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Abstract—This technical note concerns the fault diagnosis of stochastic 

discrete event systems. Specifically, the goal is to characterize a detected 

fault by estimating its occurrence date. For that purpose, partially 

observed stochastic Petri nets are used to model the system, the failure 

processes and the sensors. From the proposed modelling and collected 

dated measurements, the probabilities of consistent trajectories are 

computed and diagnosis in terms of faults probability is established as a 

consequence. For each detected fault, the probability density function of 

its occurrence date is approximated. This estimation improves the 

diagnosis by providing the most probable time interval of the fault 

occurrence. The interest of fault datation and the applicability of the 

proposed approach are showed through a case study that represents a 

distribution system. 

 
Index Terms—Fault datation, fault detection and diagnosis, stochastic 

Petri nets. 

I. INTRODUCTION 

At a certain level of abstraction, most systems can be considered 

as Discrete Event Systems (DESs) [2], ranging from manufacturing 

and traffic systems to biological and chemical processes. Developing 

efficient Fault Detection and Diagnosis (FDD) methods for such 

systems is a major stake. A FDD method decides whether a fault has 

occurred or not. It also provides as much information as possible on 

the fault such as the fault type, its location, the faulty component(s), 

its occurrence date…etc. The fault characterization improves the 

understanding of the fault, reduces the system downtime and helps to 

take appropriate decisions after the detection. 

In the domain of DESs, many studies have addressed the problem 

of FDD [3,4]. This paper deals with the faulty model-based 

techniques that start with building a model that includes the faulty 

behaviors of the system to be modelled. In particular, we are 

interested in diagnosis techniques based on Petri nets (PNs) models 

[5] where faults are represented by unobservable events [4]. This is a 

well-studied problem in untimed context [6-11] compared to the 

timed context [12-15] despite the fact that considering time is crucial 

for detection and diagnosis. The existing approaches in timed context 

are based on the State Class Graphs [12, 13] and Modified State 

Class Graphs [16]. In [15], stochastic dynamics are considered and 

Partially Observed Stochastic Petri Nets (POSPNs), with partial 

measurements on both markings and events, are exploited. In order to 

evaluate the likelihood of the fault occurrence, fault probabilities are 

estimated taking inspiration from fault beliefs [11] used when the 

diagnosis decision is ambiguous. The motivation to use Petri nets as a 

modeling tool is that such models are physics-based and provide a 

realistic and comprehensive representation of the considered systems. 
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They are modular and evolutive in the sense that they can easily be 

updated when the system specifications change. In addition, the 

POSPNs take into account not only the system operations but also the 

sensors used to collect the information about operations. 

In terms of safety, rapid detection of faults is required to take 

appropriate actions and reconfigurations, preventing equipment 

damages and human injuries. However, there usually exist a delay 

between the time of detection and the exact time when the fault has 

occurred. To the best of our knowledge, most of the existing works 

on FDD of DESs ignores this delay in untimed and also in timed 

context. The fault (or event) date estimation is rarely explored [16, 

17] despite the fact that it is important in FDD process. This is the 

objective of this technical note that is motivated as follows: 

- Fault severity assessment: as the delay between a fault occurrence 

and its detection moment increases, the consequences and 

impacts of this fault on the system become significant and may 

lead to serious damages [18]. Estimating the fault occurrence date 

is important to assess the severity of the fault and to evaluate its 

consequences. 

- Traceability issues: fault datation is also important for traceability 

issues. Traceability is defined as the ability to describe and follow 

the life of an equipment, in both a forward and a backward 

directions, thus ensuring that a requirement can be “traced” from 

its origins, through its specification and development, to its 

subsequent deployment and use [19]. To be efficient, traceability 

should include dated events and time information. For example in 

pharmaceutical or food industry, it is crucial to identify the date 

at which a fault has occurred and has changed for example the 

composition of a product. It is then possible to recall all affected 

products and protect the consumers. It is also mandatory for law 

and legal responsibility.  

In this work, we are interested in FDD of DESs modelled with 

POSPNs. Particularly, when a fault is detected, the objective is to 

estimate its occurrence date. In our previous works, the consistent 

behaviors with a measurement trajectory have been computed and 

their probabilities have been assessed [1]. The probability of faults 

was obtained consequently. In this paper, when a fault is detected, a 

method is proposed to evaluate the Probability Density Function 

(PDF) of the fault occurrence date as a function. It is based on the 

analysis of the consistent behaviors and allows computing the most 

probable time interval where the fault has occurred. Our results are 

consolidated by using a Monte Carlo discrete event simulation 

approach. Not that such approaches and also particle filtering (that 

can be viewed as a sophisticated Monte Carlo simulation) [27] can be 

used as non-analytical alternative methods for the fault detection. 

This technical note is organized as follows. In Section II, 

POSPNs, measurement trajectories and consistent trajectories are 

described. In Section III, the fault diagnosis method of POSPNs 

developed in [1] is first recalled. The approach for estimating the 

PDFs of the faults dates is then detailed and an example is provided. 

In Section IV, a case study representing a distribution system is 

considered to show the advantages of fault datation. Finally, some 

conclusions and perspectives are presented in Section V.  

Datation of faults for Markovian Stochastic DESs 

Ammour R., Leclercq E., Sanlaville E., and Lefebvre D., Member, IEEE 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, accepted September 12, 2018 

II. MODELING OF MARKOVIAN PROCESSES WITH PNS 

A. Stochastic Petri Nets 

Petri nets are graphical and mathematical modelling tools [2, 5]. In 

addition, Stochastic Petri Nets (SPNs) are characterized by random 

firing delays associated with the transitions [20]. Formally, a SPN 

structure is defined as 𝐺𝑠  = < 𝑃, 𝑇, 𝑊𝑃𝑅 , 𝑊𝑃𝑂,  >, where 𝑃 =
 {𝑃1, … , 𝑃𝑛} is a set of 𝑛 places and 𝑇 =  {𝑇1, … , 𝑇𝑞} is a set of 𝑞 

transitions, 𝑊𝑃𝑅  ∈  (ℕ)𝑛𝑞 and 𝑊𝑃𝑂  ∈ (ℕ)𝑛𝑞 are the pre and post 

incidence matrices (ℕ is the set of non-negative integer numbers), 

and 𝑊 =  𝑊𝑃𝑂 – 𝑊𝑃𝑅 is the incidence matrix. 𝜇 = (𝜇𝑗)  ∈ (ℝ+)𝑞 

(ℝ is the set of real numbers) is the firing rate vector which 

characterizes the transition firing periods. < 𝐺𝑠, 𝑀𝐼 > is a SPN 

system with initial marking 𝑀𝐼 ∈ (ℕ)𝑛. A transition 𝑇𝑗 is enabled at 

marking 𝑀 if and only if (iff) 𝑀 ≥ 𝑊𝑃𝑅(: , 𝑗), where 𝑊𝑃𝑅(: , 𝑗) is the 

column 𝑗 of the pre incidence matrix; this is denoted as 𝑀[𝑇𝑗 >. 

Thus, for each transition 𝑇𝑗, enabled at marking 𝑀, the firing periods 

are given by a Random Variable (RV) with an exponential PDF of 

parameter 𝑛𝑗(𝑀). 𝜇𝑗  where 𝑛𝑗(𝑀) stands for the enabled degree of 

transition 𝑇𝑗 at marking 𝑀 which is given by: 

 

𝑛𝑗(𝑀) = min {⌊(
𝑚𝑘

𝑤𝑃𝑅(𝑘,𝑗)
)⌋ , 𝑃𝑘 ∈ °𝑇𝑗}  (1) 

 

where °𝑇𝑗  is the set of input places or preset (the set of places with 

output arcs connected with 𝑇𝑗) and 𝑚𝑘 is the marking of 𝑃𝑘, 

𝑤𝑃𝑅(𝑘, 𝑗) is the element in row 𝑘 and colomn 𝑗 of matrix 𝑊𝑃𝑅. 

Finally, ⌊. ⌋ stands for the lower rounded value of (.). When 𝑇𝑗 is 

enabled, it may fire, and when 𝑇𝑗 fires once, the marking varies 

according to ∆𝑀 =  𝑀′ –  𝑀 = 𝑊(: , 𝑗). This is denoted as 𝑀[𝑇𝑗 >

𝑀′. A SPN system has a time semantic [21, 22] that is defined 

according to (a) an infinite server policy: each transition is considered 

as a server for firings and in a given marking, each transition may fire 

simultaneously several times depending on its enabling degree; (b) a 

race policy: the transition whose firing delay elapses first is assumed 

to be the one that will fire next; (c) a resampling memory policy: at 

the entrance in a marking, the remaining delays associated with all 

transitions are forgotten. Under some specific assumptions, the SPN 

behaves as a Markov model [20, 23]. 

A timed firing sequence 𝜎 of length ℎ = |𝜎| fired at marking 𝑀 

in time interval [𝑡0, 𝑡𝑒𝑛𝑑] is defined as: 𝜎 = 𝑇(𝑡1)𝑇(𝑡2) … 𝑇(𝑡ℎ) 

where 𝑡𝑘, 𝑘 =  1, … , ℎ represent the firing dates of transitions 

𝑇(𝑡𝑘) ∈ 𝑇 that satisfy 𝑡0  𝑡1  𝑡2  …  𝑡ℎ  𝑡𝑒𝑛𝑑. This leads to the 

timed trajectory (2): 

(𝜎, 𝑀)  =  𝑀(𝑡0) [𝑇(𝑡1) > 𝑀(𝑡1) … [𝑇(𝑡ℎ) > 𝑀(𝑡𝑒𝑛𝑑)       (2) 

with 𝑀(𝑡0)  =  𝑀. Note that untimed firing sequences and untimed 

trajectories can be considered in a similar way by making abstraction 

of time. In this case 𝑀(𝑡𝑘) and 𝑇(𝑡𝑘) are simply denoted as 𝑀(𝑘) 

and 𝑇(𝑘).  

B. Exponential Random Variable 

The firing dates of the transitions in a SPN are given by a sum of 

exponential RVs. Let us consider the Cumulative Distribution 

Function (CDF) of the sum of 𝑛 independent RVs 𝑋𝑖 , 𝑖 = 1, … , 𝑛 

having exponential PDFs with parameters 𝜆𝑖  , 𝑖 = 1, … , 𝑛 

respectively. Let us denote by  𝑆𝑛 the sum of these RVs: 𝑆𝑛 =
∑ 𝑋𝑖  𝑛

𝑖=1 . In the case all parameters 𝜆𝑖 are equal,  𝑆𝑛 is modelled by an 

Erlang distribution [24]. Now, consider the general case where the set 

of parameters 𝜆𝑖 is composed of 𝑎 distinct values represented by the 

two sets {𝛽1, 𝛽2, … 𝛽𝑎} and {𝑟1, 𝑟2 … 𝑟𝑎} where 𝛽𝑗  is the value of the 

parameter and 𝑟𝑗 its multiplicity such that 𝑟1 + 𝑟2 … + 𝑟𝑎 = 𝑛. The 

CDF 𝐺𝑎(𝑡) of  𝑆𝑛 for 𝑡 ≥ 0 is given by [25]: 

𝐺𝑎(𝑡)  =  1 − (∏ 𝛽𝑗

𝑟𝑗𝑎
𝑗=1 ) ∑ ∑

Ψ𝑘,𝑙(−𝛽𝑘)𝑡𝑟𝑘−𝑙 exp(−𝛽𝑘𝑡)

(𝑟𝑘−𝑙)!(𝑙−1)!

𝑟𝑘
𝑙=1

𝑎
𝑘=1   (3) 

 

Ψ𝑘,𝑙(𝑥) = −
𝜕𝑙−1

𝜕𝑥𝑙−1
{∏ (𝛽𝑗 + 𝑥)−𝑟𝑗𝑎

𝑗=0,𝑗≠𝑘 } and 𝛽0 = 0, 𝑟0 = 1. 

C. Partially Observed SPNs and Measured Trajectories 

POSPNs are SPNs that include the sensor specifications. For this 

purpose, a labeling function ℒ : 𝑇 → 𝐸 ∪ {} is introduced to assign 

a label to each transition. 𝐸 =  {𝑒1, . . . , 𝑒𝑞𝑜
} is the set of 𝑞𝑜 labels that 

are assigned to observable transitions and 𝜀 is the null label. The 

labeling function is extended to firing sequences and the 

concatenation of labels obviously satisfies: 𝜀. 𝜀 = 𝜀 and . 𝑒𝑘  =
 𝑒𝑘 .  =  𝑒𝑘. The measured label is denoted by 𝑒𝑂(𝜏𝑖) and 𝜏𝑖 is the 

measurement date. In addition, a marking sensor matrix 𝐻 is also 

introduced to collect continuously the weighted sum of the markings 

over 𝑛𝑜 subsets of measured places. 𝐻 =  (ℎ𝑘𝑗)  ∈ (ℝ)𝑛𝑜 𝑛 such 

that ℎ𝑘𝑗  0 if the marking of the place 𝑃𝑗  is considered in the 𝑘𝑡ℎ 

subset, and ℎ𝑘𝑗 =  0 otherwise. Thus, matrix H represents the local 

marking measurement in single place or the global weighted marking 

measurement in subnets. The measured part of the marking at date 𝜏𝑖 

is denoted as (𝑀𝑂, 𝜏𝑖) with 𝑀𝑂 =  𝐻. 𝑀(𝜏𝑖). 
 

Definition 1: A POSPN system is defined as < 𝐺𝑠, ℒ, 𝐻, 𝑀𝐼 > where 

𝐺𝑠 is a SPN structure, ℒ is the labeling function, 𝐻 is the marking 

sensor matrix and 𝑀𝐼 is the initial marking. ℒ and 𝐻 determine the 

sensor configuration. 

 

Finally, 𝐹 = {𝑓1 , … , 𝑓𝑠} is the set of 𝑠 fault classes and the function 

ℱ: 𝑇 → 𝐹 ∪ {∅} is introduced to assign a fault class to each faulty 

transition such that ℱ(𝑇𝑗) = {𝑓𝑖} if the fault class 𝑓𝑖 is assigned to the 

transition 𝑇𝑗 and ℱ(𝑇𝑗) = ∅ if 𝑇𝑗 is a non-faulty transition and 

corresponds to the expected behavior. The function ℱ is extended to 

firing sequences 𝜎 such that ℱ(𝜎) =∪ {ℱ(𝑇𝑘): 𝑇𝑘 ∈ 𝜎}. 

 

A measurement function  [1, 15] collects the successive dated 

marking and event measurements of a timed trajectory (𝜎, 𝑀) within 

time interval [𝜏0, 𝜏𝑒𝑛𝑑] and organizes them in the measurement 

trajectory (4) composed of successive dated labels and marking 

measurements: 

 

(𝜎, 𝑀) = (𝑀𝑂0, 0)𝑒𝑂(1)(𝑀𝑂1, 1) … 𝑒𝑂(𝐾)(𝑀𝑂𝐾, 𝑒𝑛𝑑) (4) 

  

where 𝐾 is the length of the measured trajectory and 𝜏𝑗 , 𝑗 = 1, … , 𝐾 

refer to the dates of measurements, 𝑒𝑂(𝑗) ∈ 𝐸 ∪ {𝜀}  is the 𝑗𝑡ℎ label. 

The label 𝜀 is used when a silent transition fires and the firing is 

indirectly detected (but the transition is not necessarily isolated) by 

the modification of the measured part of the marking. (𝑀𝑂𝑗 , 𝑗) is the 

𝑗𝑡ℎ marking measurement and 𝑀𝑂0 = 𝐻. 𝑀(𝜏0). The form given by 

(4) with an alternation between measured markings and labels is a 

representation of the collected measurements. Given a measured 

trajectory 𝑇𝑅𝑂, a trajectory (𝜎, 𝑀) that satisfies (𝜎, 𝑀) = 𝑇𝑅𝑂 is 

said to be consistent with 𝑇𝑅𝑂 in [0, 𝑒𝑛𝑑].   
In order to deal with the problem of fault datation, we exploit the 

fault diagnosis method of POSPNs that has been proposed in our 

previous works [1, 15] which is based on two steps: 

- The computation of the set of consistent trajectories with the 

measurements 𝑇𝑅𝑂, denoted by −1(𝑇𝑅𝑂). 

- The computation of the probabilities of the consistent trajectories 

(i.e. the probability that a consistent trajectory (𝜎, 𝑀) ∈ −1(𝑇𝑅𝑂) 

corresponds to the trajectory that truly provides the measurements). 

The fault probability is obtained as a consequence. 
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This method is based on two assumptions: 

 

Assumption 1. The finite set Υ(𝜏0) of possible markings 𝑀 at time 

𝜏0 and the probabilities 0(𝑀), 𝑀 ∈ Υ(𝜏0) are assumed to be known. 

 

Assumption 2. The length of unobservable firing sequences that do 

not change the observable part of the marking is bounded. 

 

Assumption 1 is required to avoid the enumeration of all reachable 

markings in order to find those which are consistent with the initial 

measurement 𝑀𝑂0. Since several firing sequences 𝜎 with various 

lengths ℎ (ℎ may eventually be infinite) may be consistent with a 

given measured trajectory 𝑇𝑅𝑂, Assumption 2 is required to 

guarantee that the consistent trajectories are of finite length. This 

assumption can be ensured by the sensor configuration and this 

assumption is sufficient to ensure that the silent part of the net is 

acyclic which is an usual assumption for DESs diagnosis. The 

maximal number of events within ]𝜏𝑖 , 𝜏𝑖+1] is denoted by ℎ𝑚𝑎𝑥 such 

that the maximal number of silent events equals ℎ𝑚𝑎𝑥 − 1. 

Considering Assumptions 1 and 2, −1(𝑇𝑅𝑂) is thus of finite 

cardinality. This set is composed of the exhaustive list of partially 

timed trajectories (𝜎, 𝑀) ∈ −1(𝑇𝑅𝑂) with 𝜎 of form (5). (𝜎, 𝑀) is 

said to be partially timed since only the firing dates of the transitions 

𝑻(𝝉𝒌) in 𝜎, that correspond to measurements, are known. Variables 

are associated to the other dates that are unknown. 

 

𝜎 = 𝑇(𝑡1,1) … 𝑇(𝑡1,ℎ1−1)𝑻(𝝉𝟏)𝑇(𝑡2,1) … 𝑇(𝑡2,ℎ2−1)𝑻(𝝉𝟐) … 

𝑻(𝝉𝑲−𝟏)𝑇(𝑡𝐾,1) … 𝑇(𝑡𝐾,ℎ𝐾−1)𝑻(𝝉𝑲)𝑇(𝑡𝐾+1,1) … 𝑇(𝑡𝐾+1,ℎ𝐾+1−1)   (5) 

 

with ℎ𝑘   ℎ𝑚𝑎𝑥 , 𝑘 =  1, … , (𝐾 + 1). The dates 𝑡𝑘,1, 𝑡𝑘,2, … , 𝑡𝑘,ℎ𝑘
 

satisfy 𝜏𝑘−1 ≤  𝑡𝑘,1 ≤ 𝑡𝑘,2 ≤ ⋯ ≤ 𝑡𝑘,ℎ𝑘−1 ≤ 𝜏𝑘  for all 𝑘 =

 1, … , (𝐾 + 1). Only the dates 𝜏𝑘 = 𝑡𝑘,ℎ𝑘
, 𝑘 =  1, … , 𝐾, are measured 

and all other dates 𝑡𝑘,1, 𝑡𝑘,2, … , 𝑡𝑘,ℎ𝑘−1, 𝑘 =  1, … , (𝐾 + 1) are 

unknown and correspond to silent events. The transitions 

𝑇(𝑡𝐾+1,1) … 𝑇(𝑡𝐾+1,ℎ𝐾+1−1) correspond to the silent closure. 

 

In Section III.A, the computation of the set of consistent 

trajectories and their probabilities are briefly recalled and the fault 

probability is obtained as a consequence. The problem of the fault 

datation is then considered. In fact, when a fault is detected, its 

occurrence date 𝑡𝛼 = 𝑡𝑘,𝑖 is unknown and could have occurred within 

any time interval [𝜏𝑘 , 𝜏𝑘+1] depending on the considered faulty 

consistent trajectory. The main issue is thus to analyze the consistent 

trajectories in order to estimate the PDF of the unknown fault date. 

The most probable time interval of the fault event date is obtained as 

a consequence. This will be discussed in Section III.B. 

III. FAULT DATATION 

A. Some results on fault diagnosis of POSPNs 

From a timed measurement trajectory 𝑇𝑅𝑂, the first step for fault 

diagnosis is to compute the set of consistent trajectories  −1(𝑇𝑅𝑂). 

It has been obtained in our previous works [1, 15] with a method 

based on Linear Matrix Inequalities (LMIs). These inequalities 

reformulate, thanks to linear algebra, the conditions induced by each 

new measurement. Note that the complexity to compute −1(𝑀𝑇) 

using the set of LMIs is discussed in [15] and given by 𝒪((𝑞 +

1)𝑁.(𝐾+1).ℎ𝑚𝑎𝑥). The complexity is thus exponential wrt the number 

𝑁 of reachable markings and to the length 𝐾 of the measurement 

sequences. An incremental method was also proposed in [1] that 

incrementally constructs the consistent trajectories. Its complexity is 

given by 𝒪(|Υ(𝜏0)|. 𝑞(𝐾+1).ℎ𝑚𝑎𝑥). Both methods lead to the 

computation of the consistent trajectories (𝜎, 𝑀) ∈ −1(𝑇𝑅𝑂) with 𝜎 

of form (5). 

 

The second step consists in calculating the probability of each 

partially timed trajectory wrt the measurement dates to deduce the 

faults probabilities. Considering a consistent trajectory (𝜎, 𝑀) ∈

−1(𝑇𝑅𝑂) with 𝜎 of form (5), its probability is given by: 

 

𝑃(𝜎, 𝑀) =
𝜋(𝜎,𝑀)

∑ 𝜋(𝜎′, 𝑀′)
(𝜎′, 𝑀′) ∈  −1  (𝑇𝑅𝑂)

  (6) 

with: 

 

𝜋(𝜎, 𝑀) = 0(𝑀). 𝑃𝑈(𝜎, 𝑀). (∏ 𝑃𝜎𝑖𝑖=1…𝐾 ). 𝑃𝜎𝑆𝐶
    (7) 

 

The different terms of equation 𝜋(𝜎, 𝑀) are detailed in [1] and 

recalled in the follows. 

0(𝑀) is the probability that the marking at time 0 is 𝑀. Thanks to 

Assumption 1, this probability is assumed to be known. 

𝑃𝑈(𝜎, 𝑀) is the probability of the untimed trajectory (i.e. of the 

trajectory obtained from (𝜎, 𝑀) by making abstraction of time). This 

probability is obtained by computing the probability to fire each 

transition of the trajectory before any other enabled transition. It is 

given by:  

𝑃𝑈(𝜎, 𝑀)  = ∏ (∏ (
𝑛𝑘,𝛾(𝑀(𝑘,𝛾−1))×𝜇𝑘,𝛾

∑ 𝑛𝑗(𝑀(𝑘,𝛾−1))×𝜇𝑗𝑇𝑗∈𝑇
)𝛾=1…ℎ𝑘

)𝑘=1…(𝐾+1)  (8) 

 

with 𝑀(1,0) = 𝑀, 𝑀(𝑘, 𝛾) results from the firing of 𝑇(𝑡𝑘,𝛾)  for 𝑘 =

 1, … , (𝐾 + 1), 𝛾 =  1, … , (ℎ𝑘 − 1) and 𝑀(𝑘, 0) = 𝑀((𝑘 − 1), ℎ𝑘) 

for 𝑘 = 2, … , (𝐾 + 1). 
𝑃𝜎𝑖

 represents, for each group of transitions 𝜎𝑖 =

𝑇(𝑡𝑖,1). . . 𝑇(𝑡𝑖,ℎ𝑖−1)𝑻(𝝉𝒊) 𝑖 = 1, … , 𝐾 fired within [𝜏𝑖−1, 𝜏𝑖  ], the 

probability to fire all transitions 𝑇(𝑡𝑖,1). . . 𝑇(𝑡𝑖,ℎ𝑖−1) before the 

instant 𝑡𝑖,ℎ𝑖
= 𝜏𝑖 (i.e. 𝑡𝑖,ℎ𝑖−1 ≤ 𝜏𝑖) and then to fire 𝑻(𝝉𝒊) within time 

interval [𝜏𝑖   𝜏𝑖  + ∆𝑡] where ∆𝑡 is an infinitesimally small time 

increment. This probability is given by: 

 

𝑃𝜎𝑖
= (∫ 𝑔ℎ𝑖−1(𝑡). (1 − 𝐺ℎ𝑖

(𝜏𝑖 − 𝑡)) . 𝑑𝑡
𝜏𝑖

𝜏𝑖−1
) . ∑ 𝑛𝑗(𝑀(𝑖)). 𝜇𝑗𝑇𝑗∈𝑇 . ∆𝑡 

 (9) 

where 𝑔ℎ𝑖−1 is the PDF that characterizes the duration necessary to 

fire 𝑇(𝑡𝑖,1). . . 𝑇(𝑡𝑖,ℎ𝑖−1). It corresponds to a sum of ℎ𝑖 − 1 

exponential RVs given by (3). 𝐺ℎ𝑖
 is the CDF that characterizes the 

firing of the measured transition 𝑻(𝝉𝒊). Finally, 𝑀(𝑖) is the marking 

from which 𝑻(𝝉𝒊) is fired. Note that the increment ∆𝑡  is simplified 

thanks to equation (6).    
𝑃𝜎𝑆𝐶

 is the probability to fire the silent transitions (silent closure) 

𝜎𝑆𝐶 = 𝑇(𝑡𝐾+1,1). . . 𝑇(𝑡𝐾+1,ℎ𝐾+1−1) within ]𝜏𝐾 , 𝜏𝑒𝑛𝑑] and to not fire 

any enabled transitions until 𝜏𝑒𝑛𝑑. It is given by: 

 

𝑃𝜎𝑆𝐶
= ∫ 𝑔ℎ𝐾+1−1(𝑡). (1 − 𝐺ℎ𝐾+1

(𝜏𝐾 − 𝑡)) . 𝑑𝑡
𝜏𝑒𝑛𝑑

𝜏𝐾
   (10) 

 

𝑔ℎ𝐾+1−1 characterizes the duration necessary to fire 

𝑇(𝑡𝐾+1,1). . . 𝑇(𝑡𝐾+1,ℎ𝐾+1−1) and 𝐺ℎ𝐾+1
 the firing of any enabled 

transition after the firing of 𝑇(𝐾 + 1, ℎ𝐾+1 − 1). 
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Once the probability of each consistent trajectory (𝜎, 𝑀) ∈

−1(𝑇𝑅𝑂) is computed, the probability that a fault of class 𝑓𝛼 has 

occurred wrt 𝑇𝑅𝑂 can be deduced. It is given by: 

 

𝑃(𝑓𝛼 , 𝑇𝑅𝑂) = ∑ 𝑃(𝜎, 𝑀)(,𝑀)∈𝛼(𝑇𝑅𝑂)   (11) 

 

with 𝛼(𝑇𝑅𝑂) = {(𝜎, 𝑀) ∈ −1(𝑇𝑅𝑂) such that 𝑓𝛼 ∈ ℱ(𝜎)}. 

Only trajectories that contain the fault 𝑓𝛼 and thus belong to the set 

𝛼(𝑇𝑅𝑂) are considered and the sum of their probabilities represents 

the fault probability.  

The complexity of the fault probability computation 

𝒪(𝑃(𝑓𝛼 , 𝑇𝑅𝑂)) depends on the number 𝑁𝐶𝑇 of consistent trajectories 

and on the complexity 𝒪(𝑃(𝜎, 𝑀)) to compute the probability of a 

consistent trajectory which mainly depends on the used integration 

method. The Gauss-Kronrod quadrature was used to compute the 

integration because it is a nested adaptive method that saves some of 

the numerical efforts. 

B. Fault Occurrence Dates 

This section will focus on the evaluation of the PDFs of the silent 

events dates in order to estimate the fault occurrence dates. Let us 

consider a faulty consistent trajectory (𝜎, 𝑀) where 𝜎 is of form (5) 

and assume that the fault event, denoted by 𝑇𝛼(𝑡𝛼), occurs before the 

last measured event. There exists two measurement dates 𝜏𝑖  and 𝜏𝑖+1 

such that 𝑡𝛼 ∈ [𝜏𝑖 , 𝜏𝑖+1]. The sequence 𝜎 of the trajectory (𝜎, 𝑀) can 

be represented as follows: 

 

𝜎 = ⋯ 𝑻(𝝉𝒊)𝑇(𝑡𝑖,1) … 𝑇(𝑡𝑖,𝑚)𝑇𝛼(𝑡𝛼)𝑇(𝑡𝑖,𝑚+1) … 𝑇(𝑡𝑖,𝑛)𝑻(𝝉𝒊+𝟏) … 

 (12) 

Let us first consider a time interval [𝑡𝑠, 𝑡𝑓]  ⊆  [𝜏𝑖 , 𝜏𝑖+1] and 

compute the probability that the fault event has occurred within 

[𝑡𝑠, 𝑡𝑓] wrt the trajectory (𝜎, 𝑀). This probability will be denoted by 

𝑃 (𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓]/(𝜎, 𝑀)). As depicted in Fig. 1, the method consists 

in computing the probability to fire all the transitions  

𝑇(𝑡𝑖,1) … 𝑇(𝑡𝑖,𝑚)𝑇𝛼(𝑡𝛼) so that 𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓] and to fire the transitions 

𝑇(𝑡𝑖,𝑚+1) … 𝑇(𝑡𝑖,𝑛)𝑇(𝜏𝑖+1) within time interval [𝑡𝛼 , 𝜏𝑖+1]. 

The occurrence date 𝑡𝛼 can be written as  𝑡𝛼 = 𝜏𝑖 + 𝑑𝛼 where 

𝑑𝛼 ≥ 0 is a RV representing the duration necessary to fire the 

transitions 𝑇(𝑡𝑖,1) … 𝑇(𝑡𝑖,𝑚)𝑇𝛼(𝑡𝛼). We also denote by 𝑑𝛽 ≥ 0 the 

RV that represents the duration necessary to fire transitions 

𝑇(𝑡𝑖,𝑚+1) … 𝑇(𝑡𝑖,𝑛)𝑇(𝜏𝑖+1). Let us denote by 𝑔𝑑𝛼
(𝑥) and 𝑔𝑑𝛽

(𝑥) the 

PDFs of 𝑑𝛼 and 𝑑𝛽 . The durations 𝑑𝛼 and 𝑑𝛽  are the sums of (𝑚 +

1) and (𝑛 − 𝑚 + 1) independent exponential RVs, consequently they 

are also independent RVs. They are given by Erlang PDFs and can be 

derived from (3). Proposition 1 characterizes the probability that a 

fault of class 𝑓𝛼 occurs within a time interval [𝑡𝑠, 𝑡𝑓] ⊆ [𝜏𝑖 , 𝜏𝑖+1] with 

the condition that (𝜎, 𝑀) is the realized trajectory (i.e. knowing that 

(𝜎, 𝑀) corresponds to the real behavior of the system).  

 

Proposition 1. Let us consider a DES modelled with a marked 

POSPN < 𝐺𝑠 , ℒ, 𝐻, 𝑀𝐼 > that satisfies Assumptions 1 and 2 and a 

measured trajectory 𝑇𝑅𝑂 collected within [𝜏0, 𝜏𝑒𝑛𝑑]. Let us also 

consider a partially timed trajectory (𝜎, 𝑀) ∈ −1(𝑇𝑅𝑜). The 

probability that a fault of class 𝑓𝛼 has occurred within a given time 

interval [𝑡𝑠, 𝑡𝑓] ⊆ [𝜏𝑖 , 𝜏𝑖+1] knowing that (𝜎, 𝑀) is the realized 

trajectory and 𝑡𝛼 ∈ [𝜏𝑖 , 𝜏𝑖+1] is given by: 

 

𝑃 (𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓]/(𝜎, 𝑀)) =
∫ 𝑔𝑑𝛼

(𝑡) 𝑔𝑑𝛽
((𝜏𝑖+1−𝜏𝑖)−𝑡)𝑑𝑡

𝑡𝑓−𝜏𝑖

𝑡𝑠−𝜏𝑖

∫ 𝑔𝑑𝛼
(𝑡) 𝑔𝑑𝛽

((𝜏𝑖+1−𝜏𝑖)−𝑡)𝑑𝑡
𝜏𝑖+1−𝜏𝑖

0

if 𝑡𝛼 ∈

[𝜏𝑖 , 𝜏𝑖+1], 0 otherwise (13) 

 

𝑔𝑑𝛼
(𝑡) and  𝑔𝑑𝛽

(𝑡) the PDFs of the RVs 𝑑𝛼 and 𝑑𝛽  derived from (3).  

 

Proof. Obviously, 𝑃 (𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓]/(𝜎, 𝑀)) equals 0 if 𝑡𝛼 ∉ [𝜏𝑖 , 𝜏𝑖+1] 

since we consider that [𝑡𝑠, 𝑡𝑓]  ⊆ [𝜏𝑖 , 𝜏𝑖+1].  In case 𝑡𝛼 ∈ [𝜏𝑖 , 𝜏𝑖+1], 

the sequence 𝜎 is given by (12) and the durations 𝑑𝛼 and 𝑑𝛽  satisfy 

𝑑𝛼 + 𝑑𝛽 = 𝜏𝑖+1 − 𝜏𝑖 . The objective is then to compute the 

conditional probability 𝑃 (𝑑𝛼 ∈ [𝑡𝑠 − 𝜏𝑖 , 𝑡𝑓 − 𝜏𝑖]/(𝑑𝛼 + 𝑑𝛽 =

𝜏𝑖+1 − 𝜏𝑖)).  

Considering two continuous RVs 𝑋 and 𝑌, the conditional PDF of 𝑋 

knowing that 𝑌 = 𝑦 can be written as : 

 

𝑔𝑋 𝑌=𝑦⁄  (𝑥) =
𝑔𝑋,𝑌(𝑥,𝑦)

𝑔𝑌(𝑦)
  (14) 

 

where 𝑔𝑋,𝑌(𝑥, 𝑦) gives the join density of 𝑋 and 𝑌 and 𝑔𝑌(𝑦) the 

PDF of 𝑌. Considering 𝑋 = 𝑑𝛼, 𝑌 = 𝑑𝛼 + 𝑑𝛽, 𝑦 = 𝜏𝑖+1 − 𝜏𝑖  and 

knowing that the joint density 𝑔𝑑𝛼,𝑑𝛼+𝑑𝛽
(𝑥, 𝑦) is equivalent to 

𝑔𝑑𝛼,𝑑𝛽
(𝑥, 𝑦 − 𝑥), we obtain : 

 

𝑔𝑑𝛼/𝑑𝛼+𝑑𝛽=𝜏𝑖+1−𝜏𝑖 (𝑥) =
𝑔𝑑𝛼,𝑑𝛽

(𝑥,(𝜏𝑖+1−𝜏𝑖)−𝑥) 

𝑔𝑑𝛼+𝑑𝛽
(𝜏𝑖+1−𝜏𝑖)

   (15) 

 

Using the fact that 𝑑𝛼 and 𝑑𝛽  are independent, 𝑔𝑑𝛼,𝑑𝛽
(𝑥, (𝜏𝑖+1 −

𝜏𝑖) − 𝑥) and 𝑔𝑑𝛼+𝑑𝛽
(𝜏𝑖+1 − 𝜏𝑖) are respectively given by the product 

and the convolution of 𝑔𝑑𝛼
 and 𝑔𝑑𝛽

. Finally, 𝑔𝑑𝛼/𝑑𝛼+𝑑𝛽=𝜏𝑖+1−𝜏𝑖 (𝑥) is 

integrated within [𝑡𝑠 − 𝜏𝑖 , 𝑡𝑓 − 𝜏𝑖]. Thus equation (13) is obtained. 

  
Let us now consider the more general case where the time 

interval [𝑡𝑠, 𝑡𝑓] ⊆ [𝜏𝑖 , 𝜏𝑖+𝑛] with 𝑛 > 1 and [𝜏𝑖 , 𝜏𝑖+𝑛] is the smallest 

interval composed of two measured dates and includes [𝑡𝑠, 𝑡𝑓] (see 

Fig. 2). Moreover, the result is now extended to the case where a set 

of trajectories consistent with a given measurement trajectory 𝑇𝑅𝑂 is 

obtained as in II.A with their associated probabilities. The objective 

is thus to compute the probability that the fault occurs within a time 

interval [𝑡𝑠, 𝑡𝑓], that will be denoted by 𝑃(𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓]), wrt the 

measurement trajectory 𝑇𝑅𝑂. One has to consider all the consistent 

trajectories in −1(𝑇𝑅𝑜) where the fault event may have occurred 

within any measured time interval [𝜏𝑘 , 𝜏𝑘+1] for each trajectory. The 

probability 𝑃(𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓]) is thus calculated by Proposition 2. 

𝝉𝒊 𝝉𝒊+𝟏 𝒕𝒔 𝒕𝒇 𝒕𝜶 

Firing transitions 𝑇(𝑡𝑖,𝑘) 

𝑘 = 1, … , 𝑚 and 𝑇(𝑡𝛼)  

𝑇(𝑡 )  

Firing 𝑇(𝑡𝑖,𝑘′)  

𝑘′ = (𝑚 + 1), … , 𝑛 and 𝑇(𝜏𝑖+1)  

Fig. 1. Probability of fault date [𝒕𝒔, 𝒕𝒇] ⊆ [𝝉𝒊, 𝝉𝒊+𝟏]. 

𝝉𝒊 𝝉𝒊+𝒏 𝒕𝒔 𝒕𝒇 
𝒕𝜶 

𝝉𝒊+𝟏 𝝉𝒊+𝟐 𝝉𝒊+𝒏−𝟏 

Fig. 2. Probability of fault date with [𝒕𝒔, 𝒕𝒇] ⊆ [𝝉𝒊, 𝝉𝒊+𝒏]. 

https://en.wikipedia.org/wiki/Adaptive_quadrature
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Proposition 2. Let us consider a DES modelled with a marked 

POSPN < 𝐺𝑠 , ℒ, 𝐻, 𝑀𝐼 > that satisfies Assumptions 1 and 2 and a 

measured trajectory 𝑇𝑅𝑂 collected within [𝜏0, 𝜏𝑒𝑛𝑑]. The 

probability that a fault of class 𝑓𝛼 occurs within the time interval 

[𝑡𝑠, 𝑡𝑓] ⊆ [𝜏𝑖 , 𝜏𝑖+𝑛] ⊆ [𝜏0, 𝜏𝑒𝑛𝑑] is given by (16) where each 

conditional probability is given by (13): 

 

𝑃(𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓]) = ∑ 𝑃(𝜎, 𝑀)(𝜎,𝑀)∈−1(𝑇𝑅𝑂)   

 × 𝑃 (𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓]/(𝜎, 𝑀)) if 𝑛 = 1 

𝑃(𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓]) = ∑ 𝑃(𝜎, 𝑀). (𝑃(𝑡𝛼 ∈ [𝑡𝑠, 𝜏𝑖+1]/(𝜎,𝑀)∈−1(𝑇𝑅𝑂) 

(𝜎, 𝑀)) + 𝑃(𝑡𝛼 ∈ [𝜏𝑖+1, 𝜏𝑖+𝑛−1]/(𝜎, 𝑀)) + 𝑃 (𝑡𝛼 ∈ [𝜏𝑖+𝑛−1, 𝑡𝑓]/

(𝜎, 𝑀)))  if 𝑛 > 1  (16) 

 

Proof. If 𝑛 = 1, the time interval [𝑡𝑠, 𝑡𝑓] is included in an interval 

[𝜏𝑖 , 𝜏𝑖+1] composed of two successive measured dates and the 

probability 𝑃(𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓]) for a fixed trajectory (𝜎, 𝑀) is given by 

equation (13) multiplied by the probability of the trajectory 𝑃(𝜎, 𝑀). 

If 𝑛 > 1, the interval [𝜏𝑖 , 𝜏𝑖+𝑛] can be divided into disjoint time 

intervals as follows (see Fig. 2): 

 

[𝑡𝑠, 𝑡𝑓] = [𝑡𝑠, 𝜏𝑖+1] ∪ ⋃ [𝜏𝑖+𝑘 , 𝜏𝑖+𝑘+1]𝑘=1,…,𝑛−2 ∪ [𝜏𝑖+𝑛−1, 𝑡𝑓] =

[𝑡𝑠, 𝜏𝑖+1] ∪ [𝜏𝑖+1, 𝜏𝑖+𝑛−1] ∪ [𝜏𝑖+𝑛−1, 𝑡𝑓]  

 

Equation (13) multiplied by the probability of the trajectory is then 

used to compute the probability that the fault has occurred within 

each interval. The sum over all the consistent trajectories leads to 

(16).   

The complexity of the fault datation method depends on the number 

𝑁𝑓𝐶𝑇  of faulty consistent trajectories to be analyzed  

and on the complexity 𝒪 (𝑃 (𝑡𝛼 ∈ [𝑡𝑠, 𝑡𝑓]/(𝜎, 𝑀))) of equation (13) 

which is related to the integration method (Gauss-Kronrod 

quadrature). Note that the estimation of the fault date is performed 

offline (once the fault is detected) and the complexity issue is less 

critical for the fault characterization. 

C. Example 

We suppose the POSPN of Fig. 3 has the following parameters  

= (1 1 1 1 1 1 1 1)T. The initial marking is giving by 𝑀𝐼 = (1 0 0 0 0 0 

0)T. The set of labels is 𝐸 = {𝑒1, 𝑒2}, the labeling function verifies 

ℒ(𝑇1) = 𝑒1, ℒ(𝑇7) = ℒ(𝑇8) = 𝑒2, and the marking sensor matrix is H 

= (0 1 0 0 0 0 0). A single fault class 𝐹 = {𝑓} is considered that 

corresponds to the firing of 𝑇3 (i.e. ℱ(𝑇3) = 𝑓). Note that 

Assumption 2 is satisfied with ℎ𝑚𝑎𝑥 = 4. The aim is to validate the 

fault datation method. For that purpose, we will consider a scenario 

where the fault has certainly occurred.  

Let us consider the two following measured trajectories within [0, 3]: 
 

𝑇𝑅𝑂1 = (0, 0)𝑒1(0.006)(1, 0.006)(0.31)(0, 0.31)𝑒2(1.94)(0, 3) 

𝑇𝑅𝑂2 = (0, 0)𝑒1(0.36)(1, 0.36)(1.12)(0, 1.12)𝑒2(2.78) (0, 3)  

 

The successive marking measurements of place 𝑃2 until the 

observation of event e2 indicate that the fault 𝑓 certainly occurred. 

This is confirmed by computing the sets of consistent partially timed 

trajectories for 𝑇𝑅𝑂1 and 𝑇𝑅𝑂2 given by: 

 

−1(𝑇𝑅𝑂𝑘) = {(𝑀𝐼 , 𝜎𝑖)} with 

𝜎1 = 𝑻𝟏(𝝉𝟏)𝑇3(𝑡2,1)𝑇5(𝑡2,2)𝑻𝟐(𝝉𝟐)𝑇4(𝑡3,1)𝑻𝟕(𝝉𝟑) 

𝜎2 = 𝑻𝟏(𝝉𝟏)𝑇3(𝑡2,1)𝑻𝟐(𝝉𝟐)𝑇5(𝑡3,1)𝑇4(𝑡3,2)𝑻𝟕(𝝉𝟑) 

𝜎3 = 𝑻𝟏(𝝉𝟏)𝑇3(𝑡2,1)𝑻𝟐(𝝉𝟐)𝑇4(𝑡3,1)𝑇5(𝑡3,2)𝑻𝟕(𝝉𝟑) 

𝜎4 = 𝑻𝟏(𝝉𝟏)𝑻𝟐(𝝉𝟐)𝑇3(𝑡3,1)𝑇5(𝑡2,2)𝑇4(𝑡3,3)𝑻𝟕(𝝉𝟑) 

𝜎5 = 𝑻𝟏(𝝉𝟏)𝑻𝟐(𝝉𝟐)𝑇4(𝑡3,1)𝑇3(𝑡3,2)𝑇5(𝑡3,3)𝑻𝟕(𝝉𝟑) 

𝜎6 = 𝑻𝟏(𝝉𝟏)𝑻𝟐(𝝉𝟐)𝑇3(𝑡3,1)𝑇4(𝑡3,2)𝑇5(𝑡3,3)𝑻𝟕(𝝉𝟑) 

 
where  (𝜏1, 𝜏2, 𝜏3) = (0.006, 0.31, 1.94) for 𝑇𝑅𝑂1 and (𝜏1, 𝜏2, 𝜏3) =
(0.36, 1.12, 2.78) for 𝑇𝑅𝑂2. 

The probability of each partially timed trajectory differs for 𝑇𝑅𝑂1 and 

𝑇𝑅𝑂2 but in both cases the fault probability equals 1.   

We are now interested in the estimation of the occurrence date of the 

fault. The curves in Fig. 4 and 5 represent respectively the estimation 

of the PDFs of 𝑓 occurrence dates for 𝑇𝑅𝑂1 and 𝑇𝑅𝑂2 calculated with 

Propositions 1 and 2. In order to validate the proposed method and 

consolidate our results, a Monte Carlo simulation method is used. 

Such a method estimates the PDF by a swarm of points rather than by 

a function. For this purpose, the POSPN of Fig. 3 is simulated a large 

number of times and two sets of 500 sequences that fit respectively 

𝑇𝑅𝑂1 and 𝑇𝑅𝑂2 are collected. From each set, the fault occurrence 

dates of 𝑓 are extracted (histograms in Fig 4 and 5). For small to 

medium size systems, such methods could be considered as a 

possible alternative approach. Note however that the efficiency of 

such an approach is directly related to the number of particles: a large 

number of particles is required to provide a good approximation of 

the PDF and a further study of particle filters and other Baysian 

approaches would be necessary to apply them to large systems [27]. 

One can conclude that [0𝑇𝑈, 0.3𝑇𝑈] is an interval of high probability 

for the occurrence of 𝑓 if 𝑇𝑅𝑂1 is measured (see Fig. 4) while for 

 Fig. 4. PDF of the fault occurrence date for TRO1: simulation (histogram), 

computed with Proposition 2 (curve). 

Fig. 5. PDF of the fault occurrence date for and TRO2: simulation 

(histogram), computed with Proposition 2 (curve). 
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Fig 3. The considered POSPN (unobservable places and transitions 

are represented in grey). 
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𝑇𝑅𝑂2 the interval is [0.4𝑇𝑈, 0.7𝑇𝑈] (see Fig. 5). The method 

provides accurate indications on the time interval of high probability 

to characterize when the faults have occurred. 

 

IV. CASE STUDY  

In order to show the importance of fault datation in the FDD 

process, let us consider the distribution system depicted on Fig. 6 

similar to the one studied in [26, 15]. This system is devoted to the 

sorting of goods in supply chain systems. The conveyor is divided 

into 7 zones where different operations could be considered. It 

transfers two types of parts A and B from a loading station 𝑆𝐴𝐵 (area 

𝑍1) to buffers 𝑆𝐴 (area 𝑍3) and 𝑆𝐵 (area 𝑍5). One part is delivered at 

a time. A bar code reader 𝑅 distinguishes between parts and transmits 

the information to a supervisor that directs the parts toward the 

corresponding buffer by activating two switches: 𝑠𝑤1 and 𝑠𝑤2. In 

this application, two classes of faults are considered. A fault of class 

𝑓𝑎 (respectively 𝑓𝑏) occurs when the switch 𝑠𝑤1 (respectively 𝑠𝑤2) is 

deactivated before the delivery of a part A (respectively B). The 

POSPN of Fig. 7 models the distribution system. The nominal 

behavior is represented by transitions T1 to T10 (full line), whereas the 

faulty behaviors are represented by transitions T11 and T12 (dotted 

line). The parameters of the transitions are given by  = (1 2 3 1 2 2 3 

4 3 6 0.3 0.5)T. Let us consider that the initial marking is known and 

given by MI = (10 0 0 0 0 0 0 1 0 0 1 1 0 0)T. The significance of the 

transitions and places is provided in Table 1. The sensor 

configuration is given by the labeling function ℒ(𝑇1) = 𝑒1, ℒ(𝑇2) =

𝑒2, ℒ(𝑇𝑗) = 𝜀 for 𝑗 = 3, … ,12 and the marking sensor matrix 𝐻 =

(0 1 1 1 1 1 1 0 0 0 0 0). This means that the information given by 

the reader R on the part type is known (the loading of a part A (resp. 

B) returns the label 𝑒1 (resp. 𝑒2)). In addition, thanks to the matrix 𝐻, 

an information is obtained when a part is being processed (sum of the 

markings of 𝑃2 − 𝑃7. However, no indication is given to know if the 

part was successfully delivered or not (due to a fault occurrence).         

Let us consider the timed trajectory (𝜎, 𝑀𝐼) obtained within 

[0𝑇𝑈, 10𝑇𝑈] with:  

 
𝜎 = 𝑻𝟐(𝟎. 𝟏𝟓)𝑇3(0.28)𝑇4(0.53)𝑇5(0.97)𝑇10(0.98)𝑻𝟐(𝟏. 𝟓𝟖) 

𝑇3(1.80)𝑻𝟏𝟐(𝟑. 𝟎𝟑)𝑇4(4.13)𝑇5(4.29)𝑇6(5.31)𝑇7(5.98)𝑇8(6.34) 

𝑻𝟏(𝟔. 𝟑𝟕)𝑇3(6.78)𝑇9(7.58)𝑻𝟐(𝟕. 𝟔𝟗)𝑇3(7.72)𝑇4(7.82)𝑇5(8.28) 

𝑇10(8.39)𝑻𝟐(𝟖. 𝟒𝟐)𝑇3(8.88)𝑇4(9.33)𝑇5(9.51)𝑇10(9.96) 

 

The system has performed 5 cycles (a cycle begins with a part 

loading and ends when this part is either distributed or returned to the 

loading zone due to an occurrence of a fault). The application of the 

measurement function  allows one to obtain the measurement 

trajectory given by:  

 (𝜎, 𝑀) = 𝑇𝑅𝑂 =
(0,0)𝒆𝟐(𝟎. 𝟏𝟓)(1,0.15)(0.98)(0,0.98)𝒆𝟐(𝟏. 𝟓𝟖) 

(1,1.58)(6.34)(0,6.34)𝒆𝟏(𝟔. 𝟑𝟕)(1, 6.37)(7.58)(0,7.58)𝒆𝟐(𝟕. 𝟔𝟗) 

(1, 7.69)(8.39)(0,8.39)𝒆𝟐(𝟖. 𝟒𝟐)(1,8.42)(9.96)(0,10) 

The computation of the partially timed consistent trajectories and 

their probabilities allows one to obtain the probability of the faults 

which are given by 𝑃(𝑓𝑎 , 𝑇𝑅𝑂) = 0.017 and 𝑃(𝑓𝑏 , 𝑇𝑅𝑂) = 0.980. 

The fault 𝑓𝑏  is thus diagnosed. However, the fault probability does 

not provide any information on: 

- When the fault(s) has occurred 

- In which cycle the fault(s) has occurred 

- The number of occurrences of fault 𝑓𝑏  

In fact, some consistent trajectories have the following form with 

multiple occurrences of fault 𝑓𝑏  within several measurement 

intervals:  

 

𝜎 = 𝑻𝟐(𝟎. 𝟏𝟓) … 𝑻𝟏𝟐(𝑡1) … 𝑇8(0.98)𝑻𝟐(𝟏. 𝟓𝟖) … 𝑻𝟏𝟐(𝑡2) … 
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Fig. 7. POSPN of the distribution system  

Fig. 8. Estimation of the occurrence date of fault 𝑓𝑏 in each cycle (a to 

e) and for all the cycles (f). 
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𝑇8(6.34)𝑻𝟏(𝟔. 𝟑𝟕) … 𝑻𝟐(𝟕. 𝟔𝟗) … 𝑻𝟏𝟐(𝑡3) … 𝑇8(8.39)𝑻𝟐(𝟖. 𝟒𝟐) … 

𝑻𝟏𝟐(𝑡4) … 𝑇8(9.96) 

 

In order to estimate the occurrence date of the fault 𝑓𝑏 , 

Propositions 1 and 2 are used and the results are depicted on Fig. 8. 

from which one can deduce the following information that improves 

the faults characterization and the FDD process: 

- [2𝑇𝑈, 3.5𝑇𝑈] is the interval of highest probability for the 

occurrence of the fault(s) 𝑓𝑏 . One can notice that the true fault 

date (3.03𝑇𝑈) is within [2𝑇𝑈, 3.5𝑇𝑈] 
- According to Fig. 8, only cycle 2 is affected by fault(s). 

- Due to the high probability within only one cycle and to the fact 

that, in this system, only one fault can occur within a given cycle 

because only one product is delivered at each cycle, the fault 𝑓𝑏  

has occurred only once.  

The fault datation helps also to decide which parts were impacted 

by the occurred fault (parts processed from cycle 2 in this example). 

In addition, in this example, the part concerned by the fault simply 

returns to the loading area. If one considers that, due to the fault 

occurrence, this part quits the conveyer in a bad buffer and impacts 

other operations that depend on the delivered parts then the fault 

datation eases the checking of the operations that have been done 

after the fault occurrence date. Moreover, it will facilitate the 

identification of this faulty part that could have been used in the 

continuation of the process.  
 

V. CONCLUSION AND PERSPECTIVES 

In this technical note, we evaluate the fault occurrence date in 

DESs modeled with partially observed stochastic Petri nets. The main 

contribution is the use of a timed probabilistic model to assess the 

faults occurrence date probabilities. Due to a computation effort that 

remains high for large systems, numerical complexity will be 

considered in our future studies. Also, it would be worthwhile to 

compare our fault detection method with approaches based on 

Markov processes (swarm particle and recursive Bayesian filters). 

The challenge is also to extend this work to non-Markovian dynamics 

and to consider large systems. 
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TABLE 1. Places and transitions of the SPN model 

PN element Significance 

P1 Number of parts in the loading area ( Z1) 

P2 – P7 Conveyor in area Z2 – Z7 

P8 A new part can be loaded 

P9 – P10 Switch 𝑠𝑤1 (resp. 𝑠𝑤2) is activated 

P11 – P12 Switch 𝑠𝑤1 (resp. 𝑠𝑤2) is deactivated 

P13 – P14 Output buffers BA - BB 

T1 – T2  Part A (resp. B) exits Z1  

T3 – T8 Operations in area Z2 – Z7 is over 

T9 – T10 A part is stored in buffer BA (resp. BB) 

T11 Fault 𝑓𝑎 : 𝑠𝑤1 erroneously deactivated  

T12 Fault 𝑓𝑏 : 𝑠𝑤2 erroneously deactivated 


