
but particularly on an aggregated level of ecosystem services. The results therefore provide a
synthesis of the combined impacts of conservation farming practices (Table 3).

4.1. The impacts of management options on ecosystem services

4.1.1. Provisioning services
Food production is the primary function of agricultural land (Palm et al., 2014; Balbi et al.,

2015). Changing climate as well as unsustainable farming practices threaten food supply in the
Mediterranean basin (Iglesias et al., 2011). Our results show a potential for alternative man-
agement options to increase crop yield. The conservation management options that have been
applied to reduce soil disturbance such as tillage, mulch and cover crop increased yield (Table
3) to some degree (Fig. 3). This positive effect on yield corroborates earlier studies made under
the Mediterranean climate (see a review study from Kassam et al. (2012)). For example, Crab-
tree (2010) showed 30-50 percent of crop productivity increases due to the no-till management
over 10 years in south western Australia under the Mediterranean climate. However, previous
studies outside Mediterranean climate regions have shown that in cooler and wetter places the
impact could be the opposite (Ogle et al., 2012): a positive impact was found in Sub-Sahara
Africa (Giller et al., 2009), yet negative or negligible results were reported from Argentina (Al-
varez and Steinbach, 2009), Scandinavia (Rasmussen, 1999) and North America (DeFelice et al.,
2006). Management options were found to both directly and indirectly affect soil and water
conditions in agricultural areas (Zalidis et al., 2002).
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Conservation farming practices affect water and soil nutrient status positively, and this in
turn increases yield (Giller et al., 2009; Gordon et al., 2010; Palm et al., 2014). We found similar
effects on improved soil quality and water storage (Fig. 3), and this could explain the slightly
increased yield in mulching systems. Furthermore, the positive effect of conservation farming
on yield was particularly observed during the dry season as it led to relative yield stabilization
(López-Bellido et al., 1996). However, it should be also noted that rain-fed management in some
Mediterranean regions is not sufficient to supply enough water to maintain both provisioning
(i.e., food) and regulating services.

Organic weed management and the use of either organic or no fertilizer improved ‘Soil for-
mation’ regulating services but showed a negative effect on ‘Food’ provisioning service such as
food crop yield. This trade-off relationship caused by organic managements among other con-
servation agricultural managements has been widely recognized globally (de Ponti et al., 2012;
Seufert and Ramankutty, 2017), indicating that the yield difference between organic and con-
ventional farming is about 20%. A possible reason for this trade-off is the difficulty of managing
phosphorus in organic systems (Oehl et al., 2002).

4.1.2. Regulating services
Most of the regulating services analyzed in our study were positively affected by conserva-

tion management, highlighting its role for the improvement of soil conditions. The ‘Soil forma-
tion’ regulating service was the most studied ecosystem service – it was positively affected by
most of the considered conservation options (Table. 3).

A list of indicators for the ‘Soil formation’ service was found in the case studies with respect
to physical, chemical and biological conditions. Although it is often not clear which soil prop-
erties are most appropriate to reflect the impact of conservative management on ecosystem
service provision (Palm et al., 2014), our review showed positive effects of conservation man-
agement across all indicators in physical, chemical and biological soil conditions. Some soil
indicators related with soil carbon could be further linked to the ‘Climate regulation’ service.

The ‘Climate regulation’ service was positively affected by conservation management. This
result is in line with previous review studies. The review by Aguilera et al. (2013a) shows that
conservation tillage has a positive effect on carbon sequestration, especially when combined
with organic fertilizer application and mulching. Also, N2O emissions were reduced by 23% by
applying organic fertilizers compared to conventional fertilizers (Aguilera et al., 2013b). Among
conservative management options, mulching was the most effective method with the largest
effect size to increase ‘soil organic carbon (SOC)’ in our results. This is in line with the results
from Blanco-Canqui and Lal (2007) and Palm et al. (2014) showing the importance of organic
residue for carbon sequestration.

Improvement of soil cover had a positive effect on the ‘Lifecycle maintenance’ in our data
set. Conventional practices in agricultural land systems are generally recognized as leading to
a loss of biodiversity by disturbing soil (McLaughlin and Mineau, 1995) and habitats. Soil dis-
turbance destroys not only the soil structure but also associated soil biodiversity (Montgomery,
2007a; Kassam et al., 2012). Alternative management options can provide an opportunity to
improve biodiversity related indicators. Furthermore, the enhanced soil biodiversity can have a
synergistic relationship with other ecosystem services. Bender et al. (2016) highlight the impor-
tance of soil biota for the ecosystem service provision through their essential role in important
ecosystem functions.



The largest effect size across all regulating services was found for the ‘Sediment retention’
(WlRR = -1.239) and ‘Runoff reduction’ (WlRR = -1.041) for cover crop management. The con-
servative soil cover management decreased runoff and soil loss, thereby contributing to an im-
proved ‘Erosion control’ (Table 3). Cover crops are primarily applied to prevent top soil from
the wind and water erosion (Langdale et al., 1991; Fageria et al., 2005). As soil erosion removes
fertile top soils and therefore impacts productivity (Pimentel et al., 1995), the reduced soil ero-
sion provides an important opportunity. This pronounced benefit of the conservation farming
practice on erosion control is also applicable globally (Montgomery, 2007b; Borrelli et al., 2017).

We were unable to draw conclusions about rain-fed water management for some indicators,
as the sample size was too small. Nevertheless, those indicators we could study were all nega-
tively affected by rain-fed water management. This result partially supports the importance of
water stress in this region. Water shortage is one of the biggest challenges in the Mediterranean
basin (Iglesias et al., 2007). Improving water availability can be a key issue to secure multiple
ecosystem services. Irrigation requirements are likely to increase by between 4 and 18 % by
2◦C global warming in the Mediterranean basin (Fader et al., 2016). However, it should also be
noted that poor management of irrigated agriculture can potentially cause other impacts on
water availability and the environment in the Mediterranean region (Pereira, 2004). In addi-
tion, depending on where the irrigation system has been installed, it can increase soil erosion
in cultivated soils on slopes, often found in the Mediterranean Basin such as Greece (Baldock
et al., 2000). An improved efficient irrigation system would be beneficial for water resource
management in the future (Pereira, 2004; Fader et al., 2016).

4.1.3. Cultural services
In our case studies, cultural services were not assessed, and we therefore excluded them

from the analysis. Given the touristic attraction of the highly valued Mediterranean landscape,
cultural services might be a potential asset for farmers to diversify their income (Nickerson
et al., 2001; Sharpley and Vass, 2006; Brandth and Haugen, 2011). With some effort, this could
be done without much harm to the environment as the relationships between cultural services
and other ecosystem services were found out to be ‘no-effect’ or ‘synergistic’ in a recent review
study (Lee and Lautenbach, 2016). An example of cultural ecosystem services from agricultural
areas is ‘agritourism’ by allowing people to watch or to physically experience farming activities
(Bennett et al., 2009). In addition, ‘traditional ecological knowledge’ is a representative exam-
ple of cultural ecosystem services in the region, which is related to the management practices of
farmers and the transmission of their experience and knowledge (Iniesta-Arandia et al., 2015).

4.2. Possible applications of the results

Our results should have the potential to be used in several different applications including
the parameterization of integrated earth system models. First, the results can be used as obser-
vations against which one can test the capacity of simulation models to represent reality. For
further development of such models that incorporate processes of conservation agriculture, our
results can be used as a reference. Second, the results can be used as additional information to
the model outputs concerning processes that are not modelled explicitly. Third, the results can
be used in multi-objective assessments or trade-off analyses.



4.3. Limitations of the meta-analysis

Although we followed a standardized process to systematically collect publications and data
points, some considerations should be taken account. We only considered peer-reviewed pub-
lished literature and thus excluded ‘grey literature’ that could contain relevant information on
management options and ecosystem services in the Mediterranean basin, e.g., in the Maghreb
countries. We only included case studies based on in-situ experimental results, implying that
off-site effects of the farming practices are not accounted for. Off-site effects such as main-
tenance of drinking water quality, reduction of pollution from agriculture, reduction of salin-
ization, and eutrophication in soils and water are crucial for many surrounding areas (Pascual
et al., 2017). These topics could be addressed in the future research.

There was some bias observed between the studied management options. The largest num-
ber of studies concerned tillage, whereas weed management had the fewest data points. To
develop more general and comprehensive recommendations, more studies dealing with rarely
studied management options would be needed. In addition, it would be helpful if each case
study would provide relevant uncertainty information to weight case studies properly.

For the preliminary analysis, we selected indicators based on their frequency in order to per-
mit comparison, also their relevance was assessed based on suggestions from previous studies
(Supplementary Table ST1). Yet, the uncertainties of selecting indicators could not be mea-
sured. Developing more suitable indicators is ongoing work in the ecosystem service commu-
nity (e.g., Maes et al., 2016; Diaz-Balteiro et al., 2017; Grunewald et al., 2017; Lavorel et al., 2017),
one might therefore expect a potentially clearer connection between tested indicators and the
quantification of ecosystem services.

5. Conclusions

Our analysis of the scientific literature demonstrates that conservation agricultural manage-
ment when compared with conventional agriculture, can have both positive and negative im-
pacts on ecosystem services supply: most techniques improved soil quality, but some could po-
tentially decrease the crop yields. Overall, sustainable agricultural management options were
beneficial for ecosystem service supply in the Mediterranean basin. As could be expected, wa-
ter availability plays a key role in agricultural management in the Mediterranean basin for the
enhancement of both provisioning and regulating services. In particular, conservation manage-
ment tended to alleviate trade-offs and fostered synergies in ecosystem service supply. The in-
corporation of such management practices in policy conventions and measures could provide
a meaningful contribution to secure multiple ecosystem services. This incorporation should
take into account that farmers may experience a yield reduction from organic fertilizer use or
organic weed management, which can be expected to affect their income immediately. For
the further research, longer-term studies will be required to test the conservative management
practices.

Acknowledgements

This project was funded by the EU FP-7 project OPERAs (grant number 308393). APGN, AB,
WC and IRG contribute to the Labex OT-Med (no. ANR-11-LABEX-0061) funded by the French
government through the A*MIDEX project (no. ANR-11-IDEX-0001-02). We would like to thank



Bumsuk Seo for his help with the analysis. We acknowledge the support of the German Aca-
demic Exchange Service (DAAD) in the form of an International Travel Grant which enabled
H.L. to attend the Ecosystem Services Partnership 2018.

References

Adams, D.C., Gurevitch, J., Rosenberg, M.S., 1997. Resampling tests for meta-analysis of eco-
logical data. Ecology 78, 1277–1283. doi:10.1890/0012-9658(1997)078[1277:RTFMAO]2.
0.CO;2.

Adler, D., 2005. vioplot: Violin plot . URL: http://wsopuppenkiste.wiso.uni-goettingen.
de/~dadler. R Package version 0.2.

Aguilera, E., Lassaletta, L., Gattinger, A., Gimeno, B.S., 2013a. Managing soil carbon for climate
change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis.
Agriculture, Ecosystems and Environment 168, 25–36. doi:10.1016/j.agee.2013.02.003.

Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J., Vallejo, A., 2013b. The potential of
organic fertilizers and water management to reduce N2O emissions in Mediterranean climate
cropping systems: A review. Agriculture, Ecosystems and Environment 164, 32–52. doi:10.
1016/j.agee.2012.09.006.

Alvarez, R., Steinbach, H., 2009. A review of the effects of tillage systems on some soil physical
properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil &
Tillage Research 104, 1–15. doi:10.1016/j.still.2009.02.005.

Amossé, C., Jeuffroy, M.H., Celette, F., David, C., 2013. Relay-intercropped forage legumes help
to control weeds in organic grain production. European Journal of Agronomy 49, 158–167.
doi:10.1016/j.eja.2013.04.002.

Amossé, C., Jeuffroy, M.H., Mary, B., David, C., 2014. Contribution of relay intercropping with
legume cover crops on nitrogen dynamics in organic grain systems. Nutrient Cycling in
Agroecosystems 98, 1–14. doi:10.1007/s10705-013-9591-8.

Andersen, P.S., Vejre, H., Dalgaard, T., Brandt, J., 2013. An indicator-based method for quanti-
fying farm multifunctionality. Ecological Indicators 25, 166–179. doi:10.1016/j.ecolind.
2012.09.025.

Bajocco, S., Angelis, A.D., Perini, L., Ferrara, A., Salvati, L., 2012. The impact of land use/land
cover changes on land degradation dynamics: A Mediterranean case study. Environmental
Management 49, 980–989. doi:10.1007/s00267-012-9831-8.

Balbi, S., del Prado, A., Gallejones, P., Geevan, C.P., Pardo, G., Pérez-Miñana, E., Manrique, R.,
Hernandez-Santiago, C., Villa, F., 2015. Modeling trade-offs among ecosystem services in
agricultural production systems. Environmental Modelling and Software 72, 1–13. doi:10.
1016/j.envsoft.2014.12.017.

http://dx.doi.org/10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
http://wsopuppenkiste.wiso.uni-goettingen.de/~dadler
http://wsopuppenkiste.wiso.uni-goettingen.de/~dadler
http://dx.doi.org/10.1016/j.agee.2013.02.003
http://dx.doi.org/10.1016/j.agee.2012.09.006
http://dx.doi.org/10.1016/j.agee.2012.09.006
http://dx.doi.org/10.1016/j.still.2009.02.005
http://dx.doi.org/10.1016/j.eja.2013.04.002
http://dx.doi.org/10.1007/s10705-013-9591-8
http://dx.doi.org/10.1016/j.ecolind.2012.09.025
http://dx.doi.org/10.1016/j.ecolind.2012.09.025
http://dx.doi.org/10.1007/s00267-012-9831-8
http://dx.doi.org/10.1016/j.envsoft.2014.12.017
http://dx.doi.org/10.1016/j.envsoft.2014.12.017


Baldock, D., Caraveli, H., Dwyer, J., Einschütz, S., Petersen, J.E., Sumpsi-Vinas, J., Varela-Ortega,
C., 2000. The environmental impacts of irrigation in the European Union. A report to the
Environment Directorate of the European Commission. the Institute for Europen Environ-
mental Policy. London, UK.

Bender, S.F., Wagg, C., van der Heijden, M.G., 2016. An underground revolution: Biodiversity
and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution
31, 440–452. doi:10.1016/j.tree.2016.02.016.

Bennett, E.M., Peterson, G.D., Gordon, L.J., 2009. Understanding relationships among multi-
ple ecosystem services. Ecology Letters 12, 1394–1404. doi:10.1111/j.1461-0248.2009.
01387.x.

Berry, P.M., Rounsevell, M.D.A., Harrison, P.A., Audsley, E., 2006. Assessing the vulnerability
of agricultural land use and species to climate change and the role of policy in facilitating
adaptation. Environmental Science & Policy 9, 189–204. doi:10.1016/j.envsci.2005.11.
004.

Blair, A., Ritz, B., Wesseling, C., Freeman, L.B., 2015. Pesticides and human health. Occupational
& Environmental Medicine 72, 81–82. doi:10.1136/oemed-2014-102454.

Blanco-Canqui, H., Lal, R., 2007. Soil structure and organic carbon relationships following 10
years of wheat straw management in no-till. Soil & Tillage Research 95, 240–254. doi:10.
1016/j.still.2007.01.004.

Borenstein, M., Hedges, L.V., Higgins, J.P.T., Rothstein, H.R., 2009. Introduction to Meta-
Analysis. John Wiley & Sons, West Sussex. doi:10.1002/9780470743386.

Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K.,
Modugno, S., Schuütt, B., Ferro, V., Bagarello, V., Oost, K.V., Montanarella, L., Panagos, P., 2017.
An assessment of the global impact of 21st century land use change on soil erosion. Nature
Communications 8. doi:10.1038/s41467-017-02142-7.

Bouarfa, S., Marlet, S., Douaoui, A., Hartani, T., Mekki, I., Ghazouani, W., Aissa, I.B., Vincent, B.,
Hassani, F., Kuper, M., 2009. Salinity patterns in irrigation systems, a threat to be demystified,
a constraint to be managed: Field evidence from Algeria and Tunisia. Irrigation and Drainage
58, S273–S284. doi:10.1002/ird.524.

Brandth, B., Haugen, M.S., 2011. Farm diversification into tourism - implications for social
identity? Journal of Rural Studies 27, 35–44. doi:10.1016/j.jrurstud.2010.09.002.

Buchanan, I., Liang, H., Liu, Z., Razaviarani, V., 2011. Pesticides and herbicides. Water Environ-
ment Research 83, 1549–1597. doi:10.2175/106143011X13075599869858.

Campigli, E., Radicetti, E., Brunetti, P., Mancinelli, R., 2014. Do cover crop species and residue
management play a leading role in pepper productivity? Scientia Horticulturae 166, 97–104.
doi:10.1016/j.scienta.2013.12.018.

Canty, A., Ripley, B.D., 2017. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-19.

http://dx.doi.org/10.1016/j.tree.2016.02.016
http://dx.doi.org/10.1111/j.1461-0248.2009.01387.x
http://dx.doi.org/10.1111/j.1461-0248.2009.01387.x
http://dx.doi.org/10.1016/j.envsci.2005.11.004
http://dx.doi.org/10.1016/j.envsci.2005.11.004
http://dx.doi.org/10.1136/oemed-2014-102454
http://dx.doi.org/10.1016/j.still.2007.01.004
http://dx.doi.org/10.1016/j.still.2007.01.004
http://dx.doi.org/10.1002/9780470743386
http://dx.doi.org/10.1038/s41467-017-02142-7
http://dx.doi.org/10.1002/ird.524
http://dx.doi.org/10.1016/j.jrurstud.2010.09.002
http://dx.doi.org/10.2175/106143011X13075599869858
http://dx.doi.org/10.1016/j.scienta.2013.12.018


di Castri, F., Mooney, H.A., 1973. Mediterranean Type Ecosystems: Origin and Structure.
Springer-Verlag Berlin, Heidelberg.

Collaboration for Environmental Evidence, 2013. Guidelines for Systematic Review and Evi-
dence Synthesis in Environmental Management. Version 4.2. Technical Report. Environmen-
tal Evidence. www.environmentalevidence.org/Documents/Guidelines/Guidelines4.
2.pdf.

Cox, C., Surgan, M., 2006. Unidentified inert ingredients in pesticides: Implications for hu-
man and environmental health. Environmental Health Perspectives 114, 1803–1806. doi:10.
1289/ehp.9374.

Crabtree, B., 2010. Search for sustainability with no-till bill in dryland agriculture. Technical
Report. Agricultural Consulting, Australia.

Curran, M., Hellweg, S., Beck, J., 2014. Is there any empirical support for biodiversity offset
policy? Ecological Applications 24, 617–632. doi:10.1890/13-0243.1.

Dale, V.H., Polasky, S., 2007. Measures of the effects of agricultural practices on ecosystem ser-
vices. Ecological Economics 64, 286–296. doi:10.1016/j.ecolecon.2007.05.009.

Davison, A., Hinkley, D., 1997. Bootstrap Methods and Their Application, Chapter 5. Cambridge
University Press.

de Groot, R.S., Alkemade, R., Braat, L., Hein, L., Willemen, L., 2010. Challenges in integrating the
concept of ecosystem services and values in landscape planning, management and decision
making. Ecological Complexity 7(3), 260–272. doi:10.1016/j.ecocom.2009.10.006.

Debolini, M., Marraccini, E., Dubeuf, J.P., Geijzendorffer, I.R., Guerra, C., Simon, M., Targetti,
S., Napoléone, C., 2018. Land and farming system dynamics and their drivers in the Mediter-
ranean Basin. Land Use Policy 75, 702–710. doi:10.1016/j.landusepol.2017.07.010.

DeFelice, M.S., Carter, P.R., Mitchell, S.B., 2006. Influence of tillage on corn and soybean yield
in the United States and Canada. Crop Management 5. doi:10.1094/CM-2006-0626-01-RS.

Diaz-Balteiro, L., Alonso, R., Martínez-Jaúregui, M., Pardos, M., 2017. Selecting the best forest
management alternative by aggregating ecosystem services indicators over time: A case study
in central Spain. Ecological Indicators 72, 322 – 329. doi:10.1016/j.ecolind.2016.06.025.

Dominati, E., Patterson, M., Mackay, A., 2010. A framework for classifying and quantifying the
natural capital and ecosystem services of soils. Ecological Economics 69, 1858–1868. doi:10.
1016/j.ecolecon.2010.05.002.

Efron, B., Tibshirani, R., 1994. An introduction to the bootstrap. CRC Press.

Fader, M., Shi, S., von Bloh, W., Bondeau, A., Cramer, W., 2016. Mediterranean irrigation un-
der climate change: more efficient irrigation needed to compensate for increases in irriga-
tion water requirements. Hydrology and Earth System Sciences 20, 953–973. doi:10.5194/
hess-20-953-2016.

www.environmentalevidence.org/Documents/Guidelines/Guidelines4.2.pdf
www.environmentalevidence.org/Documents/Guidelines/Guidelines4.2.pdf
http://dx.doi.org/10.1289/ehp.9374
http://dx.doi.org/10.1289/ehp.9374
http://dx.doi.org/10.1890/13-0243.1
http://dx.doi.org/10.1016/j.ecolecon.2007.05.009
http://dx.doi.org/10.1016/j.ecocom.2009.10.006
http://dx.doi.org/10.1016/j.landusepol.2017.07.010
http://dx.doi.org/10.1094/CM-2006-0626-01-RS
http://dx.doi.org/10.1016/j.ecolind.2016.06.025
http://dx.doi.org/10.1016/j.ecolecon.2010.05.002
http://dx.doi.org/10.1016/j.ecolecon.2010.05.002
http://dx.doi.org/10.5194/hess-20-953-2016
http://dx.doi.org/10.5194/hess-20-953-2016


Fageria, N.K., Baligar, V.C., Bailey, B.A., 2005. Role of cover crops in improving soil and row crop
productivity. Communications in Soil Science and Plant Analysis 36, 2733–2757. doi:10.
1080/00103620500303939.

FAO, 2008. Investing in Sustainable Agricultural Intensification The Role of Conser-
vation Agriculture. A framework for action. Technical Report. Food and Agricul-
ture Organization of the United Nations. Rome, Italy. URL: http://www.fao.org/
sustainable-food-value-chains/library/details/fr/c/266308.

FAO, 2015a. Mulching in Organic Agriculture. Technologies and practices for small agricultural
producers. Food and Agriculture Organization of the United Nations. URL: http://teca.
fao.org.

FAO, 2015b. http://www.fao.org/ag/ca/1a.html. Accessed in Jul 2017.

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller,
N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J.,
Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P.M.,
2011. Solutions for a cultivated planet. Nature 478, 337–342. doi:10.1038/nature10452.

Fra-Paleo, U., 2010. The dehesa/montado landscape, in: Bélair, C., Ichikawa, K., Wong, B.L.,
Mulongoy, K.J. (Eds.), Sustainable use of biological diversity in socio-ecological production
landscapes. Background to the ‘Satoyama Initiative for the benefit of biodiversity and human
well-being. Secretariat of the Convention on Biological Diversity, Montreal. 52.

García-Orenes, F., Cerdá, A., Mataix-Solera, J., Guerrero, C., Bodí, M., Arcenegui, V., Zornoza,
R., Sempere, J., 2009. Effects of agricultural management on surface soil properties and soil-
water losses in eastern Spain. Soil & Tillage Research 106, 117–123. doi:10.1016/j.still.
2009.06.002.

Geist, H.J., Lambin, E.F., 2004. Dynamic causal patterns of desertification. BioScience 54, 817–
829. doi:10.1641/0006-3568(2004)054[0817:DCPOD]2.0.CO;2.

Giller, K.E., Witter, E., Corbeels, M., Tittonell, P., 2009. Conservation agriculture and smallholder
farming in Africa: The heretics’ view. Field Crops Research 114, 23–34. doi:10.1016/j.fcr.
2009.06.017.

Giorgi, F., 2006. Climate change hot-spots. Geophysical Research Letters 33, L08707. doi:10.
1029/2006GL025734.

Gordon, L.J., Finlayson, C.M., Falkenmark, M., 2010. Managing water in agriculture for food
production and other ecosystem services. Agricultural Water Management 97, 512–519.
doi:10.1016/j.agwat.2009.03.017.

Grunewald, K., Richter, B., Meinel, G., Herold, H., Syrbe, R.U., 2017. Proposal of indicators
regarding the provision and accessibility of green spaces for assessing the ecosystem service
“recreation in the city” in Germany. International Journal of Biodiversity Science, Ecosystem
Services & Management 13, 26–39. doi:10.1080/21513732.2017.1283361.

http://dx.doi.org/10.1080/00103620500303939
http://dx.doi.org/10.1080/00103620500303939
http://www.fao.org/sustainable-food-value-chains/library/details/fr/c/266308
http://www.fao.org/sustainable-food-value-chains/library/details/fr/c/266308
http://teca.fao.org
http://teca.fao.org
http://www.fao.org/ag/ca/1a.html
http://dx.doi.org/10.1038/nature10452
http://dx.doi.org/10.1016/j.still.2009.06.002
http://dx.doi.org/10.1016/j.still.2009.06.002
http://dx.doi.org/10.1641/0006-3568(2004)054[0817:DCPOD]2.0.CO;2
http://dx.doi.org/10.1016/j.fcr.2009.06.017
http://dx.doi.org/10.1016/j.fcr.2009.06.017
http://dx.doi.org/10.1029/2006GL025734
http://dx.doi.org/10.1029/2006GL025734
http://dx.doi.org/10.1016/j.agwat.2009.03.017
http://dx.doi.org/10.1080/21513732.2017.1283361


Guiot, J., Cramer, W., 2016. Climate change: The 2015 Paris Agreement thresholds and Mediter-
ranean basin ecosystems. Science 354, 465–468. doi:10.1126/science.aah5015.

Hager, A., 2015. Weed management, in: Illinois Agronomy Handbook. 24th. ed.. University of
Illinois at Urbana-Champaign. Cooperative Extension Service.

Haines-Young, R., Potschin, M., 2013. Common International Classification of Ecosystem Ser-
vices (CICES): Consultation on Version 4. Technical Report. EEA Framework Contract No
EEA/IEA/09/003.

Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta-analysis of response ratios in experimen-
tal ecology. Ecology 80, 1150–1156. URL: http://www.jstor.org/stable/177062.

Hedges, L.V., Olkin, I., 1985. Statistical methods for Meta-analysis. Academic Press, San Diego,
California, USA.

Higgins, J., Thompson, S., Deeks, J., Altman, D., 2002. Statistical heterogeneity in systematic
reviews of clinical trials: a critical appraisal of guidelines and practice. Journal of Health
Services Research & Policy 1, 51–61. doi:10.1258/1355819021927674.

Hill, J., Stellmes, M., Udelhoven, T., Röder, A., Sommer, S., 2008. Mediterranean desertification
and land degradation mapping related land use change syndromes based on satellite obser-
vations. Global and Planetary Change 64, 146–157. doi:10.1016/j.gloplacha.2008.10.
005.

Hobbs, P.R., Sayre, K., Gupta, R., 2008. The role of conservation agriculture in sustainable agri-
culture. Philosophical Transactions of the Royal Society B 363, 543–555. doi:10.1098/rstb.
2007.2169.

Holman, I., Brown, C., Janes, V., Sandars, D., 2017. Can we be certain about future land use
change in Europe? A multi-scenario, integrated-assessment analysis. Agricultural Systems
151, 126–135. doi:10.1016/j.agsy.2016.12.001.

Holt, A.R., Alix, A., Thompson, A., Maltby, L., 2016. Food production, ecosystem services and
biodiversity: We can’t have it all everywhere. Science of The Total Environment 157, 1422–
1429. doi:10.1016/j.scitotenv.2016.07.139.

Howden, S.M., Soussana, J.F., Tubiello, F.N., Chhetri, N., Dunlop, M., Meinke, H., 2007. Adapting
agriculture to climate change. Proceedings of the National Academy of Sciences of the United
States of America 104, 19691–19696. doi:10.1073/pnas.0701890104.

Iglesias, A., Garrote, L., Flores, F., Moneo, M., 2007. Challenges to manage the risk of water
scarcity and climate change in the Mediterranean. Water Resources Management 21, 775–
788. doi:10.1007/s11269-006-9111-6.

Iglesias, A., Mougou, R., Moneo, M., Quiroga, S., 2011. Towards adaptation of agriculture to
climate change in the Mediterranean. Regional Environmental Change 11, 159–166. doi:10.
1007/s10113-010-0187-4.

http://dx.doi.org/10.1126/science.aah5015
http://www.jstor.org/stable/177062
http://dx.doi.org/10.1258/1355819021927674
http://dx.doi.org/10.1016/j.gloplacha.2008.10.005
http://dx.doi.org/10.1016/j.gloplacha.2008.10.005
http://dx.doi.org/10.1098/rstb.2007.2169
http://dx.doi.org/10.1098/rstb.2007.2169
http://dx.doi.org/10.1016/j.agsy.2016.12.001
http://dx.doi.org/10.1016/j.scitotenv.2016.07.139
http://dx.doi.org/10.1073/pnas.0701890104
http://dx.doi.org/10.1007/s11269-006-9111-6
http://dx.doi.org/10.1007/s10113-010-0187-4
http://dx.doi.org/10.1007/s10113-010-0187-4


Iniesta-Arandia, I., del Amo, D.G., García-Nieto, A.P., Piñeiro, C., Montes, C., Martín-López,
B., 2015. Factors influencing local ecological knowledge maintenance in Mediterranean
watersheds: insights for environmental policies. Ambio 44, 285–296. doi:10.1007/
s13280-014-0556-1.

Joffre, R., Vacher, J., de los Llanos, C., Long, G., 1988. The dehesa: an agrosilvopastoral sys-
tem of the Mediterranean region with special reference to the Sierra Morena area of Spain .
Agroforestry Systems 6, 71–96. doi:10.1007/BF02344747.

Kasirajan, S., Ngouajio, M., 2012. Polyethylene and biodegradable mulches for agricultural ap-
plications: a review. Agronomy for Sustainable Development 32, 501–529. doi:10.1007/
s13593-011-0068-3.

Kassam, A., Friedrich, T., Derpsch, R., Lahmar, R., Mrabet, R., Basch, G., González-Sánchez,
E.J., Serraj, R., 2012. Conservation agriculture in the dry Mediterranean climate. Field Crops
Research 132, 7–17. doi:10.1016/j.fcr.2012.02.023.

Kroeger, T., Casey, F., 2007. An assessment of market-based approaches to providing ecosystem
services on agricultural lands. Ecological Economics 64, 321–332. doi:10.1016/j.ecolecon.
2007.07.021.

Labarthe, P., 2009. Extension services and multifunctional agriculture. lessons learnt from the
French and Dutch contexts and approaches. Journal of Environmental Management 90,
S193–S202. doi:10.1016/j.jenvman.2008.11.021.

Langdale, G.W., Blevins, R.L., Karlen, D.L., McCool, D.K., Nearing, M.A., Skidmore, E.L., Thomas,
A.W., Tyler, D.D., Williams, J.R., 1991. Cover crop effects on soil erosion by wind and water, in:
Hargrove, W. (Ed.), Cover Crop for Clean Water. Soil and Water Conservation Society, Ankeny,
Iowa, pp. 15–23.

Lavorel, S., Bayer, A., Bondeau, A., Lautenbach, S., Ruiz-Frau, A., Schulp, N., Seppelt, R., Ver-
burg, P., van Teeffelen, A., Vannier, C., Arneth, A., Cramer, W., Marba, N., 2017. Pathways to
bridge the biophysical realism gap in ecosystem services mapping approaches. Ecological
Indicators 74, 241–260. doi:10.1016/j.ecolind.2016.11.015.

Lee, H., Lautenbach, S., 2016. A quantitative review of relationships between ecosystem ser-
vices. Ecological Indicators 66, 340–351. doi:10.1016/j.ecolind.2016.02.004.

Lipsey, M.W., Wilson, D.B., 1993. The efficacy of psychological, educational, and behavioral
treatment: Confirmation from meta-analysis. American Psychologist 48, 1181–1209. doi:10.
1037/0003-066X.48.12.1181.

López-Bellido, L., Fuentes, M., Castillo, J.E., López-Garrido, F.J., Fernández, E.J., 1996. Long-
term tillage, crop rotation, and nitrogen fertilizer effects on wheat yield under rainfed
Mediterranean conditions. Agronomy Journal 88, 783–791. doi:10.2134/agronj1996.
00021962008800050016x.

http://dx.doi.org/10.1007/s13280-014-0556-1
http://dx.doi.org/10.1007/s13280-014-0556-1
http://dx.doi.org/10.1007/BF02344747
http://dx.doi.org/10.1007/s13593-011-0068-3
http://dx.doi.org/10.1007/s13593-011-0068-3
http://dx.doi.org/10.1016/j.fcr.2012.02.023
http://dx.doi.org/10.1016/j.ecolecon.2007.07.021
http://dx.doi.org/10.1016/j.ecolecon.2007.07.021
http://dx.doi.org/10.1016/j.jenvman.2008.11.021
http://dx.doi.org/10.1016/j.ecolind.2016.11.015
http://dx.doi.org/10.1016/j.ecolind.2016.02.004
http://dx.doi.org/10.1037/0003-066X.48.12.1181
http://dx.doi.org/10.1037/0003-066X.48.12.1181
http://dx.doi.org/10.2134/agronj1996.00021962008800050016x
http://dx.doi.org/10.2134/agronj1996.00021962008800050016x


Maes, J., Liquete, C., Teller, A., Erhard, M., Paracchini, M.L., Barredo, J.I., Grizzetti, B., Cardoso,
A., Somma, F., Petersen, J.E., Meiner, A., Gelabert, E.R., Zal, N., Kristensen, P., Bastrup-Birk, A.,
Biala, K., Piroddi, C., Egoh, B., Degeorges, P., Fiorina, C., Santos-Martín, F., Narus̆evic̆ius, V.,
Verboven, J., Pereira, H.M., Bengtsson, J., Gocheva, K., Marta-Pedroso, C., Snäll, T., Estreguil,
C., San-Miguel-Ayanz, J., Pérez-Soba, M., Grêt-Regamey, A., Lillebø, A.I., Malak, D.A., Condé,
S., Moen, J., Czúcz, B., Drakou, E.G., Zulian, G., Lavalle, C., 2016. An indicator framework for
assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem
Services 17, 14 – 23. doi:10.1016/j.ecoser.2015.10.023.

Malek, Z̆., Verburg, P., 2017. Mediterranean land systems: Representing diversity and intensity
of complex land systems in a dynamic regions. Landscape and Urban Planning 165, 102–116.
doi:10.1016/j.landurbplan.2017.05.012.

Martín-López, B., Oteros-Rozas, E., Cohen-Sacham, E., Santos-Martín, F., Nieto-Romero, M.,
Carvalho-Santos, C., González, J., García-Llorente, M., Keren, K., Geijzendorffer, I., Montes,
C., Cramer, W., 2016. Ecosystem services supplied by mediterranean basin ecosystems, in:
Potschin, M., Haines-Young, R., Fish, R., Turner, R.K. (Eds.), Routledge Handbook of Ecosy-
sem Services. Routledge, New York, NY, pp. 405–414.

McLaughlin, A., Mineau, P., 1995. The impact of agricultural practices on biodiversity. Agricul-
ture, Ecosystems and Environment 55, 201–212. doi:10.1016/0167-8809(95)00609-V.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, T.P., 2009. Preferred reporting items for
systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine 6, e1000097.
doi:10.1371/journal.pmed.1000097.g001.

Mondelaers, K., Aertsens, J., Van Huylenbroeck, G., 2009. A meta-analysis of the differences
in environmental impacts between organic and conventional farming. British Food Journal
111, 1098–1119. URL: http://www.emeraldinsight.com/10.1108/00070700910992925.

Montgomery, D.R., 2007a. Dirt: The Erosion of Civilizations. University California Press, Berke-
ley, Los Angeles.

Montgomery, D.R., 2007b. Soil erosion and agricultural sustainability. Proceedings of the Na-
tional Academy of Sciences of the United States of America 104, 13268–13272. doi:10.1073/
pnas.0611508104.

Nickerson, N.P., Black, R.J., McCool, S.F., 2001. Agritourism: Motivations behind
farm/ranch business diversification. Journal of Travel Research 40, 19–26. doi:10.1177/
004728750104000104.

Njeru, E.M., Avio, L., Sbrana, C., Turrini, A., Bocci, G., Bárberi, P., Giovannetti, M., 2014.
First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and or-
ganic maize growth. Agronomy for Sustainable Development 34, 841–848. doi:10.1007/
s13593-013-0197-y.

Oehl, F., Oberson, A., Tagmann, H.U., Besson, J.M., Dubois, D., Mäder, P., Roth, H.R., Frossard,
E., 2002. Phosphorus budget and phosphorus availability in soils under organic and

http://dx.doi.org/10.1016/j.ecoser.2015.10.023
http://dx.doi.org/10.1016/j.landurbplan.2017.05.012
http://dx.doi.org/10.1016/0167-8809(95)00609-V
http://dx.doi.org/10.1371/journal.pmed.1000097.g001
http://www.emeraldinsight.com/10.1108/00070700910992925
http://dx.doi.org/10.1073/pnas.0611508104
http://dx.doi.org/10.1073/pnas.0611508104
http://dx.doi.org/10.1177/004728750104000104
http://dx.doi.org/10.1177/004728750104000104
http://dx.doi.org/10.1007/s13593-013-0197-y
http://dx.doi.org/10.1007/s13593-013-0197-y


conventional farming. Nutrient Cycling in Agroecosystems 62, 25–35. doi:10.1023/A:
1015195023724.

Ogle, S.M., Swan, A., Paustian, K., 2012. No-till management impacts on crop productivity,
carbon input and soil carbon sequestration. Agriculture, Ecosystems and Environment 149,
37–49. doi:10.1016/j.agee.2011.12.010.

Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., Grace, P., 2014. Conservation agriculture
and ecosystem services: An overview. Agriculture, Ecosystems and Environment 187, 87–105.
doi:10.1016/j.agee.2013.10.010.

Pascual, U., Palomo, I., Adams, W.M., Chan, K.M.A., Daw, T.M., Garmendia, E., Gómez-
Baggethun, E., de Groot, R.S., Mace, G.M., Martín-López, B., 2017. Off-stage ecosystem
service burdens: A blind spot for global sustainability. Environmental Research Letters 12,
075001. doi:10.1088/1748-9326/aa7392.

Pereira, L.S., 2004. Trends for irrigated agriculture in the Mediterranean region: Coping with
water scarcity. European Water 7/8, 47–64.

Perez, M.R., 1990. Development of Mediterranean agriculture: An ecological approach. Land-
scape and Urban Planning 18, 211–220. doi:10.1016/0169-2046(90)90007-O.

Phillips, R.E., Blevins, R.L., Thomas, G.W., Frye, W.W., Phillips, S.H., 1980. No-tillage agriculture.
Science 208, 1108–1113. doi:10.1126/science.208.4448.1108.

Pilgrim, E.S., Macleod, C.J.A., Blackwell, M.S.A., Bol, R., Hogan, D.V., Chadwick, D.R., Cardenas,
L., Misselbrook, T.H., Haygarth, P.M., Brazier, R.E., Hobbs, P., Hodgson, C., Jarvis, S., Dungait,
J., Murray, P.J., Firbank, L.G., 2010. Interactions among agricultural production and other
ecosystem services delivered from European temperate grassland systems, in: Sparks, D.L.
(Ed.), Advances in Agronomy. Elsevier, Burlington. volume 109, pp. 117–154. doi:10.1016/
S0065-2113(10)09004-8.

Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz,
L., Fitton, L., Saffouri, R., Blair, R., 1995. Environmental and economic costs of soil erosion
and conservation benefits. Science 267, 1117–1123. URL: http://www.jstor.org/stable/
2886079.

Poisot, A.S., Speedy, A., Kueneman, E., 2004. Good Agricultural Practices - a working concept.
Background paper for the FAO Internal Workshop on Good Agricultural Practices. Technical
Report. Food and Agriculture Organization of the United Nations. Rome, Italy. URL: http:
//www.fao.org/docrep/010/ag856e/ag856e00.htm.

de Ponti, T., Rijk, B., van Ittersum, M.K., 2012. The crop yield gap between organic and conven-
tional agriculture. Agricultural Systems 108, 1–9. doi:10.1016/j.agsy.2011.12.004.

Pretty, J., 2008. Agricultural sustainability: concepts, principles and evidence. Philosophical
Transactions of the Royal Society B 363, 447–465. doi:10.1098/rstb.2007.2163.

http://dx.doi.org/10.1023/A:1015195023724
http://dx.doi.org/10.1023/A:1015195023724
http://dx.doi.org/10.1016/j.agee.2011.12.010
http://dx.doi.org/10.1016/j.agee.2013.10.010
http://dx.doi.org/10.1088/1748-9326/aa7392
http://dx.doi.org/10.1016/0169-2046(90)90007-O
http://dx.doi.org/10.1126/science.208.4448.1108
http://dx.doi.org/10.1016/S0065-2113(10)09004-8
http://dx.doi.org/10.1016/S0065-2113(10)09004-8
http://www.jstor.org/stable/2886079
http://www.jstor.org/stable/2886079
http://www.fao.org/docrep/010/ag856e/ag856e00.htm
http://www.fao.org/docrep/010/ag856e/ag856e00.htm
http://dx.doi.org/10.1016/j.agsy.2011.12.004
http://dx.doi.org/10.1098/rstb.2007.2163


R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. Vienna, Austria. URL: http://www.R-project.org/.

Rasmussen, K., 1999. Impact of ploughless soil tillage on yield and soil quality: A Scandinavian
review. Soil & Tillage Research 53, 3–14. doi:10.1016/S0167-1987(99)00072-0.

Reeves, D., 1994. Cover crops and rotations, in: Hatfield, J., Stewart, B. (Eds.), Crops Residue
Management. FL: Lewis Publications, CRC Press, Boca Raton. Advances in Soil Science, pp.
125–172.

Renting, H., Rossing, W., Groot, J., der Ploeg, J.V., Laurent, C., Perraud, D., Stobbelaar, D., Itter-
sum, M.V., 2009. Exploring multifunctional agriculture. A review of conceptual approaches
and prospects for an integrative transitional framework. Journal of Environmental Manage-
ment 90, S112–S123. doi:10.1016/j.jenvman.2008.11.014.

Rohatgi, A., 2017. WebPlotDigitizer 3.12. http://arohatgi.info/WebPlotDigitizer/. Ac-
cessed in June 2017.

Roper, M.M., Ward, P., Keulen, A., Hill, J.R., 2013. Under no-tillage and stubble retention, soil
water content and crop growth are poorly related to soil water repellency. Soil & Tillage Re-
search 126, 143–150. doi:10.1016/j.still.2012.09.006.

Ruiz-Colmenero, M., Bienes, R., Eldridge, D., Marques, M., 2013. Vegetation cover reduces
erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena , 153–
160doi:10.1016/j.catena.2012.11.007.

Sandhu, H.S., Wratten, S.D., Cullen, R., 2010. Organic agriculture and ecosystem services. En-
vironmental Science & Policy 13, 1–7. doi:10.1016/j.envsci.2009.11.002.

Sanz-Cobena, A., Lassaletta, L., Aguilera, E., del Prado, A., Garnier, J., Billen, G., Iglesias, A.,
Sánchez, B., Guardia, G., Abalos, D., Plaza-Bonilla, D., Puigdueta-Bartolomé, I., Moral, R.,
Galán, E., Arriaga, H., Merino, P., Infante-Amate, J., Meijide, A., Pardo, G., Álvaro Fuentes, J.,
Gilsanz, C., Báez, D., Doltra, J., González-Ubierna, S., Cayuela, M., Menéndez, S., Díaz-Pinés,
E., Le-Noë, J., Quemada, M., Estellés, F., Calvet, S., van Grinsven, H., Westhoek, H., Sanz, M.,
Gimeno, B., Vallejo, A., Smith, P., 2017. Strategies for greenhouse gas emissions mitigation in
Mediterranean agriculture: A review. Agriculture, Ecosystems and Environment 238, 5–24.
doi:10.1016/j.agee.2016.09.038.

Sartori, L., Peruzzi, P., 1994. The evolution of no-tillage in Italy: a review of the scientific liter-
ature, Experience with the applicability of no-tillage crop production in the West-European
countries. Technical Report. Wissenschaftlicher Fachverlag. Giessen.

Seufert, V., Ramankutty, N., 2017. Many shades of gray -the context-dependent performance of
organic agriculture. Science Advances 3, e1602638. doi:10.1126/sciadv.1602638.

Sharpley, R., Vass, A., 2006. Tourism, farming and diversification: An attitudinal study. Tourism
Management 27, 1040–1052. doi:10.1016/j.tourman.2005.10.025.

http://www.R-project.org/
http://dx.doi.org/10.1016/S0167-1987(99)00072-0
http://dx.doi.org/10.1016/j.jenvman.2008.11.014
http://arohatgi.info/WebPlotDigitizer/
http://dx.doi.org/10.1016/j.still.2012.09.006
http://dx.doi.org/10.1016/j.catena.2012.11.007
http://dx.doi.org/10.1016/j.envsci.2009.11.002
http://dx.doi.org/10.1016/j.agee.2016.09.038
http://dx.doi.org/10.1126/sciadv.1602638
http://dx.doi.org/10.1016/j.tourman.2005.10.025


Six, J., Elliott, E., Paustian, K., 2000. Soil macroaggregate turnover and microaggregate forma-
tion: a mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochem-
istry 32, 2099–2103. doi:10.1016/S0038-0717(00)00179-6.

Slaughter, D., Giles, D., Downey, D., 2008. Autonomous robotic weed control systems: A review.
Computers and Electronics in Agriculture 61, 63–78. doi:10.1016/j.compag.2007.05.008.

Smith, P., Haberl, H., Popp, A., Erb, K.H., Lauk, C., Harper, R., Tubiello, F.N., de Siqueira Pinto,
A., Jafari, M., Sohi, S., Masera, O., Böttcher, H., Berndes, G., Bustamante, M., Ahammad, H.,
Clark, H., Dong, H., Elsiddig, E.A., Mbow, C., Ravindranath, N.H., Rice, C.W., Abad, C.R., Ro-
manovskaya, A., Sperling, F., Herrero, M., House, J.I., Rose, S., 2013. How much land-based
greenhouse gas mitigation can be achieved without compromising food security and envi-
ronmental goals? Global Change Biology 19, 2285–2302. doi:10.1111/gcb.12160.

Stott, D., Andrews, S., Liebig, M., Wienhold, B., Karlen, D., 2009. Evaluation of β-glucosidase ac-
tivity as a soil quality indicator for the soil management assessment framework. Soil Science
Society of America Journal 74, 107–119. doi:10.2136/sssaj2009.0029.

Thomas, R., 2008. Opportunities to reduce the vulnerability of dryland farmers in Central and
West Asia and North Africa to climate change. Agriculture, Ecosystems and Environment 126,
36–45.

Torralba, M., Fagerholm, N., Burgess, P.J., Moreno, G., Plieninger, T., 2016. Do European agro-
forestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture,
Ecosystems and Environment 230, 150–161. doi:10.1016/j.agee.2016.06.002.

Tuomisto, H., Hodge, I., Riordan, P., Macdonald, D., 2012. Does organic farming reduce en-
vironmental impacts? - A meta-analysis of European research. Journal of Environmental
Management 112, 309–320. doi:10.1016/j.jenvman.2012.08.018.

Unger, P.W., Vigil, M.F., 1998. Cover crop effects on soil water relationships. Journal of Soil and
Water Conservation 53, 200–207.

Verhulst, N., Govaerts, B., Verachtert, E., Castellanos-Navarrete, A., Mezzalama, M., Wall, P.,
Deckers, J., Sayre, K., 2010. Conservation agriculture, improving soil quality for sustainable
production systems?, in: Lal, R., Stewart, B. (Eds.), Advances in Soil Science: Food Security
and Soil Quality. CRC Press, Boca Raton, FL, USA, pp. 137–208.

Vetter, D., Rücker, G., Storch, I., 2013. Meta-analysis: A need for well-defined usage in ecology
and conservation biology. Ecosphere 4, 1–24. doi:10.1890/ES13-00062.1.

Vita, P.D., Paolo, E.D., Fecondo, G., Fonzo, N.D., Pisante, M., 2007. No-tillage and conventional
tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy.
Soil & Tillage Research 92, 69–78. doi:10.1016/j.still.2006.01.012.

van Vliet, J., de Groot, H.L.F., Rietveld, P., Verburg, P.H., 2015. Manifestations and underlying
drivers of agricultural land use change in Europe. Landscape and Urban Planning 133, 24–
36. doi:10.1016/j.landurbplan.2014.09.001.

http://dx.doi.org/10.1016/S0038-0717(00)00179-6
http://dx.doi.org/10.1016/j.compag.2007.05.008
http://dx.doi.org/10.1111/gcb.12160
http://dx.doi.org/10.2136/sssaj2009.0029
http://dx.doi.org/10.1016/j.agee.2016.06.002
http://dx.doi.org/10.1016/j.jenvman.2012.08.018
http://dx.doi.org/10.1890/ES13-00062.1
http://dx.doi.org/10.1016/j.still.2006.01.012
http://dx.doi.org/10.1016/j.landurbplan.2014.09.001


Walker, W., 1989. Guidelines for designing and evaluating surface irrigation systems. FAO Irriga-
tion and Drainage Paper 45. Food and Agriculture Organization of the United Nations. Rome.
ISBN 92-5-102879-6.

Wimmer, F., Audsley, E., Malsy, M., Savin, C., Dunford, R., Harrison, P.A., Schaldach, R., Flörke,
M., 2015. Modelling the effects of cross-sectoral water allocation schemes in Europe. Climate
Change 128, 229–244. doi:10.1007/s10584-014-1161-9.

Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K., Misopolinos, N., 2002. Impacts of
agricultural practices on soil and water quality in the Mediterranean region and proposed
assessment methodology. Agriculture, Ecosystems and Environment 88, 137–146. doi:10.
1016/S0167-8809(01)00249-3.

http://dx.doi.org/10.1007/s10584-014-1161-9
http://dx.doi.org/10.1016/S0167-8809(01)00249-3
http://dx.doi.org/10.1016/S0167-8809(01)00249-3

	Introduction
	Material and methods
	Literature selection
	Identification of management and ecosystem services
	Management types and options
	Ecosystem services indicators

	A meta-analysis: impacts of management options on ecosystem services

	Results
	Management types
	Indicators used in the literature
	Impacts of conservative management practices on ecosystem services

	Discussions
	The impacts of management options on ecosystem services
	Provisioning services
	Regulating services
	Cultural services

	Possible applications of the results
	Limitations of the meta-analysis

	Conclusions
	Acknowledgements
	References



