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I. INTRODUCTION

At a certain level of abstraction, most systems can be considered as Discrete Event Systems (DESs) [START_REF] Cassandras | Introduction to discrete event systems[END_REF], ranging from manufacturing and traffic systems to biological and chemical processes. Developing efficient Fault Detection and Diagnosis (FDD) methods for such systems is a major stake. A FDD method decides whether a fault has occurred or not. It also provides as much information as possible on the fault such as the fault type, its location, the faulty component(s), its occurrence date…etc. The fault characterization improves the understanding of the fault, reduces the system downtime and helps to take appropriate decisions after the detection.

In the domain of DESs, many studies have addressed the problem of FDD [START_REF] Blanke | Diagnosis and fault-tolerant control[END_REF][START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF]. This paper deals with the faulty model-based techniques that start with building a model that includes the faulty behaviors of the system to be modelled. In particular, we are interested in diagnosis techniques based on Petri nets (PNs) models [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] where faults are represented by unobservable events [START_REF] Zaytoon | Overview of fault diagnosis methods for Discrete Event Systems[END_REF]. This is a well-studied problem in untimed context [START_REF] Ushio | Fault detection based on Petri net models with faulty behaviors[END_REF][START_REF] Cabasino | A New Approach for Diagnosability Analysis of Petri Nets Using Verifier Net[END_REF][START_REF] Ramírez-Treviño | Online fault diagnosis of discrete event systems. A Petri net-based approach[END_REF][START_REF] Basile | An efficient approach for online diagnosis of discrete event systems[END_REF][START_REF] Alcaraz-Mejía | Petri net based fault diagnosis of discrete event systems[END_REF][START_REF] Ru | Fault diagnosis in discrete event systems modeled by partially observed Petri nets[END_REF] compared to the timed context [START_REF] Ghazel | A monitoring approach for discrete events systems based on a time Petri net model[END_REF][START_REF] Jiroveanu | A distributed approach for fault detection and diagnosis based on time Petri nets[END_REF][START_REF] Basile | State Estimation and Fault Diagnosis of Labeled Time Petri Net Systems With Unobservable Transitions[END_REF][START_REF] Lefebvre | Fault diagnosis and prognosis with partially observed stochastic Petri nets[END_REF] despite the fact that considering time is crucial for detection and diagnosis. The existing approaches in timed context are based on the State Class Graphs [START_REF] Ghazel | A monitoring approach for discrete events systems based on a time Petri net model[END_REF][START_REF] Jiroveanu | A distributed approach for fault detection and diagnosis based on time Petri nets[END_REF] and Modified State Class Graphs [START_REF] Cohen | Dating and counting events in discrete event systems[END_REF]. In [START_REF] Lefebvre | Fault diagnosis and prognosis with partially observed stochastic Petri nets[END_REF], stochastic dynamics are considered and Partially Observed Stochastic Petri Nets (POSPNs), with partial measurements on both markings and events, are exploited. In order to evaluate the likelihood of the fault occurrence, fault probabilities are estimated taking inspiration from fault beliefs [START_REF] Ru | Fault diagnosis in discrete event systems modeled by partially observed Petri nets[END_REF] used when the diagnosis decision is ambiguous. The motivation to use Petri nets as a modeling tool is that such models are physics-based and provide a realistic and comprehensive representation of the considered systems.

They are modular and evolutive in the sense that they can easily be updated when the system specifications change. In addition, the POSPNs take into account not only the system operations but also the sensors used to collect the information about operations.

In terms of safety, rapid detection of faults is required to take appropriate actions and reconfigurations, preventing equipment damages and human injuries. However, there usually exist a delay between the time of detection and the exact time when the fault has occurred. To the best of our knowledge, most of the existing works on FDD of DESs ignores this delay in untimed and also in timed context. The fault (or event) date estimation is rarely explored [START_REF] Cohen | Dating and counting events in discrete event systems[END_REF][START_REF] Ammour | Estimation of the fault occurrence dates in DESs with partially observed stochastic Petri nets[END_REF] despite the fact that it is important in FDD process. This is the objective of this technical note that is motivated as follows:

-Fault severity assessment: as the delay between a fault occurrence and its detection moment increases, the consequences and impacts of this fault on the system become significant and may lead to serious damages [START_REF] Stoorvogel | Delays in fault detection and isolation[END_REF]. Estimating the fault occurrence date is important to assess the severity of the fault and to evaluate its consequences. -Traceability issues: fault datation is also important for traceability issues. Traceability is defined as the ability to describe and follow the life of an equipment, in both a forward and a backward directions, thus ensuring that a requirement can be "traced" from its origins, through its specification and development, to its subsequent deployment and use [START_REF] Gotel | An Analysis of the Requirements Traceability Problem[END_REF]. To be efficient, traceability should include dated events and time information. For example in pharmaceutical or food industry, it is crucial to identify the date at which a fault has occurred and has changed for example the composition of a product. It is then possible to recall all affected products and protect the consumers. It is also mandatory for law and legal responsibility.

In this work, we are interested in FDD of DESs modelled with POSPNs. Particularly, when a fault is detected, the objective is to estimate its occurrence date. In our previous works, the consistent behaviors with a measurement trajectory have been computed and their probabilities have been assessed [START_REF] Ammour | Faults prognosis using partially observed stochastic Petri-nets: an incremental approach[END_REF]. The probability of faults was obtained consequently. In this paper, when a fault is detected, a method is proposed to evaluate the Probability Density Function (PDF) of the fault occurrence date as a function. It is based on the analysis of the consistent behaviors and allows computing the most probable time interval where the fault has occurred. Our results are consolidated by using a Monte Carlo discrete event simulation approach. Not that such approaches and also particle filtering (that can be viewed as a sophisticated Monte Carlo simulation) [START_REF] Tafazoli | Hybrid System State Tracking and Fault Detection Using Particle Filters[END_REF] can be used as non-analytical alternative methods for the fault detection.

This technical note is organized as follows. In Section II, POSPNs, measurement trajectories and consistent trajectories are described. In Section III, the fault diagnosis method of POSPNs developed in [START_REF] Ammour | Faults prognosis using partially observed stochastic Petri-nets: an incremental approach[END_REF] is first recalled. The approach for estimating the PDFs of the faults dates is then detailed and an example is provided. In Section IV, a case study representing a distribution system is considered to show the advantages of fault datation. Finally, some conclusions and perspectives are presented in Section V.
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II. MODELING OF MARKOVIAN PROCESSES WITH PNS

A. Stochastic Petri Nets

Petri nets are graphical and mathematical modelling tools [START_REF] Cassandras | Introduction to discrete event systems[END_REF][START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF]. In addition, Stochastic Petri Nets (SPNs) are characterized by random firing delays associated with the transitions [START_REF] Molloy | Performance analysis using stochastic Petri nets[END_REF]. Formally, a SPN structure is defined as 𝐺 𝑠 = < 𝑃, 𝑇, 𝑊 𝑃𝑅 , 𝑊 𝑃𝑂 ,  >, where 𝑃 = {𝑃 1 , … , 𝑃 𝑛 } is a set of 𝑛 places and 𝑇 = {𝑇 1 , … , 𝑇 𝑞 } is a set of 𝑞 transitions, 𝑊 𝑃𝑅 ∈ (ℕ) 𝑛𝑞 and 𝑊 𝑃𝑂 ∈ (ℕ) 𝑛𝑞 are the pre and post incidence matrices (ℕ is the set of non-negative integer numbers), and 𝑊 = 𝑊 𝑃𝑂 -𝑊 𝑃𝑅 is the incidence matrix. 𝜇 = (𝜇 𝑗 ) ∈ (ℝ + ) 𝑞 (ℝ is the set of real numbers) is the firing rate vector which characterizes the transition firing periods. < 𝐺 𝑠 , 𝑀 𝐼 > is a SPN system with initial marking 𝑀 𝐼 ∈ (ℕ) 𝑛 . A transition 𝑇 𝑗 is enabled at marking 𝑀 if and only if (iff) 𝑀 ≥ 𝑊 𝑃𝑅 (: , 𝑗), where 𝑊 𝑃𝑅 (: , 𝑗) is the column 𝑗 of the pre incidence matrix; this is denoted as 𝑀[𝑇 𝑗 >. Thus, for each transition 𝑇 𝑗 , enabled at marking 𝑀, the firing periods are given by a Random Variable (RV) with an exponential PDF of parameter 𝑛 𝑗 (𝑀). 𝜇 𝑗 where 𝑛 𝑗 (𝑀) stands for the enabled degree of transition 𝑇 𝑗 at marking 𝑀 which is given by:

𝑛 𝑗 (𝑀) = min {⌊( 𝑚 𝑘 𝑤 𝑃𝑅 (𝑘,𝑗) )⌋ , 𝑃 𝑘 ∈ °𝑇𝑗 } ( 1 
)
where °𝑇𝑗 is the set of input places or preset (the set of places with output arcs connected with 𝑇 𝑗 ) and 𝑚 𝑘 is the marking of 𝑃 𝑘 , 𝑤 𝑃𝑅 (𝑘, 𝑗) is the element in row 𝑘 and colomn 𝑗 of matrix 𝑊 𝑃𝑅 . Finally, ⌊. ⌋ stands for the lower rounded value of (.). When 𝑇 𝑗 is enabled, it may fire, and when 𝑇 𝑗 fires once, the marking varies according to ∆𝑀 = 𝑀′ -𝑀 = 𝑊(: , 𝑗). This is denoted as 𝑀[𝑇 𝑗 > 𝑀′. A SPN system has a time semantic [START_REF] Marsan | Modelling with Generalized Stochastic Petri Nets[END_REF][START_REF] Haddad | Petri Nets: Fundamental Models and Applications[END_REF] that is defined according to (a) an infinite server policy: each transition is considered as a server for firings and in a given marking, each transition may fire simultaneously several times depending on its enabling degree; (b) a race policy: the transition whose firing delay elapses first is assumed to be the one that will fire next; (c) a resampling memory policy: at the entrance in a marking, the remaining delays associated with all transitions are forgotten. Under some specific assumptions, the SPN behaves as a Markov model [START_REF] Molloy | Performance analysis using stochastic Petri nets[END_REF][START_REF] Bobbio | Recent Developments in Stochastic Petri Nets[END_REF].

A timed firing sequence 𝜎 of length ℎ = |𝜎| fired at marking 𝑀 in time interval [𝑡 0 , 𝑡 𝑒𝑛𝑑 ] is defined as: 𝜎 = 𝑇(𝑡 1 )𝑇(𝑡 2 ) … 𝑇(𝑡 ℎ ) where 𝑡 𝑘 , 𝑘 = 1, … , ℎ represent the firing dates of transitions 𝑇(𝑡 𝑘 ) ∈ 𝑇 that satisfy 𝑡 0  𝑡 1  𝑡 2  …  𝑡 ℎ  𝑡 𝑒𝑛𝑑 . This leads to the timed trajectory (2):

(𝜎, 𝑀) = 𝑀(𝑡 0 ) [𝑇(𝑡 1 ) > 𝑀(𝑡 1 ) … [𝑇(𝑡 ℎ ) > 𝑀(𝑡 𝑒𝑛𝑑 )
(2) with 𝑀(𝑡 0 ) = 𝑀. Note that untimed firing sequences and untimed trajectories can be considered in a similar way by making abstraction of time. In this case 𝑀(𝑡 𝑘 ) and 𝑇(𝑡 𝑘 ) are simply denoted as 𝑀(𝑘) and 𝑇(𝑘).

B. Exponential Random Variable

The firing dates of the transitions in a SPN are given by a sum of exponential RVs. Let us consider the Cumulative Distribution Function (CDF) of the sum of 𝑛 independent RVs 𝑋 𝑖 , 𝑖 = 1, … , 𝑛 having exponential PDFs with parameters 𝜆 𝑖 , 𝑖 = 1, … , 𝑛 respectively. Let us denote by 𝑆 𝑛 the sum of these RVs: 𝑆 𝑛 = ∑ 𝑋 𝑖 𝑛 𝑖=1

. In the case all parameters 𝜆 𝑖 are equal, 𝑆 𝑛 is modelled by an Erlang distribution [START_REF] Ross | Introduction to probability models[END_REF]. Now, consider the general case where the set of parameters 𝜆 𝑖 is composed of 𝑎 distinct values represented by the two sets {𝛽 1 , 𝛽 2 , … 𝛽 𝑎 } and {𝑟 1 , 𝑟 2 … 𝑟 𝑎 } where 𝛽 𝑗 is the value of the parameter and 𝑟 𝑗 its multiplicity such that 𝑟 1 + 𝑟 2 … + 𝑟 𝑎 = 𝑛. The CDF 𝐺 𝑎 (𝑡) of 𝑆 𝑛 for 𝑡 ≥ 0 is given by [START_REF] Amari | Closed-form expressions for distribution of sum of exponential random variables[END_REF]: A measurement function  [START_REF] Ammour | Faults prognosis using partially observed stochastic Petri-nets: an incremental approach[END_REF][START_REF] Lefebvre | Fault diagnosis and prognosis with partially observed stochastic Petri nets[END_REF] collects the successive dated marking and event measurements of a timed trajectory (𝜎, 𝑀) within time interval [𝜏 0 , 𝜏 𝑒𝑛𝑑 ] and organizes them in the measurement trajectory (4) composed of successive dated labels and marking measurements:

𝐺 𝑎 (𝑡) = 1 -(∏ 𝛽 𝑗 𝑟 𝑗 𝑎 𝑗=1 ) ∑ ∑ Ψ 𝑘,
(𝜎, 𝑀) = (𝑀 𝑂0 ,  0 )𝑒 𝑂 ( 1 )(𝑀 𝑂1 ,  1 ) … 𝑒 𝑂 ( 𝐾 )(𝑀 𝑂𝐾 ,  𝑒𝑛𝑑 ) (4)
where 𝐾 is the length of the measured trajectory and 𝜏 𝑗 , 𝑗 = 1, … , 𝐾 refer to the dates of measurements, 𝑒 𝑂 ( 𝑗 ) ∈ 𝐸 ∪ {𝜀} is the 𝑗 𝑡ℎ label. The label 𝜀 is used when a silent transition fires and the firing is indirectly detected (but the transition is not necessarily isolated) by the modification of the measured part of the marking. (𝑀 𝑂𝑗 ,  𝑗 ) is the 𝑗 𝑡ℎ marking measurement and 𝑀 𝑂0 = 𝐻. 𝑀(𝜏 0 ). The form given by ( 4) with an alternation between measured markings and labels is a representation of the collected measurements. Given a measured trajectory 𝑇𝑅 𝑂 , a trajectory (𝜎, 𝑀) that satisfies (𝜎, 𝑀) = 𝑇𝑅 𝑂 is said to be consistent with

𝑇𝑅 𝑂 in [ 0 ,  𝑒𝑛𝑑 ].
In order to deal with the problem of fault datation, we exploit the fault diagnosis method of POSPNs that has been proposed in our previous works [START_REF] Ammour | Faults prognosis using partially observed stochastic Petri-nets: an incremental approach[END_REF][START_REF] Lefebvre | Fault diagnosis and prognosis with partially observed stochastic Petri nets[END_REF] which is based on two steps: -The computation of the set of consistent trajectories with the measurements 𝑇𝑅 𝑂 , denoted by  -1 (𝑇𝑅 𝑂 ). -The computation of the probabilities of the consistent trajectories (i.e. the probability that a consistent trajectory (𝜎, 𝑀) ∈  -1 (𝑇𝑅 𝑂 ) corresponds to the trajectory that truly provides the measurements). The fault probability is obtained as a consequence.

This method is based on two assumptions: Assumption 1. The finite set Υ(𝜏 0 ) of possible markings 𝑀 at time 𝜏 0 and the probabilities  0 (𝑀), 𝑀 ∈ Υ(𝜏 0 ) are assumed to be known. Assumption 2. The length of unobservable firing sequences that do not change the observable part of the marking is bounded. Assumption 1 is required to avoid the enumeration of all reachable markings in order to find those which are consistent with the initial measurement 𝑀 𝑂0 . Since several firing sequences 𝜎 with various lengths ℎ (ℎ may eventually be infinite) may be consistent with a given measured trajectory 𝑇𝑅 𝑂 , Assumption 2 is required to guarantee that the consistent trajectories are of finite length. This assumption can be ensured by the sensor configuration and this assumption is sufficient to ensure that the silent part of the net is acyclic which is an usual assumption for DESs diagnosis. The maximal number of events within ]𝜏 𝑖 , 𝜏 𝑖+1 ] is denoted by ℎ 𝑚𝑎𝑥 such that the maximal number of silent events equals ℎ 𝑚𝑎𝑥 -1.

Considering Assumptions 1 and 2,  -1 (𝑇𝑅 𝑂 ) is thus of finite cardinality. This set is composed of the exhaustive list of partially timed trajectories (𝜎, 𝑀) ∈  -1 (𝑇𝑅 𝑂 ) with 𝜎 of form [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF]. (𝜎, 𝑀) is said to be partially timed since only the firing dates of the transitions 𝑻(𝝉 𝒌 ) in 𝜎, that correspond to measurements, are known. Variables are associated to the other dates that are unknown.

𝜎 = 𝑇(𝑡 1,1 ) … 𝑇(𝑡 1,ℎ 1 -1 )𝑻(𝝉 𝟏 )𝑇(𝑡 2,1 ) … 𝑇(𝑡 2,ℎ 2 -1 )𝑻(𝝉 𝟐 ) … 𝑻(𝝉 𝑲-𝟏 )𝑇(𝑡 𝐾,1 ) … 𝑇(𝑡 𝐾,ℎ 𝐾 -1 )𝑻(𝝉 𝑲 )𝑇(𝑡 𝐾+1,1 ) … 𝑇(𝑡 𝐾+1,ℎ 𝐾+1 -1 ) (5)
with ℎ 𝑘  ℎ 𝑚𝑎𝑥 , 𝑘 = 1, … , (𝐾 + 1). The dates 𝑡 𝑘,1 , 𝑡 𝑘,2 , … , 𝑡 𝑘,ℎ 𝑘 satisfy 𝜏 𝑘-1 ≤ 𝑡 𝑘,1 ≤ 𝑡 𝑘,2 ≤ ⋯ ≤ 𝑡 𝑘,ℎ 𝑘 -1 ≤ 𝜏 𝑘 for all 𝑘 = 1, … , (𝐾 + 1). Only the dates 𝜏 𝑘 = 𝑡 𝑘,ℎ 𝑘 , 𝑘 = 1, … , 𝐾, are measured and all other dates 𝑡 𝑘,1 , 𝑡 𝑘,2 , … , 𝑡 𝑘,ℎ 𝑘 -1 , 𝑘 = 1, … , (𝐾 + 1) are unknown and correspond to silent events. The transitions 𝑇(𝑡 𝐾+1,1 ) … 𝑇(𝑡 𝐾+1,ℎ 𝐾+1 -1 ) correspond to the silent closure.

In Section III.A, the computation of the set of consistent trajectories and their probabilities are briefly recalled and the fault probability is obtained as a consequence. The problem of the fault datation is then considered. In fact, when a fault is detected, its occurrence date 𝑡 𝛼 = 𝑡 𝑘,𝑖 is unknown and could have occurred within any time interval [𝜏 𝑘 , 𝜏 𝑘+1 ] depending on the considered faulty consistent trajectory. The main issue is thus to analyze the consistent trajectories in order to estimate the PDF of the unknown fault date. The most probable time interval of the fault event date is obtained as a consequence. This will be discussed in Section III.B.

III. FAULT DATATION

A. Some results on fault diagnosis of POSPNs

From a timed measurement trajectory 𝑇𝑅 𝑂 , the first step for fault diagnosis is to compute the set of consistent trajectories  -1 (𝑇𝑅 𝑂 ). It has been obtained in our previous works [START_REF] Ammour | Faults prognosis using partially observed stochastic Petri-nets: an incremental approach[END_REF][START_REF] Lefebvre | Fault diagnosis and prognosis with partially observed stochastic Petri nets[END_REF] with a method based on Linear Matrix Inequalities (LMIs). These inequalities reformulate, thanks to linear algebra, the conditions induced by each new measurement. Note that the complexity to compute  -1 (𝑀𝑇) using the set of LMIs is discussed in [START_REF] Lefebvre | Fault diagnosis and prognosis with partially observed stochastic Petri nets[END_REF] and given by 𝒪((𝑞 + 1) 𝑁.(𝐾+1).ℎ 𝑚𝑎𝑥 ). The complexity is thus exponential wrt the number 𝑁 of reachable markings and to the length 𝐾 of the measurement sequences. An incremental method was also proposed in [START_REF] Ammour | Faults prognosis using partially observed stochastic Petri-nets: an incremental approach[END_REF] that incrementally constructs the consistent trajectories. Its complexity is given by 𝒪(|Υ(𝜏 0 )|. 𝑞 (𝐾+1).ℎ 𝑚𝑎𝑥 ). Both methods lead to the computation of the consistent trajectories (𝜎, 𝑀) ∈  -1 (𝑇𝑅 𝑂 ) with 𝜎 of form [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF].

The second step consists in calculating the probability of each partially timed trajectory wrt the measurement dates to deduce the faults probabilities. Considering a consistent trajectory (𝜎, 𝑀) ∈  -1 (𝑇𝑅 𝑂 ) with 𝜎 of form (5), its probability is given by:

𝑃(𝜎, 𝑀) = 𝜋(𝜎,𝑀) ∑ 𝜋(𝜎 ′ , 𝑀 ′ ) (𝜎 ′ , 𝑀 ′ ) ∈  -1 (𝑇𝑅 𝑂 ) (6) 
with:

𝜋(𝜎, 𝑀) =  0 (𝑀). 𝑃 𝑈 (𝜎, 𝑀). (∏ 𝑃 𝜎 𝑖 𝑖=1…𝐾

). 𝑃 𝜎 𝑆𝐶 [START_REF] Cabasino | A New Approach for Diagnosability Analysis of Petri Nets Using Verifier Net[END_REF] The different terms of equation 𝜋(𝜎, 𝑀) are detailed in [START_REF] Ammour | Faults prognosis using partially observed stochastic Petri-nets: an incremental approach[END_REF] and recalled in the follows.

 0 (𝑀) is the probability that the marking at time  0 is 𝑀. 

with 𝑀(1,0) = 𝑀, 𝑀(𝑘, 𝛾) results from the firing of 𝑇(𝑡 𝑘,𝛾 ) for 𝑘 = 1, … , (𝐾 + 1), 𝛾 = 1, … , (ℎ 𝑘 -1) and 𝑀(𝑘, 0) = 𝑀((𝑘 -1), ℎ 𝑘 ) for 𝑘 = 2, … , (𝐾 + 1). 𝑃 𝜎 𝑖 represents, for each group of transitions 𝜎 𝑖 = 𝑇(𝑡 𝑖,1 ). . . 𝑇(𝑡 𝑖,ℎ 𝑖 -1 )𝑻(𝝉 𝒊 ) 𝑖 = 1, … , 𝐾 fired within [𝜏 𝑖-1 , 𝜏 𝑖 ], the probability to fire all transitions 𝑇(𝑡 𝑖,1 ). . . 𝑇(𝑡 𝑖,ℎ 𝑖 -1 ) before the instant 𝑡 𝑖,ℎ 𝑖 = 𝜏 𝑖 (i.e. 𝑡 𝑖,ℎ 𝑖 -1 ≤ 𝜏 𝑖 ) and then to fire 𝑻(𝝉 𝒊 ) within time interval [𝜏 𝑖 𝜏 𝑖 + ∆𝑡] where ∆𝑡 is an infinitesimally small time increment. This probability is given by:

𝑃 𝜎 𝑖 = (∫ 𝑔 ℎ 𝑖 -1 (𝑡). (1 -𝐺 ℎ 𝑖 (𝜏 𝑖 -𝑡)) . 𝑑𝑡 𝜏 𝑖 𝜏 𝑖-1 ) . ∑ 𝑛 𝑗 (𝑀(𝑖)). 𝜇 𝑗 𝑇 𝑗 ∈𝑇 . ∆𝑡 (9) 
where 𝑔 ℎ 𝑖 -1 is the PDF that characterizes the duration necessary to fire 𝑇(𝑡 𝑖,1 ). . . 𝑇(𝑡 𝑖,ℎ 𝑖 -1 ). It corresponds to a sum of ℎ 𝑖 -1 exponential RVs given by (3). 𝐺 ℎ 𝑖 is the CDF that characterizes the firing of the measured transition 𝑻(𝝉 𝒊 ). Finally, 𝑀(𝑖) is the marking from which 𝑻(𝝉 𝒊 ) is fired. Note that the increment ∆𝑡 is simplified thanks to equation [START_REF] Ushio | Fault detection based on Petri net models with faulty behaviors[END_REF]. 𝑃 𝜎 𝑆𝐶 is the probability to fire the silent transitions (silent closure) 𝜎 𝑆𝐶 = 𝑇(𝑡 𝐾+1,1 ). . . 𝑇(𝑡 𝐾+1,ℎ 𝐾+1 -1 ) within ]𝜏 𝐾 , 𝜏 𝑒𝑛𝑑 ] and to not fire any enabled transitions until 𝜏 𝑒𝑛𝑑 . It is given by:

𝑃 𝜎 𝑆𝐶 = ∫ 𝑔 ℎ 𝐾+1 -1 (𝑡). (1 -𝐺 ℎ 𝐾+1 (𝜏 𝐾 -𝑡)) . 𝑑𝑡 𝜏 𝑒𝑛𝑑 𝜏 𝐾 (10) 𝑔 ℎ 𝐾+1 -1
characterizes the duration necessary to fire 𝑇(𝑡 𝐾+1,1 ). . . 𝑇(𝑡 𝐾+1,ℎ 𝐾+1 -1 ) and 𝐺 ℎ 𝐾+1 the firing of any enabled transition after the firing of 𝑇(𝐾 + 1, ℎ 𝐾+1 -1).

Once the probability of each consistent trajectory (𝜎, 𝑀) ∈  -1 (𝑇𝑅 𝑂 ) is computed, the probability that a fault of class 𝑓 𝛼 has occurred wrt 𝑇𝑅 𝑂 can be deduced. It is given by: 𝑃(𝑓 𝛼 , 𝑇𝑅 𝑂 ) = ∑ 𝑃(𝜎, 𝑀) (,𝑀)∈ 𝛼 (𝑇𝑅 𝑂 ) [START_REF] Ru | Fault diagnosis in discrete event systems modeled by partially observed Petri nets[END_REF] with  𝛼 (𝑇𝑅 𝑂 ) = {(𝜎, 𝑀) ∈  -1 (𝑇𝑅 𝑂 ) such that 𝑓 𝛼 ∈ ℱ(𝜎)}.

Only trajectories that contain the fault 𝑓 𝛼 and thus belong to the set  𝛼 (𝑇𝑅 𝑂 ) are considered and the sum of their probabilities represents the fault probability.

The complexity of the fault probability computation 𝒪(𝑃(𝑓 𝛼 , 𝑇𝑅 𝑂 )) depends on the number 𝑁 𝐶𝑇 of consistent trajectories and on the complexity 𝒪(𝑃(𝜎, 𝑀)) to compute the probability of a consistent trajectory which mainly depends on the used integration method. The Gauss-Kronrod quadrature was used to compute the integration because it is a nested adaptive method that saves some of the numerical efforts.

B. Fault Occurrence Dates

This section will focus on the evaluation of the PDFs of the silent events dates in order to estimate the fault occurrence dates. Let us consider a faulty consistent trajectory (𝜎, 𝑀) where 𝜎 is of form [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] and assume that the fault event, denoted by 𝑇 𝛼 (𝑡 𝛼 ), occurs before the last measured event. There exists two measurement dates 𝜏 𝑖 and 𝜏 𝑖+1 such that 𝑡 𝛼 ∈ [𝜏 𝑖 , 𝜏 𝑖+1 ]. The sequence 𝜎 of the trajectory (𝜎, 𝑀) can be represented as follows:

𝜎 = ⋯ 𝑻(𝝉 𝒊 )𝑇(𝑡 𝑖,1 ) … 𝑇(𝑡 𝑖,𝑚 )𝑇 𝛼 (𝑡 𝛼 )𝑇(𝑡 𝑖,𝑚+1 ) … 𝑇(𝑡 𝑖,𝑛 )𝑻(𝝉 𝒊+𝟏 ) … (12) 
Let us first consider a time interval [𝑡 𝑠 , 𝑡 𝑓 ] ⊆ [𝜏 𝑖 , 𝜏 𝑖+1 ] and compute the probability that the fault event has occurred within [𝑡 𝑠 , 𝑡 𝑓 ] wrt the trajectory (𝜎, 𝑀). This probability will be denoted by 𝑃 (𝑡 𝛼 ∈ [𝑡 𝑠 , 𝑡 𝑓 ]/(𝜎, 𝑀)). As depicted in Fig. 1, the method consists in computing the probability to fire all the transitions 𝑇(𝑡 𝑖,1 ) … 𝑇(𝑡 𝑖,𝑚 )𝑇 𝛼 (𝑡 𝛼 ) so that 𝑡 𝛼 ∈ [𝑡 𝑠 , 𝑡 𝑓 ] and to fire the transitions 𝑇(𝑡 𝑖,𝑚+1 ) … 𝑇(𝑡 𝑖,𝑛 )𝑇(𝜏 𝑖+1 ) within time interval [𝑡 𝛼 , 𝜏 𝑖+1 ].

The occurrence date 𝑡 𝛼 can be written as 𝑡 𝛼 = 𝜏 𝑖 + 𝑑 𝛼 where 𝑑 𝛼 ≥ 0 is a RV representing the duration necessary to fire the transitions 𝑇(𝑡 𝑖,1 ) … 𝑇(𝑡 𝑖,𝑚 )𝑇 𝛼 (𝑡 𝛼 ). We also denote by 𝑑 𝛽 ≥ 0 the RV that represents the duration necessary to fire transitions 𝑇(𝑡 𝑖,𝑚+1 ) … 𝑇(𝑡 𝑖,𝑛 )𝑇(𝜏 𝑖+1 ). Let us denote by 𝑔 𝑑 𝛼 (𝑥) and 𝑔 𝑑 𝛽 (𝑥) the PDFs of 𝑑 𝛼 and 𝑑 𝛽 . The durations 𝑑 𝛼 and 𝑑 𝛽 are the sums of (𝑚 + 1) and (𝑛 -𝑚 + 1) independent exponential RVs, consequently they are also independent RVs. They are given by Erlang PDFs and can be derived from (3). Proposition 1 characterizes the probability that a fault of class 𝑓 𝛼 occurs within a time interval [𝑡 𝑠 , 𝑡 𝑓 ] ⊆ [𝜏 𝑖 , 𝜏 𝑖+1 ] with the condition that (𝜎, 𝑀) is the realized trajectory (i.e. knowing that (𝜎, 𝑀) corresponds to the real behavior of the system). Considering two continuous RVs 𝑋 and 𝑌, the conditional PDF of 𝑋 knowing that 𝑌 = 𝑦 can be written as :

𝑔 𝑋 𝑌=𝑦 ⁄ (𝑥) = 𝑔 𝑋,𝑌 (𝑥,𝑦) 𝑔 𝑌 (𝑦) (14) 
where 2). Moreover, the result is now extended to the case where a set of trajectories consistent with a given measurement trajectory 𝑇𝑅 𝑂 is obtained as in II.A with their associated probabilities. The objective is thus to compute the probability that the fault occurs within a time interval [𝑡 𝑠 , 𝑡 𝑓 ], that will be denoted by 𝑃(𝑡 𝛼 ∈ [𝑡 𝑠 , 𝑡 𝑓 ]), wrt the measurement trajectory 𝑇𝑅 𝑂 . One has to consider all the consistent trajectories in  -1 (𝑇𝑅 𝑜 ) where the fault event may have occurred within [START_REF] Cohen | Dating and counting events in discrete event systems[END_REF] where each conditional probability is given by ( 13):

𝑃(𝑡 𝛼 ∈ [𝑡 𝑠 , 𝑡 𝑓 ]) = ∑ 𝑃(𝜎, 𝑀) (𝜎,𝑀)∈ -1 (𝑇𝑅 𝑂 ) × 𝑃 (𝑡 𝛼 ∈ [𝑡 𝑠 , 𝑡 𝑓 ]/(𝜎, 𝑀)) if 𝑛 = 1 𝑃(𝑡 𝛼 ∈ [𝑡 𝑠 , 𝑡 𝑓 ]) = ∑ 𝑃(𝜎, 𝑀). (𝑃(𝑡 𝛼 ∈ [𝑡 𝑠 , 𝜏 𝑖+1 ]/ (𝜎,𝑀)∈ -1 (𝑇𝑅 𝑂 ) (𝜎, 𝑀)) + 𝑃(𝑡 𝛼 ∈ [𝜏 𝑖+1 , 𝜏 𝑖+𝑛-1 ]/(𝜎, 𝑀)) + 𝑃 (𝑡 𝛼 ∈ [𝜏 𝑖+𝑛-1 , 𝑡 𝑓 ]/ (𝜎, 𝑀))) if 𝑛 > 1 (16) 
Proof. If 𝑛 = 1, the time interval [𝑡 𝑠 , 𝑡 𝑓 ] is included in an interval [𝜏 𝑖 , 𝜏 𝑖+1 ] composed of two successive measured dates and the probability 𝑃(𝑡 𝛼 ∈ [𝑡 𝑠 , 𝑡 𝑓 ]) for a fixed trajectory (𝜎, 𝑀) is given by equation ( 13) multiplied by the probability of the trajectory 𝑃(𝜎, 𝑀).

If 𝑛 > 1, the interval [𝜏 𝑖 , 𝜏 𝑖+𝑛 ] can be divided into disjoint time intervals as follows (see Fig. 2):

[𝑡 𝑠 , 𝑡 𝑓 ] = [𝑡 𝑠 , 𝜏 𝑖+1 ] ∪ ⋃ [𝜏 𝑖+𝑘 , 𝜏 𝑖+𝑘+1 ] 𝑘=1,…,𝑛-2 ∪ [𝜏 𝑖+𝑛-1 , 𝑡 𝑓 ] = [𝑡 𝑠 , 𝜏 𝑖+1 ] ∪ [𝜏 𝑖+1 , 𝜏 𝑖+𝑛-1 ] ∪ [𝜏 𝑖+𝑛-1 , 𝑡 𝑓 ]
Equation ( 13) multiplied by the probability of the trajectory is then used to compute the probability that the fault has occurred within each interval. The sum over all the consistent trajectories leads to [START_REF] Cohen | Dating and counting events in discrete event systems[END_REF].

 The complexity of the fault datation method depends on the number 𝑁 𝑓𝐶𝑇 of faulty consistent trajectories to be analyzed and on the complexity 𝒪 (𝑃 (𝑡 𝛼 ∈ [𝑡 𝑠 , 𝑡 𝑓 ]/(𝜎, 𝑀))) of equation [START_REF] Jiroveanu | A distributed approach for fault detection and diagnosis based on time Petri nets[END_REF] which is related to the integration method (Gauss-Kronrod quadrature). Note that the estimation of the fault date is performed offline (once the fault is detected) and the complexity issue is less critical for the fault characterization.

C. Example

We suppose the POSPN of Fig. 3 has the following parameters  = (1 1 1 1 1 1 1 1) T . The initial marking is giving by 𝑀 𝐼 = (1 0 0 0 0 0 0) T . The set of labels is 𝐸 = {𝑒 1 , 𝑒 2 }, the labeling function verifies ℒ(𝑇1) = 𝑒 1 , ℒ(𝑇 7 ) = ℒ(𝑇 8 ) = 𝑒 2 , and the marking sensor matrix is H = (0 1 0 0 0 0 0). A single fault class 𝐹 = {𝑓} is considered that corresponds to the firing of 𝑇 3 (i.e. ℱ(𝑇 3 ) = 𝑓). Note that Assumption 2 is satisfied with ℎ 𝑚𝑎𝑥 = 4. The aim is to validate the fault datation method. For that purpose, we will consider a scenario

where the fault has certainly occurred. Let us consider the two following measured trajectories within [0, 3]: 𝑇𝑅 𝑂1 = (0, 0)𝑒 1 (0.006)(1, 0.006)(0.31)(0, 0.31)𝑒 2 (1.94)(0, 3) 𝑇𝑅 𝑂2 = (0, 0)𝑒 1 (0.36)(1, 0.36)(1.12)(0, 1.12)𝑒 2 (2.78) (0, 3)

The successive marking measurements of place 𝑃 2 until the observation of event e2 indicate that the fault 𝑓 certainly occurred. This is confirmed by computing the sets of consistent partially timed trajectories for 𝑇𝑅 𝑂1 and 𝑇𝑅 𝑂2 given by: The probability of each partially timed trajectory differs for 𝑇𝑅 𝑂1 and 𝑇𝑅 𝑂2 but in both cases the fault probability equals 1.

 -1 (𝑇𝑅 𝑂𝑘 ) = {(
We are now interested in the estimation of the occurrence date of the fault. The curves in Fig. 4 and 5 represent respectively the estimation of the PDFs of 𝑓 occurrence dates for 𝑇𝑅 𝑂1 and 𝑇𝑅 𝑂2 calculated with Propositions 1 and 2. In order to validate the proposed method and consolidate our results, a Monte Carlo simulation method is used. Such a method estimates the PDF by a swarm of points rather than by a function. For this purpose, the POSPN of Fig. 3 is simulated a large number of times and two sets of 500 sequences that fit respectively 𝑇𝑅 𝑂1 and 𝑇𝑅 𝑂2 are collected. From each set, the fault occurrence dates of 𝑓 are extracted (histograms in Fig 4 and5). For small to medium size systems, such methods could be considered as a possible alternative approach. Note however that the efficiency of such an approach is directly related to the number of particles: a large number of particles is required to provide a good approximation of the PDF and a further study of particle filters and other Baysian approaches would be necessary to apply them to large systems [START_REF] Tafazoli | Hybrid System State Tracking and Fault Detection Using Particle Filters[END_REF].

One can conclude that [0𝑇𝑈, 0.3𝑇𝑈] is an interval of high probability for the occurrence of 𝑓 if 𝑇𝑅 𝑂1 is measured (see Fig. 4) while for 𝑇𝑅 𝑂2 the interval is [0.4𝑇𝑈, 0.7𝑇𝑈] (see Fig. 5). The method provides accurate indications on the time interval of high probability to characterize when the faults have occurred.

IV. CASE STUDY

In order to show the importance of fault datation in the FDD process, let us consider the distribution system depicted on Fig. 6 similar to the one studied in [START_REF] Dotoli | Identification of the unobservable behaviour of industrial automation systems by Petri nets[END_REF][START_REF] Lefebvre | Fault diagnosis and prognosis with partially observed stochastic Petri nets[END_REF]. This system is devoted to the sorting of goods in supply chain systems. The conveyor is divided into 7 zones where different operations could be considered. It transfers two types of parts A and B from a loading station 𝑆 𝐴𝐵 (area 𝑍 1 ) to buffers 𝑆 𝐴 (area 𝑍 3 ) and 𝑆 𝐵 (area 𝑍 5 ). One part is delivered at a time. A bar code reader 𝑅 distinguishes between parts and transmits the information to a supervisor that directs the parts toward the corresponding buffer by activating two switches: 𝑠𝑤 1 and 𝑠𝑤 2 . In this application, two classes of faults are considered. A fault of class 𝑓 𝑎 (respectively 𝑓 𝑏 ) occurs when the switch 𝑠𝑤 1 (respectively 𝑠𝑤 2 ) is deactivated before the delivery of a part A (respectively B). The POSPN of Fig. 7 models the distribution system. The nominal behavior is represented by transitions T1 to T10 (full line), whereas the faulty behaviors are represented by transitions T11 and T12 (dotted line). The parameters of the transitions are given by  = (1 2 3 1 2 2 3 4 3 6 0.3 0.5) T . Let us consider that the initial marking is known and given by MI = (10 0 0 0 0 0 0 1 0 0 1 1 0 0) T . The significance of the transitions and places is provided in Table 1. The sensor configuration is given by the labeling function ℒ(𝑇 1 ) = 𝑒 1 , ℒ(𝑇 2 ) = 𝑒 2 , ℒ(𝑇 𝑗 ) = 𝜀 for 𝑗 = 3, … ,12 and the marking sensor matrix 𝐻 = (0 1 1 1 1 1 1 0 0 0 0 0). This means that the information given by the reader R on the part type is known (the loading of a part A (resp. B) returns the label 𝑒 1 (resp. 𝑒 2 )). In addition, thanks to the matrix 𝐻, an information is obtained when a part is being processed (sum of the markings of 𝑃 2 -𝑃 7 . However, no indication is given to know if the part was successfully delivered or not (due to a fault occurrence).

Let us consider the timed trajectory (𝜎, 𝑀 𝐼 ) obtained within [0𝑇𝑈, 10𝑇𝑈] with: In order to estimate the occurrence date of the fault 𝑓 𝑏 , Propositions 1 and 2 are used and the results are depicted on Fig. 8. from which one can deduce the following information that improves the faults characterization and the FDD process: -[2𝑇𝑈, 3.5𝑇𝑈] is the interval of highest probability for the occurrence of the fault(s) 𝑓 𝑏 . One can notice that the true fault date (3.03𝑇𝑈) is within [2𝑇𝑈, 3.5𝑇𝑈] -According to Fig. 8, only cycle 2 is affected by fault(s).

-Due to the high probability within only one cycle and to the fact that, in this system, only one fault can occur within a given cycle because only one product is delivered at each cycle, the fault 𝑓 𝑏 has occurred only once.

The fault datation helps also to decide which parts were impacted by the occurred fault (parts processed from cycle 2 in this example). In addition, in this example, the part concerned by the fault simply returns to the loading area. If one considers that, due to the fault occurrence, this part quits the conveyer in a bad buffer and impacts other operations that depend on the delivered parts then the fault datation eases the checking of the operations that have been done after the fault occurrence date. Moreover, it will facilitate the identification of this faulty part that could have been used in the continuation of the process.

V. CONCLUSION AND PERSPECTIVES

In this technical note, we evaluate the fault occurrence date in DESs modeled with partially observed stochastic Petri nets. The main contribution is the use of a timed probabilistic model to assess the faults occurrence date probabilities. Due to a computation effort that remains high for large systems, numerical complexity will be considered in our future studies. Also, it would be worthwhile to compare our fault detection method with approaches based on Markov processes (swarm particle and recursive Bayesian filters). The challenge is also to extend this work to non-Markovian dynamics and to consider large systems. 

Finally,

  𝐹 = {𝑓 1 , … , 𝑓 𝑠 } is the set of 𝑠 fault classes and the function ℱ: 𝑇 → 𝐹 ∪ {∅} is introduced to assign a fault class to each faulty transition such that ℱ(𝑇 𝑗 ) = {𝑓 𝑖 } if the fault class 𝑓 𝑖 is assigned to the transition 𝑇 𝑗 and ℱ(𝑇 𝑗 ) = ∅ if 𝑇 𝑗 is a non-faulty transition and corresponds to the expected behavior. The function ℱ is extended to firing sequences 𝜎 such that ℱ(𝜎) =∪ {ℱ(𝑇 𝑘 ): 𝑇 𝑘 ∈ 𝜎}.

Proposition 1 .

 1 Let us consider a DES modelled with a marked POSPN < 𝐺 𝑠 , ℒ, 𝐻, 𝑀 𝐼 > that satisfies Assumptions 1 and 2 and a measured trajectory 𝑇𝑅 𝑂 collected within [𝜏 0 , 𝜏 𝑒𝑛𝑑 ]. Let us also consider a partially timed trajectory (𝜎, 𝑀) ∈  -1 (𝑇𝑅 𝑜 ). The probability that a fault of class 𝑓 𝛼 has occurred within a given time interval [𝑡 𝑠 , 𝑡 𝑓 ] ⊆ [𝜏 𝑖 , 𝜏 𝑖+1 ] knowing that (𝜎, 𝑀) is the realized trajectory and 𝑡 𝛼 ∈ [𝜏 𝑖 , 𝜏 𝑖+1 ] is given by: 𝑃 (𝑡 𝛼 ∈ [𝑡 𝑠 , 𝑡 𝑓 ]/(𝜎, 𝑀)) = ∫ 𝑔 𝑑 𝛼 (𝑡) 𝑔 𝑑 𝛽 ((𝜏 𝑖+1 -𝜏 𝑖 )-𝑡)𝑑𝑡 𝑡 𝑓 -𝜏 𝑖 𝑡 𝑠 -𝜏 𝑖 ∫ 𝑔 𝑑 𝛼 (𝑡) 𝑔 𝑑 𝛽 ((𝜏 𝑖+1 -𝜏 𝑖 )-𝑡)𝑑𝑡 𝜏 𝑖+1 -𝜏 𝑖 0 if 𝑡 𝛼 ∈ [𝜏 𝑖 , 𝜏 𝑖+1 ], 0 otherwise (13) 𝑔 𝑑 𝛼 (𝑡) and 𝑔 𝑑 𝛽 (𝑡) the PDFs of the RVs 𝑑 𝛼 and 𝑑 𝛽 derived from (3). Proof. Obviously, 𝑃 (𝑡 𝛼 ∈ [𝑡 𝑠 , 𝑡 𝑓 ]/(𝜎, 𝑀)) equals 0 if 𝑡 𝛼 ∉ [𝜏 𝑖 , 𝜏 𝑖+1 ] since we consider that [𝑡 𝑠 , 𝑡 𝑓 ] ⊆ [𝜏 𝑖 , 𝜏 𝑖+1 ]. In case 𝑡 𝛼 ∈ [𝜏 𝑖 , 𝜏 𝑖+1 ], the sequence 𝜎 is given by (12) and the durations 𝑑 𝛼 and 𝑑 𝛽 satisfy 𝑑 𝛼 + 𝑑 𝛽 = 𝜏 𝑖+1 -𝜏 𝑖 . The objective is then to compute the conditional probability 𝑃 (𝑑 𝛼 ∈ [𝑡 𝑠 -𝜏 𝑖 , 𝑡 𝑓 -𝜏 𝑖 ]/(𝑑 𝛼 + 𝑑 𝛽 = 𝜏 𝑖+1 -𝜏 𝑖 )).
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 12 Fig. 1. Probability of fault date [𝒕 𝒔 , 𝒕 𝒇 ] ⊆ [𝝉 𝒊 , 𝝉 𝒊+𝟏 ].
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 4 Fig. 4. PDF of the fault occurrence date for TRO1: simulation (histogram), computed with Proposition 2 (curve).
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 5 Fig. 5. PDF of the fault occurrence date for and TRO2: simulation (histogram), computed with Proposition 2 (curve).
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 23 Fig 3. The considered POSPN (unobservable places and transitions are represented in grey).
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 7 Fig. 7. POSPN of the distribution system
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 8 Fig. 8. Estimation of the occurrence date of fault 𝑓 𝑏 in each cycle (a to e) and for all the cycles (f).

Fig. 6 .

 6 Fig.6. Scheme of a distribution system[START_REF] Dotoli | Identification of the unobservable behaviour of industrial automation systems by Petri nets[END_REF] 

  𝐸 = {𝑒 1 , . . . , 𝑒 𝑞 𝑜 } is the set of 𝑞 𝑜 labels that are assigned to observable transitions and 𝜀 is the null label. The labeling function is extended to firing sequences and the concatenation of labels obviously satisfies: 𝜀. 𝜀 = 𝜀 and . 𝑒 𝑘 = 𝑒 𝑘 .  = 𝑒 𝑘 . The measured label is denoted by 𝑒 𝑂 (𝜏 𝑖 ) and 𝜏 𝑖 is the measurement date. In addition, a marking sensor matrix 𝐻 is also introduced to collect continuously the weighted sum of the markings over 𝑛 𝑜 subsets of measured places. 𝐻 = (ℎ 𝑘𝑗 ) ∈ (ℝ) 𝑛 𝑜  𝑛 such that ℎ 𝑘𝑗  0 if the marking of the place 𝑃 𝑗 is considered in the 𝑘 𝑡ℎ subset, and ℎ 𝑘𝑗 = 0 otherwise. Thus, matrix H represents the local marking measurement in single place or the global weighted marking measurement in subnets. The measured part of the marking at date 𝜏 𝑖 is denoted as (𝑀 𝑂 , 𝜏 𝑖 ) with 𝑀 𝑂 = 𝐻. 𝑀(𝜏 𝑖 ).

				𝑎 𝑘=1	𝑟 𝑘 𝑙=1	𝑙 (-𝛽 𝑘 )𝑡 𝑟 𝑘 -𝑙 exp(-𝛽 𝑘 𝑡) (𝑟 𝑘 -𝑙)!(𝑙-1)!	(3)
	Ψ 𝑘,𝑙 (𝑥) = -	𝜕 𝑙-1 𝜕𝑥 𝑙-1 {∏	𝑎 𝑗=0,𝑗≠𝑘	(𝛽 𝑗 + 𝑥) -𝑟 𝑗	} and 𝛽 0 = 0, 𝑟 0 = 1.
	C. Partially Observed SPNs and Measured Trajectories
	POSPNs are SPNs that include the sensor specifications. For this
	purpose, a labeling function ℒ : 𝑇 → 𝐸 ∪ {} is introduced to assign
	a label to each transition.		

Definition 1: A POSPN system is defined as < 𝐺 𝑠 , ℒ, 𝐻, 𝑀 𝐼 > where 𝐺 𝑠 is a SPN structure, ℒ is the labeling function, 𝐻 is the marking sensor matrix and 𝑀 𝐼 is the initial marking. ℒ and 𝐻 determine the sensor configuration.

  Thanks toAssumption 1, this probability is assumed to be known. 𝑃 𝑈 (𝜎, 𝑀) is the probability of the untimed trajectory (i.e. of the trajectory obtained from (𝜎, 𝑀) by making abstraction of time). This probability is obtained by computing the probability to fire each transition of the trajectory before any other enabled transition. It is given by:

	𝑃 𝑈 (𝜎, 𝑀) = ∏	𝑘=1…(𝐾+1)	(∏	𝛾=1…ℎ 𝑘	(	𝑛 𝑘,𝛾 (𝑀(𝑘,𝛾-1))×𝜇 𝑘,𝛾 ∑ 𝑛 𝑗 (𝑀(𝑘,𝛾-1))×𝜇 𝑗 𝑇 𝑗 ∈𝑇	) )

  𝑔 𝑋,𝑌 (𝑥, 𝑦) gives the join density of 𝑋 and 𝑌 and 𝑔 𝑌 (𝑦) the PDF of 𝑌. Considering 𝑋 = 𝑑 𝛼 , 𝑌 = 𝑑 𝛼 + 𝑑 𝛽 , 𝑦 = 𝜏 𝑖+1 -𝜏 𝑖 and knowing that the joint density 𝑔 𝑑 𝛼 ,𝑑 𝛼 +𝑑 𝛽 (𝑥, 𝑦) is equivalent to 𝑔 𝑑 𝛼 ,𝑑 𝛽 (𝑥, 𝑦 -𝑥), we obtain :𝑔 𝑑 𝛼 /𝑑 𝛼 +𝑑 𝛽 =𝜏 𝑖+1 -𝜏 𝑖 (𝑥) =Using the fact that 𝑑 𝛼 and 𝑑 𝛽 are independent, 𝑔 𝑑 𝛼 ,𝑑 𝛽 (𝑥, (𝜏 𝑖+1 -𝜏 𝑖 ) -𝑥) and 𝑔 𝑑 𝛼 +𝑑 𝛽 (𝜏 𝑖+1 -𝜏 𝑖 ) are respectively given by the product and the convolution of 𝑔 𝑑 𝛼 and 𝑔 𝑑 𝛽 . Finally, 𝑔 𝑑 𝛼 /𝑑 𝛼 +𝑑 𝛽 =𝜏 Let us now consider the more general case where the time interval [𝑡 𝑠 , 𝑡 𝑓 ] ⊆ [𝜏 𝑖 , 𝜏 𝑖+𝑛 ] with 𝑛 > 1 and [𝜏 𝑖 , 𝜏 𝑖+𝑛 ] is the smallest interval composed of two measured dates and includes [𝑡 𝑠 , 𝑡 𝑓 ] (see Fig.

	𝑔 𝑑 𝛼 ,𝑑 𝛽 𝑔 𝑑 𝛼 +𝑑 𝛽 (𝑥,(𝜏 𝑖+1 -𝜏 𝑖 )-𝑥) (𝜏 𝑖+1 -𝜏 𝑖 )	(15)

𝑖+1 -𝜏 𝑖 (𝑥) is integrated within [𝑡 𝑠 -𝜏 𝑖 , 𝑡 𝑓 -𝜏 𝑖 ]. Thus equation (
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) is obtained. 

Proposition 2 .

 2 Let us consider a DES modelled with a marked POSPN < 𝐺 𝑠 , ℒ, 𝐻, 𝑀 𝐼 > that satisfies Assumptions 1 and 2 and a measured trajectory 𝑇𝑅 𝑂 collected within [𝜏 0 , 𝜏 𝑒𝑛𝑑 ]. The probability that a fault of class 𝑓 𝛼 occurs within the time interval [𝑡 𝑠 , 𝑡 𝑓 ] ⊆ [𝜏 𝑖 , 𝜏 𝑖+𝑛 ] ⊆ [𝜏 0 , 𝜏 𝑒𝑛𝑑 ] is given by

  𝑀 𝐼 , 𝜎 𝑖 )} with 𝜎 1 = 𝑻 𝟏 (𝝉 𝟏 )𝑇 3 (𝑡 2,1 )𝑇 5 (𝑡 2,2 )𝑻 𝟐 (𝝉 𝟐 )𝑇 4 (𝑡 3,1 )𝑻 𝟕 (𝝉 𝟑 ) 𝜎 2 = 𝑻 𝟏 (𝝉 𝟏 )𝑇 3 (𝑡 2,1 )𝑻 𝟐 (𝝉 𝟐 )𝑇 5 (𝑡 3,1 )𝑇 4 (𝑡 3,2 )𝑻 𝟕 (𝝉 𝟑 ) 𝜎 3 = 𝑻 𝟏 (𝝉 𝟏 )𝑇 3 (𝑡 2,1 )𝑻 𝟐 (𝝉 𝟐 )𝑇 4 (𝑡 3,1 )𝑇 5 (𝑡 3,2 )𝑻 𝟕 (𝝉 𝟑 ) 𝜎 4 = 𝑻 𝟏 (𝝉 𝟏 )𝑻 𝟐 (𝝉 𝟐 )𝑇 3 (𝑡 3,1 )𝑇 5 (𝑡 2,2 )𝑇 4 (𝑡 3,3 )𝑻 𝟕 (𝝉 𝟑 ) 𝜎 5 = 𝑻 𝟏 (𝝉 𝟏 )𝑻 𝟐 (𝝉 𝟐 )𝑇 4 (𝑡 3,1 )𝑇 3 (𝑡 3,2 )𝑇 5 (𝑡 3,3 )𝑻 𝟕 (𝝉 𝟑 ) 𝜎 6 = 𝑻 𝟏 (𝝉 𝟏 )𝑻 𝟐 (𝝉 𝟐 )𝑇 3 (𝑡 3,1 )𝑇 4 (𝑡 3,2 )𝑇 5 (𝑡 3,3 )𝑻 𝟕 (𝝉 𝟑 )where (𝜏 1 , 𝜏 2 , 𝜏 3 ) = (0.006, 0.31, 1.94) for 𝑇𝑅 𝑂1 and (𝜏 1 , 𝜏 2 , 𝜏 3 ) = (0.36, 1.12, 2.78) for 𝑇𝑅 𝑂2 .

  𝑻 𝟏 (𝟔. 𝟑𝟕) … 𝑻 𝟐 (𝟕. 𝟔𝟗) … 𝑻 𝟏𝟐 (𝑡 3 ) … 𝑇 8 (8.39)𝑻 𝟐 (𝟖. 𝟒𝟐) … 𝑻 𝟏𝟐 (𝑡 4 ) … 𝑇 8(9.96) 

	𝑇 8 (6.34)	𝑺 𝑨
		𝒁 𝟒	𝒁 𝟓
	𝒔𝒘 𝟏		𝒔𝒘 𝟏
	𝒁 𝟑		𝑺 𝑩
	𝒁 𝟐	𝑹
		𝒁 𝟕	𝒁 𝟔
		𝒁 𝟏
		𝑺 𝑨𝑩

TABLE 1 .

 1 Places and transitions of the SPN model

	PN element	Significance
	P1	Number of parts in the loading area ( Z1)
	P2 -P7	Conveyor in area Z2 -Z7
	P8	A new part can be loaded
	P9 -P10	Switch 𝑠𝑤 1 (resp. 𝑠𝑤 2 ) is activated
	P11 -P12	Switch 𝑠𝑤 1 (resp. 𝑠𝑤 2 ) is deactivated
	P13 -P14	Output buffers BA -BB
	T1 -T2	Part A (resp. B) exits Z1
	T3 -T8	Operations in area Z2 -Z7 is over
	T9 -T10	A part is stored in buffer BA (resp. BB)
	T11	Fault 𝑓

𝑎 : 𝑠𝑤 1 erroneously deactivated

T12

Fault 𝑓 𝑏 : 𝑠𝑤 2 erroneously deactivated
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