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Variational principles, completeness and the existence
of traps in behavioral sciences

T. Q. Bao1 · S. Cobzaş2 · A. Soubeyran3

Abstract In this paper, driven by Behavioral applications to human dynamics, we consider 
the characterization of completeness in pseudo-quasimetric spaces in term of a generalization 
of Ekeland’s variational principle in such spaces, and provide examples illustrating significant 
improvements to some previously obtained results, even in complete metric spaces. At the 
behavioral level, we show that the completeness of a space is equivalent to the existence of 
traps, rather easy to reach (in a worthwhile way), but difficult (not worthwhile to) to leave. 
We first establish new forward and backward versions of Ekeland’s variational principle for 
the class of strict-decreasingly forward (resp. backward)-lsc functions in pseudo-quasimetric 
spaces. We do not require that the space under consideration either be complete or to enjoy the 
limit uniqueness property since, in a pseudo-quasimetric space, the collections of forward-
limits and backward ones of a sequence, in general, are not singletons.

Keywords Pseudo-quasimetric · Forward-completeness · Backward-completeness · 
Variational principle · Group dynamics · Existence of trap

B T. Q. Bao
btruong@nmu.edu

S. Cobzaş
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1 Introduction

This paper, driven byBehavioral applications to humandynamics, considers themathematical
completeness problem.We provide a characterization of completeness in pseudo-quasimetric
spaces in terms of a generalization of the Ekeland theorem in such spaces. Notice that a
pseudo-quasimetric is a distance which satisfies the triangular inequality, the distance from
point “y” to point “x” can be different from the distance from “x” to “y”, the distance from a
point to itself is zero, and it is possible that the distance from a point to a different one be zero.
Our paper also provides examples illustrating significant improvements to some previously
obtained results, even in complete metric spaces. Our motivations are twofold.

On one side, in Mathematics, a big issue is the COMPLETENESS PROBLEM, that is,
to know when a space is complete. In such a case, a Cauchy sequence converges. In a
recent survey Cobzaş (2016) presented various circumstances in which fixed point results
and variational principles imply completeness. In this paper we will focus the attention on
Ekeland’s variational principle (Ekeland 1972), discovered by Ivar Ekeland in 1972. It is
one of the most useful tools in nonlinear analysis and variational analysis. It allows us to
study minimization problems in which the lower level set of the problem is not compact or,
in other words, when the Bolzano–Weierstrass theorem can not be applied. More precisely,
it asserts the existence of nearly optimal solutions to some optimization problems for the
class of functions, defined on a complete metric space being lsc, bounded below, and proper
(i.e. not identically equal to infinity). Our paper develops generalized versions of Ekeland’s
variational principle in pseudo-quasimetric spaces which are not necessarily complete.

On the other side, in Behavioral Sciences, a big issue is THE END PROBLEM, that is, to
know when and where a human dynamic, which starts from an initial position, and follows
a transition, defined as a succession of positions (which can be doings, havings or beings)
ends somewhere.

Strikingly, this End problem in Behavioral Sciences is exactly the big Completeness
problem in Mathematics. This comes from two simple remarks. In Behavioral Sciences, a
Cauchy sequence refers to a dynamic (sequence) which agglomerates, but without knowing
where, while a convergent dynamic refers to a sequence which approaches some end. The
end problem refers to three fundamental questions in Behavioral Sciences:

(1) to know when an individual behavior is predictable (stabilizes) in order to solve coordi-
nation problems between interrelated agents in game theory;

(2) to modelize habituation processes (habit formation and breaking) where agents and
organizations, progressively, perform more and more similar individual and collective
actions in similar contexts, ending in habits and routines;

(3) to know when and where human dynamics end in traps, rather easy to reach, but difficult
to leave, before being able to reach their desires.

A recent variational rationality approach (Soubeyran 2009, 2010, 2016 for a revised ver-
sion) allows us to make the connection between these two big problems—the mathematical 
Completeness problem and the behavioral End problem. This Variational Rationality (abbre-
viated VR) approach proposes a way to model human behaviors as worthwhile approach or 
avoidance dynamics (see also Sect. 5, Conclusions, in this paper). Such dynamics start from 
some undesirable initial states, follow acceptable transitions (which are defined as successions 
of worthwhile stays and changes), and make attempts to approach and reach desired ends 
(desires), or to avoid the undesirable initial states. To be more concrete, stays refer to habits, 
routines, norms, rules, exploitation phases, etc. and changes refer to exploration, search, learn-
ing, innovation, etc. In such dynamics, at each step, if motivation to change is proportionally



higher than or as high as resistance to change, it is worthwhile to change. If not, the dynamic
process ends up in some variational trap which is worthwhile to approach and reach, but not
worthwhile to leave. This new model of human behavior allowed to give a striking and sur-
prising new interpretation of Ekeland’s variational principle and of other famous variational
principles in the particular case wheremotivation to change and resistance to change are iden-
tified to advantage and inconvenience to change, experience does not matter too much, and
a pseudo-quasimetric models inconvenience to change rather than to stay as the difference
between costs to be able to change and costs to be able to stay. In this VR approach, Ekeland’s
variational principle gives sufficient conditions for the existence of variational traps. In his
formal proofs, Soubeyran (2009, 2010, 2016) considered only the case of quasimetrics (in the
sense used in the present paper, see Definition 2). Here, we extend the mathematical aspect to
pseudo-quasimetrics where inconveniences to change rather than to stay can be zero, when
costs to be able to change are equal to costs to be able to stay.Wedo evenmore. Sullivan (1981)
showed that the original Ekeland’s variational principle is equivalent to completeness of met-
ric spaces. Karapinar andRomaguera (2015) proved that their weak version of Ekeland’s vari-
ational principle is equivalent to completeness of quasimetric spaces. In this paper, we extend
their results to the case of pseudo-quasimetric spaces.At the endof the last section,we show, as
a direct application, that completeness of a pseudo-quasimetric space X (the space of actions)
is equivalent to the existence of variational traps (the VR meaning of Ekeland’s variational
principle), starting from any initial state. This is a very nice result in Behavioral Sciences: in a
pseudo-quasimetric space,where the pseudo-quasimetricmodels an inconvenience to change,
completeness of the space is equivalent to the fact that every worthwhile to change dynamic
ends in some trap. Then, in such a complete space, no worthwhile dynamic can wander.

Ekeland’s variational principle has been extended in many directions, without much justi-
fication, except for applications in Computer Science (see Aydi et al. 2015 and the references
therein) and ones in Behavioral Sciences. For vector- and set-valued versions of Ekeland’s
variational principle, see Ansari (2007), Bao et al. (2015a, b, c). Since the vector- and set-
valued versions are out of the scope of this paper, we focus our attention on the following
issues.

– Topological spaces Ekeland’s variational principles are still valid in quasimetric
spaces (Al-Homidan et al. 2008; Bao 2015; Bao et al. 2015a, b, c, 2016; Cobzaş 2011;
Karapinar and Romaguera 2015; Ume 2002) and partial-metric spaces (Aydi et al. 2015).

– Lower semicontinuity of cost functions Ekeland’s variational principle could be estab-
lished for decreasingly lsc functions (Bao 2015; Bao et al. 2015a, b, 2016; Kirk and
Saliga 2001) and nearly lsc ones (Karapinar and Romaguera 2015).

– Limit uniqueness In the original Ekeland’s variational principle this requirement is
automatically satisfied since the limit (if exists) is unique in a metric space. This fact no
longer holds true in (pseudo)-quasimetric spaces due to the lack of the symmetry axiom.
Amajority of publications in quasimetric spaces require that the space in question is com-
plete and regular (Ume 2002), complete and T1 (Cobzaş 2011), complete and Hausdorff
(Bao et al. 2015a, b, c, 2016), or enjoys a less restrictive property: every generalized-
Picard sequence has at most one forward-limit (Bao and Théra 2015, Theorem 4.5). In
Karapinar and Romaguera (2015), formulated for the first time a weak version of this
principle in complete and possibly not T1 quasimetric spaces.

The core of the present paper is to start with a hypothesis about series completeness
(see Definition 8). Roughly speaking, in terms of the VR approach of human behaviors
(see Soubeyran 2016), we suppose that if the resources spend to move, following a succes-
sion (path) of stays and changes is finite (a natural hypothesis), then this human dynamic



ends somewhere (converges). This gives a concrete meaning for the completeness assump-
tion. More precisely, a sequence {xn} in a pseudo-quasimetric space (X, q) is said to be
forward-distance-series-convergent if the forward-distance series �+∞

n=0q(xn, xn+1) < +∞,
i.e., is convergent. Then, a pseudo-quasimetric space is said to be forward-distance-series-
complete if every forward-distance-series-convergent sequence is forward-convergent. This
assumption must be related to the definition of Kasahara spaces as L-spaces endowed with
our series completeness assumption (Filip 2011, Definition 1.6.1).

Themain purpose of this paper is to formulate new forward and backward versions of Eke-
land’s variational principle in possibly neither complete nor T1 pseudo-quasimetric spaces.
They reduce to the original principle when the space in question happens to be a complete
metric space, while being able to be applied to more general settings when the existing results
could not be used. Importantly, they give characterizations of the forward (resp. backward)-
completeness of pseudo-quasimetric spaces.

The paper is organized as follows. Section 2 presents basic definitions and preliminary
results for pseudo-quasimetrics. In Sect. 3 we establish enhanced forward and backward
versions of Ekeland’s variational principle in pseudo-quasimetric spaces which may fail to
be complete. We also add some comments on applications to Behavioral Sciences.

2 Preliminaries

We present and discuss definitions of generalized distances (known also as metrics) and of
notions of closedness and completeness in topological spaces whose topologies are induced
by these distances; (see, e.g., Bao and Théra 2015; Cobzaş 2011, 2013; Kelly 1963; Reilly
and Subrahmanyam 1982; Wilson 1931a).

There are numerous ways of relaxing the axioms of a metric space, leading to various
notions of generalized metric spaces. Let us start with some types of metrics.

Definition 1 (types of metrics)

(i) A metric on a nonempty set X is a bifunction (called the distance function or simply
distance) d : X × X → R, where R is the set of real numbers, and for all x, y, z ∈ X
the following conditions are satisfied:

(d1) d(x, y) ≥ 0 (nonnegativity axiom);
(d2) d(x, y) = 0 if and only if x = y (coincidence axiom);
(d3) d(x, y) = d(y, x) (symmetry axiom);
(d4) d(x, z) ≤ d(x, y) + d(y, z) (subadditivity axiom).

The pair (X, d) is called a metric space.
(ii) A pseudo- metric on X is a bifunction d : X×X → Rwhich satisfies the axioms for a

metric, except that the coincidence axiom is replaced by the equality-implies-indistancy
condition:

(d2′) d(x, x) = 0 for all x ∈ X (but possibly d(x, y) = 0 for x �= y).

(iii) A quasimetric is defined by a bifunction that satisfies all the axioms of a metric with
the possible exception of the symmetry axiom.

(iv) A pre- metric is defined by a bifunction that satisfies conditions (d1) and (d2′). A
semi- metric is a bifunction that satisfies conditions (d1), (d2) and (d3) (i.e. the triangle
inequality is not satisfied), see Wilson (1931b).

In this paper we work on the following spaces.



Definition 2 (pseudo-quasimetrics (Kelly 1963, Definition 2.1)). A pseudo- quasimet-
ric1 on a nonempty set X is a bifunction q : X × X → R+ := [0,+∞), where for all
x, y, z ∈ X the following conditions are satisfied:

(q1) x = y 	⇒ q(x, y) = 0 (equality implies indistancy);
(q2) q(x, z) ≤ q(x, y) + q(y, z) (subadditivity, or triangle inequality).

Obviously, q satisfies the nonnegativity axiom of a metric. As always, (X, q) is called a
pseudo- quasimetric space.

If q also satisfies the condition

(q3) q(x, y) = 0 	⇒ x = y (indistancy implies equality),

then q is called a quasimetric.

Remark 1 In Cobzaş (2013) by a quasimetric one understands a bifunction q : X×X → R+
satisfying (q1), (q2) and

(q3′) q(x, y) = q(y, x) = 0 	⇒ x = y.

This is partly justified by the fact that a pseudo-quasimetric q satisfies (q3′) if and only if the
associated bifunction qs(x, y) = max{q(x, y), q(y, x)}, x, y ∈ X , is a metric on X . Notice
that (q1) + (q3′) � (d2).

Example 1 (some important pseudo-quasimetrics) Let X be a subset of R and define
q1, q2, q3 : X × X → R+ by

q1(x, y) =
{
y − x if y ≥ x
0 otherwise

, q2(x, y) =
{
y − x if y ≥ x
1 otherwise

, and

q3(x, y) =
{
a(y − x) if y ≥ x

b(x − y) otherwise
, where a, b > 0.

– All of these bifunctions are pseudo-quasimetrics.
– q2 and q3 are quasimetrics, but q1 is not since q1(2, 1) = 0.
– The distance q1 does not satisfy the reverse implication of (q1), but it satisfies (q3′), i.e.

it is a quasimetric space in the sense used in Cobzaş (2013).

Every pseudo-quasimetric space (X, q) can be considered as a topological space. For
x ∈ X and r > 0, we could define an open ball (resp. a closed ball) in X by

Bq(x, r) := {y ∈ X |q(x, y) < r}(resp. Bq [x, r ] := {y ∈ X |q(x, y) ≤ r}).
The topology τ(q) of a pseudo-quasimetric space (X, q) can be introduced by taking, for
any x ∈ X , the collection {Bq(x, r) | r > 0} as a base of the neighborhood filter of the point
x .

Following Kelly (1963), consider a pseudo-quasimetric q over a nonempty set X . The
conjugate of q, denoted by q : X × X → R+ and defined by q(x, y) = q(y, x),∀ x, y ∈ X ,
is a pseudo-quasimetric as well, generating a topology τ(q). As a space equipped with two

1 In Bao (2015), Bao et al. (2015a, b, c, 2016), Bao and Théra (2015) and the references therein, by a pseudo-
quasimetric space one understands a quasimetric space.



topologies, τ(q) and τ(q), the triple (X, q, q) is a bitopological space.2 The bifunction
qs(x, y) = max{q(x, y), q(x, y)}, x, y ∈ X, is a pseudo-metric which is a metric if and
only if q satisfies condition (q3′) from Remark 1.

Let us describe the open balls in R with respect to the pseudo-quasimetrics in Example 1.

Bq1(x, r) = (−∞, x + r), Bq1(x, r) = (x − r,+∞),

Bq2(x, r) = [x, x + r) for all r ∈ (0, 1) and (−∞, x + r) for all r ∈ [1, +∞),

Bq2(x, r) = (x − r, x] for all r ∈ (0, 1) and (x + r,+∞) for all r ∈ [1, +∞),

Bq3(x, r) = (x − br, x + ar), Bq3(x, r) = (x − ar, x + br).

Notice that the quasimetric q3 satisfies

min{a, b} · |y − x | ≤ q3(x, y) ≤ max{a, b} · |y − x | for all x, y ∈ R,

so that the topology defined by q3 agrees with the usual topology of R.
In contrast to metric spaces, in bitopological pseudo-quasimetric spaces there are two

different notions of convergence (with respect to each topology).3

Definition 3 (convergence in pseudo-quasimetric spaces, (Bao and Théra 2015, Defini-
tion 4)). Let {xn} be a sequence in a bitopological pseudo-quasimetric (X, q, q). We say
that:

(i) the sequence {xn} is forward- convergent to x∗, if it converges to x∗ with respect
to τ(q), i.e., q(x∗, xn) = q(xn, x∗) → 0.

(ii) the sequence {xn} is backward convergent to x∗, if it converges to x∗ with respect
to the topology τ(q), i.e., q(x∗, xn) → 0;

We use the following notation:

(iii)
−−→{xn} stands for the collection of all forward-limits of the sequence {xn} and thus−→{x} = {y ∈ X | q(x, y) = 0} = {x}q is the set of all forward-limits of the con-
stant sequence xn = x for all n ∈ N, where the upper index q mentions the topology
τ(q) of convergence;

(iv)
←−−{xn} stands for the collection of all backward limits of the sequence {xn} and thus←−{x} = {y ∈ X | q(y, x) = 0} =: {x}q , where the upper index q mentions the topology
τ(q) of convergence.

Due to the lack of the symmetry axiom in pseudo-quasimetric spaces, the definition of
Cauchy sequences could be generalized in many ways.

Definition 4 (Cauchy sequences in pseudo-quasimetrics (Bao and Théra 2015, Defini-
tion 5)). Let {xn} be a sequence in a pseudo-quasimetric space (X, q). We say that:

(i) the sequence {xn} is forward- Cauchy 4, if for each ε > 0 there is an integer Nε ∈ N

such that q(xn, xn+k) < ε for all n ≥ Nε and k ∈ N;

2 Kelly (1963, p. 71) “The notion of a bitopological space used in relation to semi-continuous functions 
restores sufficient symmetry to enable one to use some of the existing techniques of continuous functions.”
3 It has been also defined a sequence as being bi-convergent if it is both forward- and backward-convergent,
(i.e. if it convergent with respect to the pseudo-metric qs ).
4 Known also as left-Cauchy (Bao et al. 2015a, b, c), q-Cauchy Kelly (1963), and left K -Cauchy (Reilly and 
Subrahmanyam 1982)



(ii) the sequence {xn} is backward Cauchy 5, if for each ε > 0 there is an integer Nε ∈ N

such that q(xn+k, xn) < ε for all for all n ≥ Nε and k ∈ N;
(iii) the sequence {xn} is Cauchy 6, if it is both forward- and backward-Cauchy, i.e., for

each ε > 0 there is an integer Nε ∈ N such that q(xm, xn) < ε for all m, n ≥ Nε . This
is equivalent to the fact that it is Cauchy with respect to the associated pseudo-metric
qs .

Definition 5 (completeness in pseudo-quasimetric spaces) Let (X, q) be a pseudo-
quasimetric space. We say:

(i) the space is forward- forward- complete (resp. backward-backward-complete),
if every forward- (resp. backward-)Cauchy sequence is forward- (resp. backward-)
convergent to some forward- (resp. backward-)limit;

(ii) the space is forward- backward- complete (resp. backward-forward-complete),
if every forward- (resp. backward-)Cauchy sequence is backward- (resp. forward-)
convergent to some backward- (resp. forward-)limit;

(iii) the space is forward- complete (resp. backward- complete), if every Cauchy
sequence is forward- (resp. backward-)convergent to some forward- (resp. backward-)
limit.

With two notions of convergence and three kinds of Cauchy sequences defined in a pseudo-
quasimetric space, we could define six types of completeness. The reader is referred to
Reilly and Subrahmanyam (1982, Examples 2–3) for differences between various Cauchy
and completeness notions.

Remark 2 The notions with forward and backward used here differ from the notions of left
and right used in Cobzaş (2013). For convenience we present the equivalences between the
corresponding notions. For a sequence {xn} in a pseudo-quasimetric space (X, q):

– forward-Cauchy means left q-K -Cauchy, or equivalently, right q-K -Cauchy.
– backward Cauchy means right q-K -Cauchy or, equivalently, left q-K -Cauchy.

For the space X :

– forward-forward-complete means right q-K -complete;
– backward-backward-complete means right q-K -complete;
– backward-forward-complete means left q-K -complete;
– forward-backward-complete means left q-K -complete.

Remark 3 (on ‘left’ terminologies)
When calling the ball B(x, r) a left ball (Cobzaş 2011, 2013), it would be logic to say that

the topology τ(q) is a left topology, and a sequence {xn} converging to x∗ with respect to the
topology τ(q) is left-convergent. Observe that doing this would lead to some contradictions
between known ‘left’ concepts in the literature.

Assume, in addition, that the forward distance series is convergent, i.e.,

∞∑
n=1

q(xn, xn+1) < +∞.

It is easy to check (see, e.g., Bao and Théra 2015, Proposition 2.2) that the sequence is
forward-Cauchy, or left-Cauchy. It is natural to say that the space is left-complete if every

5 Known also as q-Cauchy (Kelly 1963), and right K -Cauchy (Reilly and Subrahmanyam 1982)
6 Known also as bi-Cauchy, or Cauchy in two topologies



left-Cauchy sequence is left-convergent. Doing so, the sequence under consideration is left-
convergent to some x∗, i.e., q(x∗, xn) → 0 as n → ∞. Unfortunately, it conflicts with
the so-called left-convergence in Bao et al. (2015a, b, c) and earlier publications mentioned
therein.

Another reason for not mentioning the topologies in the definitions of convergence
and Cauchyness is that a backward-convergent sequence is related to the topology τ(q)

( lim
n→∞ q(x∗, xn) = 0 ⇐⇒ ∀ε > 0, ∃Nε ∈ N : ∀n ≥ Nε, xn ∈ Bq(x, ε)), while

a backward-Cauchy sequence is related to the topology τ(q) ({xn} is backward-Cauchy
⇐⇒ ∀ε > 0, ∃Nε ∈ N : ∀k ∈ N, ∀n ≥ Nε, xn+k ∈ Bq(xn, ε)).

Wilson (1931a) proved that if {xn} is both forward- and backward-convergent to x∗ in
a quasimetric space (X, q), then x∗ is the only limit point of {xn} of any kind and {xn} is
Cauchy. He also showed that if {xn} has more than one forward- (backward-)limit point then
{xn} has no backward- (forward-)limit point. Notice that Wilson used the terms of u-limit
and l-limit (from ‘upper’ and ‘lower’) instead.

Theorem 1 ( (Wilson 1931a, Theorems I and II), see also (Cobzaş 2013, Proposition 1.2.4))
Let {xn} be a sequence in a pseudo-quasimetric space (X, q).

(1) If {xn} is forward-convergent to x∗ and backward-convergent to x∗, then
q(x∗, x∗) = 0.

(2) If {xn} is forward-convergent to x∗ and q(x∗, y∗) = 0, then {xn} is forward-convergent
to y∗.

(3) If a forward-Cauchy sequence {xn} has a subsequence which is forward-
(backward-)convergent to x∗ (to x∗), then {xn} is forward- (backward-)
convergent to x∗ (to x∗).

Proof For reader’s convenience we include the simple proofs.

(1) If q(xn, x∗) → 0 and q(x∗, xn) → 0, then

q(x∗, x∗) ≤ q(x∗, xn) + q(xn, x∗) → 0 as n → ∞ .

(2) If q(xn, x∗) → 0 and q(x∗, y∗) = 0, then

q(xn, y∗) ≤ q(xn, x∗) + q(x∗, y∗) = q(xn, x∗) → 0 as n → ∞ .

(3) Suppose that {xn} is a forward-Cauchy sequence having a subsequence {xnk } forward-
convergent to some x∗ ∈ X , that is limk q(xnk , x∗) = 0.

For ε > 0 let k0, n0 ∈ N be such that

q(xnk , x∗) < ε, ∀k ≥ k0, and q(xn, xm) < ε, ∀m, n with n0 ≤ n < m.

For n ≥ n0 let k ≥ k0 be such that nk > n. Then

q(xn, x∗) ≤ q(xn, xnk ) + q(xnk , x∗) < 2ε.

Suppose now the forward-Cauchy sequence {xn} has a subsequence {xnk } backward-
convergent to x∗ ∈ X , that is limk q(x∗, xnk ) = 0. For ε > 0 let n0 ∈ N be such that
q(xn, xm) < ε,∀m, n with n0 ≤ n < m and let k0 ∈ N be such that nk0 ≥ n0 and
q(x∗, xnk ) < ε, ∀k ≥ k0. Then for n≥nk0 , q(x∗, xn)≤q(x∗, xnk0 )+q(xnk0 , xn)<2ε. ��

We present now the separation axioms in topological spaces.



Definition 6 A topological space (X, τ ) is:

(i) T0 if for every pair of distinct points x, y ∈ X, at least one of them has a neighborhood
which does not contain the other;

(ii) T1 if for every pair of distinct points x, y ∈ X, there exist the neighborhoods U of x
and V of y such that y /∈ U and x /∈ V ;

(iii) T2 (or Hausdorff) if for every pair of distinct points x, y ∈ X, there exist the neigh-
borhoods U of x and V of y such that U ∩ V = ∅;

(iv) regular if for every point x ∈ X and closed set A not containing x there exist the
disjoint open sets U, V such that x ∈ U and A ⊂ V ; the space X is called T3 if it is T1
and regular;

(v) normal if for every pair of disjoint closed subsets A, B of X there exist the disjoint
open sets U, V such that A ⊂ U and B ⊂ V ; the space X is called T4 if it is T1 and
normal.

Notice that some authors include in the definition of regular and normal spaces the sepa-
ration condition T1.

Remark 4 (a) A topological space (X, τ ) is T0 if and only if x ∈ {y}τ and y ∈ {x}τ
implies x = y. One defines an order on a T0 topological space by x ≤τ y if x ∈ {y}τ .
This combination of order and topology in T0 spaces found applications in theoretical
computer science, seeGierz et al. (2003) for a comprehensive presentation andGoubault-
Larrecq (2013) for a good introduction to the area.

(b) A topological space (X, τ ) is T1 if and only if {x}τ = {x}, for all x ∈ X , i.e. the one-point
sets are closed.

We present some topological properties of pseudo-quasimetric spaces.

Theorem 2 (Cobzaş 2013). Let (X, q) be a pseudo-quasimetric space. Then, the following
are true:

(1) The ball Bq(x, r) is open in the topology τ(q) and the ball Bq [x, r ] is closed in the
topology τ(q). The ball Bq [x, r ] need not be closed in the topology τ(q).

(2) For every fixed element x ∈ X, the function q(x, ·) : (X, q) → (R, | · |) is usc with
respect to the topology τ(q) and lsc with respect to the topology τ(q).

(3) For every fixed element y ∈ X, the mapping q(·, y) : (X, q) → (R, | · |) is lsc with
respect to the topology τ(q) and usc with respect to the topology τ(q).

(4) If q is a quasimetric, then the topology τ(q) is T0, but not necessarily T17

(5) If the function q(x, ·) : (X, q) → (R, | · |) is continuous with respect to the topology
τ(q) for every x ∈ X, then the topology τ(q) is regular.

(6) If q(x, ·) is continuous with respect to the topology τ(q) for every x ∈ X, then the
topology τ(q) is semi-metrizable.

We conclude this section with an important observation clearly implying that the results
obtained in Bao (2015), Bao et al. (2015a, b, c, 2016), Bao and Théra (2015) are indeed
established for quasimetric spaces in the sense of Definition 2.

Proposition 1 Let (X, q) be a pseudo-quasimetric space.

(1) The space (X, τ (q)) is T1 if and only if q(x, y) > 0 for every pair x, y of distinct points
in X, i.e. if q is a quasimetric. In this case (X, τ (q)) is T1 as well.

7 Recall that in Cobzaş (2013) a quasimetric satisfies the condition: q(x, y) = q(y, x) = 0 implies x = y.



(2) The space (X, τ (q)) ((X, τ (q))) is T2 if and only if every sequence in X has at most
one forward- (backward-)limit.

Proof (1) Suppose that q is a quasimetric. If x, y ∈ X are distinct, then r := q(x, y) > 0
and r ′ := q(y, x) > 0. It follows that U = Bq(x, r) is a τ(q)-neighborhood of x with
y /∈ U , and V = Bq(y, r ′) is a τ(q)-neighborhood of y with x /∈ V .
Conversely, if there exists a pair x, y of distinct points with q(x, y) = 0, then y ∈ B(x, ε)
for every ε > 0, showing that the topology τ(q) is not T1. Similarly, q(y, x) = q(x, y) =
0 < ε implies x ∈ Bq(y, ε) for all ε > 0, showing that the topology τ(q) is not T1.

(2) Suppose that (X, τ (q)) is T2 and let {xn} be forward-convergent to x∗. If y∗ �= x∗, then
there exists r > 0 such that Bq(x, r) ∩ Bq(y, r) = ∅. By hypothesis, there exists n0 ∈ N

such that xn ∈ Bq(x∗, r) for all n ≥ n0, implying xn /∈ Bq(y∗, r), for all n ≥ n0, that is
{xn} is not forward-convergent to y∗.
Suppose now that (X, τ (q)) is not T2. Then there exist two points x∗ �= y∗ in X such
that Bq(x∗, 1/n) ∩ Bq(y∗, 1/n) = ∅ for all n ∈ N. Choosing an xn in this intersection,
it follows that q(xn, x∗) < 1/n and q(xn, y∗) < 1/n, for all n, which shows that the
sequence {xn} is forward-convergent to both x∗ and y∗.

��
Example 2 In a case of a pseudo-metric space (X, d) the condition d(x, y) > 0 for all distinct
x, y implies that the space X is normal, even T4. The situation is different in the quasimetric
case. We present an example of a quasimetric space which is not Hausdorff (i.e. T2).

Let X = {xn : n ∈ N} ∪ {x∗, y∗} where all the points are pairwise distinct. Define
q(u, u) = 0,∀u ∈ X, q(xn, xm) = 1, ∀m, n ∈ N, m �= n,

q(xn, x∗) = q(xn, y∗) = 1/n and q(x∗, xn) = q(y∗, xn) = 1, ∀n ∈ N,

q(x∗, y∗) = q(y∗, x∗) = 1 .

It is easy to check that q is a quasimetric. The sequence {xn } is forward-convergent to x∗ 
and to y∗, so that the topology τ(q) is not Hausdorff, but it is obviously T1, as q(u, v)  >  0 
for all u, v  ∈ X, u �= v.

Incidentally, this gives also an example of a forward-convergent sequence which is not 
forward-Cauchy.

Remark 5 A deep result in functional analysis asserts that if a topological vector space X is 
T0, then it is  T1 and regular (i.e. T3), see (Megginson 1998, Theorem 2.2.14). If X is a finite 
dimensional asymmetric locally convex (in particular, asymmetric normed) space satisfying 
T1, then it is topologically and algebraically isomorphic to Rm , wherem ∈ N is the algebraic 
dimension of X (see (Cobzaş 2013, Proposition 1.1.68)

We don’t know whether there exists or not an infinite dimensional asymmetric normed 
space which is T1 but not T2. For a characterization of Hausdorff property in asymmetric 
locally convex (in particular, in asymmetric normed) spaces, see (Cobzaş 2013, Proposition 
1.1.63).

3 Variational principles in pseudo-quasimetric spaces

Ekeland’s variational principle, first discovered by Ekeland (1972), is one of the most useful 
tools in nonlinear analysis and variational analysis. It can be used when the lower level set 
of a minimization problems is not compact. It leads to a quick proof of Caristi’s fixed point



theorem and it has been shown by Sullivan (1981) to be equivalent to the completeness of
the corresponding metric space.

Theorem 3 (Ekeland and Turnbull 1983; cf. Ekeland 1972) Let ϕ : X → R ∪ {+∞} be
an extended real-valued function on a complete metric space (X, d) which is lsc, bounded
below, and not identically equal to +∞. For any ε > 0 consider x0 ∈ domϕ satisfying
ϕ(x0) ≤ inf x∈X ϕ(x) + ε, i.e., x0 is an ε-minimal solution of ϕ. Then for each λ > 0, there
exists a point x∗ ∈ domϕ such that

(i) ϕ(x∗) ≤ ϕ(x0);
(ii) d(x0, x∗) ≤ λ;
(iii) ϕ(x) + (ε/λ)d(x∗, x) > ϕ(x∗), ∀ x ∈ X\{x∗}.

If for γ > 0 the set-valued mapping Sγ,d : X ⇒ X is defined by

Sγ,d(x) := {y ∈ X | γ d(x, y) ≤ ϕ(x) − ϕ(y)}, ∀x ∈ X , (3.1)

then the conclusions (i) and (ii) of Theorem 3 can be expressed in the form: there is x∗ ∈
Sε/λ,d(x0) such that Sε/λ,d(x∗) = {x∗}.

Recently, this principle has been extended to the class of pseudo-quasimetric spaces in
which the symmetry axiom of the metric d is dropped and the coincidence one is weaken to
the equality-implies-indistancy condition, i.e., d(x, x) = 0 for all x ∈ X . It is important to
emphasize that under the hypothesismade in amajority of extensions, the pseudo-quasimetric
space is indeed a quasimetric one; see Proposition 1. We pay our attention to the following
developments:

– In Ume (2002, Theorem 2.9), it is assumed that the space (X, q) is a forward-forward-
complete8 quasimetric space and that the function q(x, ·) : X → R is lsc. Note that it
is not clear in the paper whether the function is lsc with respect to the topology τ(q) or
the topology τ(q). As it is remarked in Cobzaş (2011, Remark 1.4), if q(x, ·) is lsc with
respect to the topology τ(q), then the topology τ(q) is regular.

– In Cobzaş (2011, Theorem 2.4), the space (X, q) in question is assumed to be a
T1 quasimetric9 space being either forward-forward-complete or backward-backward-
complete10. Karapinar and Romaguera (2015) further extended Cobzaş’ result to a weak
formof Ekeland’s variational principle in (not necessarily T1) pseudo-quasimetric spaces,
yielding a characterization of backward-backward completeness of these spaces.

– InBao (2015),Bao et al. (2015a, b, c)workedwith forward-forward-complete quasimetric
spaces satisfying the forward Hausdorff property.11

Remark 6 Unfortunately, these results can not be applied to the pseudo-quasimetric space
(R, q1), where q1 is defined in Example 1, since the topology induced by q1 is not T1 and since
it is not forward-forward-complete. The incompleteness of this space is obvious since the
forward-Cauchy sequence {xn} with xn = −n has no forward-limit. It is a forward-Cauchy
sequence since q(xn, xn+k) = q(−n,−n − k) = 0 for all n, k ∈ N. Fix an arbitrary number

8 Left-complete
9 A quasimetric in the sense of Cobzaş (2011), Cobzaş is a pseuso-quasimetric satisfying q(x, y) = q(y, x) =
0 	⇒ x = y.
10 There are two versions of Ekeland’s variational principle with respect to each kind of completeness.
11 A quasimetric space enjoys the forward Hausdorff property, i.e. a sequence being forward-convergent has
a unique forward-limit.



x∗ ∈ R, then x∗ > xn for all sufficiently large n ∈ N, and thus q(xn, x∗) = x∗ + n → +∞
as n → ∞. Since x∗ was arbitrary, the sequence {xn} has no forward-limit.

In fact the following result holds in (R, q1). For a sequence {xn} in R

−−→{xn} =

⎧⎪⎨
⎪⎩

(−∞, a] if a ∈ R,

R if a = +∞,

∅ if a = −∞,

where
−−→{xn} denotes the set of the forward-limits and a = lim infn→∞ xn .

The following examples partly motivate us to accomplish a study of Ekeland’s variational
principles in (not necessarily T1) pseudo-quasimetric spaces.

Example 3 Consider a function ϕ : (R, q1) → (R, | · |) defined by ϕ(x) = ex . Obviously,
it is bounded from below by 0 and S1,q1(x) = (−∞, x] for all x ∈ X , where S1,q1 is
defined in (3.1). Therefore, there is no element x∗ ∈ R such that S1,q1(x∗) = {x∗} and the
conclusion of Ekeland’s variational principle does not hold true for this function ϕ in the
pseudo-quasimetric space (R, q1).

Example 4 Consider a function ϕ : ([−1, 1], q1) → (R, | · |) defined by ϕ(x) = ex . Obvi-
ously, it is bounded from below by 0 and S1,q1(x) = [−1, x] for all x ∈ [−1, 1]. Therefore,
x∗ = −1 satisfies the conclusion of Ekeland’s variational principle for any starting point
x0 ∈ [−1, 1].
Example 5 Consider a function ϕ : (R, q1) → (R, | · |) defined by ϕ(x) = ex . It is easy to
check that Sϕ,1(1) = [0, 1] and Sϕ,1(0) = {0} showing that Ekeland’s variational principle
holds with the desired point x∗ = 0.

A question arises: under what requirements does Ekeland’s variational principle hold in
pseudo-quasimetric spaces? This question is answered in this section. We also prove that our
new versions are characterizations of completeness of pseudo-quasimetric spaces.

Proposition 2 Let (X, q) be a pseudo-quasimetric space and ϕ : X → R ∪ {+∞} be a
proper function (i.e., with domϕ �= ∅). Given λ > 0, associate with ϕ and q the set-valued
mapping Sλ,q : X ⇒ X defined by

Sλ,q(x) = {y ∈ X | ϕ(y) + λq(x, y) ≤ ϕ(x)}, ∀ x ∈ X. (3.2)

If x ∈ X\domϕ (i.e. if ϕ(x) = +∞), then Sλ,q(x) = X. For x ∈ domϕ, Sλ,q can be written
as

Sλ,q(x) = {y ∈ X | λq(x, y) ≤ ϕ(x) − ϕ(y)}, ∀ x ∈ X. (3.3)

Then Sλ,q enjoys the following properties:

(1) x ∈ Sλ,q(x) for all x ∈ domϕ;
(2) if x ∈ domϕ and y ∈ Sλ,q(x), then ϕ(y) ≤ ϕ(x) and Sλ,q(y) ⊂ Sλ,q(x).

Proof The relation from (1) follows by the definition of Sλ,q . (2) Since y ∈ Sλ,q(x) ⇐⇒
λq(x, y) ≤ ϕ(x) − ϕ(y), it follows ϕ(y) ≤ ϕ(x) for y ∈ Sλ,q(x). Also, z ∈ Sλ,q(y) ⇐⇒
λq(y, z) ≤ ϕ(y) − ϕ(z) and

��
λq(x, z) ≤ λq(x, y) + λq(y, z) ≤ ϕ(x) − ϕ(y) + ϕ(y) − ϕ(z) = ϕ(x) − ϕ(z) ,  

implies z ∈ Sλ,q (x), that is  Sλ,q (y) ⊂ Sλ,q (x).



Remark 7 Replacing the pseudo-quasimetric q by the equivalent one λ · q, we can suppose
in all proofs that λ = 1, that is we can work with the set-valued mapping S given by

S(x) := S1,q(x) = {y ∈ X | q(x, y) ≤ ϕ(x) − ϕ(y)} .

Definition 7 (generalized-Picard sequences, Dancs et al. 1983, see also Bao and Théra
2015). Let X be a nonempty set, S : X ⇒ X a set-valued mapping, and ϕ : X → R ∪ {+∞}
a function. We say that a sequence {xn} in X is a generalized Picard sequence12 of S, if
xn+1 ∈ S(xn) for all n ∈ N. It is said to be strictly ϕ-decreasing if the sequence {ϕ(xn)}
is strictly decreasing, i.e., ϕ(xn+1) < ϕ(xn) for all n ∈ N.

Definition 8 (series completeness) A sequence {xn} in a pseudo-quasimetric space (X, q)

is said to be forward- distance- series- convergent if the forward-distance series∑∞
n=1 q(xn, xn+1) is convergent. A pseudo-quasimetric space is said to be forward-

distance- series- complete if every forward-distance-series-convergent sequence is
forward-convergent.

Proposition 3 Let (X, q) be a pseudo-quasimetric space. The following hold:

(1) Every forward-distance-series-convergent sequence {xn} in X is forward-Cauchy.
(2) The pseudo-quasimetric space (X, q) is forward-forward-complete if and only if it is

forward-distance-series-complete.

Proof (1) Consider an arbitrary forward-distance-series-convergent sequence {xn} in X , i.e.,∑∞
n=1 q(xn, xn+1) < ∞. Then, for every ε > 0, there is Nε ∈ N such that for allm ≥ Nε

and for all k ∈ N we have

q(xm, xm+k) ≤
m+k−1∑
n=m

q(xn, xn+1) ≤
∞∑

n=m

q(xn, xn+1) < ε,

i.e., {xn} is a forward-Cauchy sequence in (X, q).
(2) Suppose that the space (X, q) is forward-forward-complete. If the sequence {xn} satisfies

the condition
∑∞

n=1 q(xn, xn+1) < ∞, then, by (1), it is forward-Cauchy, so it is forward-
convergent to some x∗ ∈ X .
Suppose now that the space (X, q) is forward-distance-series-complete and let {xn} be

forward-Cauchy. Let n1 ∈ N be such that

q(xn, xm) <
1

2
, ∀m, n ∈ N : n1 ≤ n < m.

Suppose that n1 < n2 < · · · < nk are such that

q(xn, xm) <
1

2i
, ∀m, n ∈ N : ni ≤ n < m , 1 ≤ i ≤ k.

It follows q(xni , xni+1) < 1
2i

for 1 ≤ i ≤ k − 1. Let n′
k+1 be such that

q(xn, xm) <
1

2k+1 , ∀m, n ∈ N : n′
k+1 ≤ n < m . (3.4)

12 ThePicard–Lindelöf theorem,which shows that ordinary differential equations have solutions, is essentially
an application of the Banach fixed point theorem to a special sequence of functions which forms a fixed point
iteration, constructing the solution to the equation. Solving an ODE in this way is called Picard iteration,
Picard’s method, or the Picard iterative process.



Taking nk+1 := 1 + max{nk, n′
k+1} > nk , it follows q(xnk , xnk+1) < 1

2k
. Also (3.4) holds

with nk+1 instead of n′
k+1.

Continuing in this manner, we find the numbers n1 < n2 < . . . such that q(xnk , xnk+1) <

1/2k for all k ∈ N, implying
∑∞

k=1 q(xnk , xnk+1) < 1 < ∞. By hypothesis, the subsequence
{xnk } is forward- convergent to some x∗ ∈ X . But then, by Theorem 1, the sequence {xn} is
forward-convergent to x∗. ��
Remark 8 The construction from the last part of the proof is standard in metric spaces. In
the case of quasimetric spaces, we have to take into account the asymmetry of the metric.

The following proposition contains some properties of generalized Picard sequences. We
use the notation N = {1, 2, . . . } and N0 := N ∪ {0}.
Proposition 4 Let (X, q) be a pseudo-quasimetric space, ϕ : X → R ∪ {+∞} and {xn}∞n=0
a generalized Picard sequence of Sλ,q , with x0 ∈ domϕ . Then, the following hold:

(1) The sequence {ϕ(xn)}∞n=0 is decreasing, i.e., ϕ(xn+1) ≤ ϕ(xn), ∀n ∈ N0.
(2) If ϕ is bounded from below on Sλ,q(x0), then the sequence {xn} is also forward-distance-

series-convergent.

Proof Put S(x) = S1,q(x). (1) The inequalities

q(xk, xk+1) ≤ ϕ(xk) − ϕ(xk+1) ( ⇐⇒ xk+1 ∈ S(xk))

imply ϕ(xk+1) ≤ ϕ(xk), ∀k ∈ N0. (2) By Proposition 2, S(xn+1) ⊂ S(xn) ⊂ S(x0), so that
inf ϕ(S(x0)) ≤ inf ϕ(S(xn)) for all n ∈ N, and the above inequalities yield by summation

n∑
k=0

q(xk, xk+1) ≤ ϕ(x0) − ϕ(xn+1) ≤ ϕ(x0) − inf ϕ(S(xn+1)) ≤ ϕ(x0) − inf ϕ(S(x0)),

showing that the sequence {xn}n∈N0 is forward-distance-series-convergent, provided ϕ is
bounded below on S(x0). ��

We can state now the first version of Ekeland’s variational principle.

Theorem 4 (a forward version of Ekeland’s variational principle) Let (X, q) be a pseudo-
quasimetric space and ϕ : X → R ∪ {+∞} be a function. Given λ > 0. Suppose that there
exists x0 ∈ dom (ϕ) such that

(C1) inf ϕ
(
Sλ,q(x0)

)
> −∞ (i.e. ϕ is bounded from below on Sλ,q(x0));

(C2) for every sequence {xn}∞n=0 which is forward-distance-series-convergent, generalized
Picard with respect to Sλ,q (starting with x0), and strictly ϕ-decreasing, there exists
y ∈ X such that Sλ,q(y) ⊂ ⋂∞

n=0 Sλ,q(xn).

Then there exists a forward-distance-series-convergent sequence {xn}n∈N0 which is general-
ized Picard with respect to Sλ,q and forward-convergent to some x∗ ∈ X such that for every
y∗ ∈ Sλ,q(x∗) the following conditions hold:

(i) ϕ(y∗) + λq(x0, y∗) ≤ ϕ(x0) ;
(ii) ϕ(x) + λq(y∗, x) > ϕ(y∗), ∀ x ∈ X � Sλ,q(y∗) ;
(iii) q(x∗, y∗) = 0, Sλ,q(y∗) ⊂ {y∗}q ,

ϕ(x) = ϕ(y∗) = ϕ(x∗), ∀x ∈ Sλ,q(y∗), and

ϕ(x) > ϕ(y∗), ∀x ∈ {y∗}q � Sλ,q(y∗).

(3.5)



Proof Replacing, if necessary, q by λq, we can suppose λ = 1. Put also S(x) = S1,q(x), x ∈
X .
Case I. We shall define inductively a forward-distance-series-convergent generalized Picard
sequence which will satisfy all the requirements of the theorem.

Start with x0 and suppose that α0 := inf ϕ(S(x0)) < ϕ(x0). Choose x1 ∈ S(x0) such that

α0 ≤ ϕ(x1) < α0 + 1

2
(ϕ(x0) − α0) = 1

2
(α0 + ϕ(x0)) < ϕ(x0) .

Suppose that we have found x0, x1, . . . , xn satisfying

xk+1 ∈ S(xk),

αk ≤ ϕ(xk+1) < αk + 1

2
(ϕ(xk) − αk) = 1

2
(αk + ϕ(xk)) < ϕ(xk) ,

for k = 0, 1, . . . , n − 1, and ϕ(xk) > αk := inf ϕ(S(xk)), k = 0, 1, . . . , n.

Pick then xn+1 ∈ S(xn) such that

αn ≤ ϕ(xn+1) < αn + 1

2
(ϕ(xn) − αn) = 1

2
(αn + ϕ(xn)) < ϕ(xn) . (3.6)

Supposing thatwecando indefinitely this procedure,wefindageneralizedPicard sequence
xn+1 ∈ S(xn) satisfying (3.6) for all n ∈ N0. Let us show that the conditions from (3.5) are
satisfied by this sequence.

Since the sequence {ϕ(xn)} is strictly decreasing and bounded from below (by condition
(C1)), there exists α∗ := limn→∞ ϕ(xn) = infn→∞ ϕ(xn).

By Proposition 2, xn+1 ∈ S(xn) implies S(xn+1) ⊂ S(xn) ⊂ S(x0), so that αn+1 ≥ αn ,
implying the existence of α = limn→∞ αn . The inequalities

ϕ(xn+1) <
1

2
(αn + ϕ(xn)) < ϕ(xn)

yield for n → ∞, α∗ ≤ 1
2 (α + α∗) ≤ α∗, implying α = α∗. Consequently

lim
n→∞ αn = lim

n→∞ ϕ(xn) = α∗ .

Since ϕ is bounded below on S(x0), Proposition 4 implies that the generalized Picard
sequence {xn} is forward-distance-series-convergent. Since the sequence {ϕ(xn)} is also
strictly decreasing, condition (C2) implies the existence of a point x∗ ∈ X such that

S(x∗) ⊂
∞⋂
n=0

S(xn) .

Since x∗ ∈ S(x∗) ⊂ S(xn), it follows that, for all n ∈ N0,

0 ≤ q(xn, x∗) ≤ ϕ(xn) − ϕ(x∗) . (3.7)

Consequently,

αn ≤ ϕ(x∗) ≤ ϕ(xn), ∀n ∈ N0,

yielding for n → ∞, ϕ(x∗) = α∗. But then, the inequalities (3.7) imply limn→∞ q(xn, x∗) =
0, that is the sequence {xn} is forward-convergent to x∗.

Let y∗ ∈ S(x∗). Condition (i) is equivalent to y∗ ∈ S(x0), which is true because y∗ ∈
S(x∗) ⊂ S(x0). Condition (ii) follows from the definition of the set S(y∗). Let us show that
the conditions from (iii) are also satisfied.



The relations y∗ ∈ S(x∗) ⊂ S(xn) imply αn ≤ ϕ(y∗) ≤ ϕ(x∗) = α∗, ∀n ∈ N0. Letting
n → ∞, one obtains ϕ(y∗) = α∗ = ϕ(x∗). Also

y∗ ∈ S(x∗) ⇐⇒ 0 ≤ q(x∗, y∗) ≤ ϕ(x∗) − ϕ(y∗) = 0 ,

so that q(x∗, y∗) = 0.
If x ∈ S(y∗) ⊂ S(x∗), then, as above, αn ≤ ϕ(x) ≤ ϕ(x∗) = α∗, ∀n ∈ N0 , yields for

n → ∞, ϕ(x) = ϕ(x∗) = ϕ(y∗). The inequality 0 ≤ q(y∗, x) ≤ ϕ(y∗)−ϕ(x) = 0 implies

q(y∗, x) = 0, that is x ∈ {y∗}q .
If x ∈ {y∗}q�Sλ,q(y∗), then q(y∗, x) = 0 and, by (ii),ϕ(y∗) < ϕ(x)+λq(y∗, x) = ϕ(x) .

Case II. Suppose that, for some n0 ∈ N0, ϕ(xn0) = αn0 = inf ϕ(S(xn0)). Then take xn0+1 =
xn0 and, by induction, xn0+k = xn0 for all k ∈ N.

Then the sequence {xn} is forward-distance-series-convergent with
∞∑
k=0

q(xk, xk+1) =
n0−1∑
k=0

q(xk, xk+1) ,

and forward-convergent to xn0 . Also, for x ∈ S(xn0), ϕ(x) ≥ αn0 = ϕ(xn0), so that the
inequalities

0 ≤ q(xn0 , x) ≤ ϕ(xn0) − ϕ(x) ≤ 0 ,

imply q(xn0 , x) = 0 and ϕ(xn0) = ϕ(x). It follows also that x ∈ {xn0}q , that is S(xn0) ⊂
{xn0}q .

These show that condition (iii) is satisfied. The validity of conditions (i) and (ii) follows
as in Case I. ��
Remark 9 Conditions (ii) and (iii) from Theorem 4 imply

(ii′) ϕ(y∗) < ϕ(x) + λρ(y∗, x), ∀x ∈ X � {y∗}q .
(iii′) ϕ(y∗) ≤ ϕ(x), ∀x ∈ {y∗}q .

Similar conditions appear in Karapinar and Romaguera (2015, Theorem 2).

Corollary 1 (a simple version in pseudo-quasimetric spaces) Assume that all the hypotheses
in Theorem 4 hold. Assume in addition that

(C3) (forward-limit uniqueness) any generalized-Picard sequence {xn} of Sλ,q , being strictly
ϕ-decreasing and forward-distance-series-convergent, has at most one forward-limit.

Then, there is x∗ ∈ Sλ,q(x0) such that Sλ,q(x∗) = {x∗}, conditions which are respectively
equivalent to

(i) ϕ(x∗) + λq(x0, x∗) ≤ ϕ(x0);
(ii) ϕ(x) + λq(x∗, x) > ϕ(x∗), ∀ x �= x∗.

Proof It is straightforward from Theorem 4. ��
Employing Theorem 4 in the context of the pseudo-quasimetric space (X, q), where  

q(x, y) = q(y, x), x, y ∈ X , we obtain also a backward version of Ekeland’s variational 
principle.



Corollary 2 (a backward version of Ekeland’s variational principle) Let (X, q) be a pseudo-
quasimetric space, and ϕ : X → R ∪ {+∞} a proper extended-real-valued function. Given
x0 ∈ domϕ and λ > 0, consider the set-valued mapping Sλ,q : X ⇒ X defined by

Sλ,q(x) := {y ∈ X | ϕ(y) + λq(y, x) ≤ ϕ(x)}, ∀x ∈ X.

Impose the boundedness from below condition (C1) from Theorem 4 and the backward non-
empty intersection condition

(C2B) For any generalized-Picard sequence {xn}∞n=0 of Sλ,q , being strictly ϕ-decreasing
and backward-distance-series-convergent (i.e.

∑∞
n=0 q(xn+1, xn) < ∞), there exists

y ∈ X such that Sλ,q(y) ⊂ Sλ,q(xn) for all n ∈ N0.

Then, there is x∗ ∈ Sλ,q(x0) such that for every y∗ ∈ Sλ,q(x∗) one has

(i) ϕ(y∗) + λq(y∗, x0) ≤ ϕ(x0);
(ii) ϕ(x) + λq(x, y∗) > ϕ(y∗), ∀ x ∈ X\{y∗}q :
(iii) q(x∗, y∗) = 0, Sλ,q(y∗) ⊂ {y∗}q ,

ϕ(x) = ϕ(y∗) = ϕ(x∗), ∀x ∈ Sλ,q(y∗), and

ϕ(x) > ϕ(y∗), ∀x ∈ {y∗}q � Sλ,q(y∗).

where {y∗}q = {u ∈ X | q(u, y∗) = 0}.
Proof It follows from Theorem 4 by using the pseudo-quasimetric space (X, q) instead of
(X, q). ��

Let us revisit Examples 3–5.

Example 6 (Examples 3–5 (revisited)).

– Since Condition (C2) in Example 3 does not hold, both Theorem 4 and its Corollary 1 are
not applicable. Precisely, we haveϕ(x) = ex , S1,q1(x) = (−∞, x], {xn}with xn = −n is
a strict-ϕ-decreasingly forward-distance-series-convergent generalized-Picard sequence
of S1,q1 , but for any number y ∈ R one has

S1,q1(y) = (−∞, y] �⊂ S1,q1(xn) = (−∞,−n] whenever − n < y

clearly verifying that the nonempty intersection condition (C2) is not fulfilled.
– In Example 4, it is easy to check the validity of the bounded condition (C1) and the

nonempty intersection condition (C2)with y = −1 for any strict-ϕ-decreasingly forward-
distance-series-convergent generalized-Picard sequence of Sλ,q1 .

Take λ = 2 and x0 = 1. Then, the sequence xn ≡ x∗ for all n ∈ N, where x∗ and 1 are two
distinct solutions of the equation ex = 2(x − 1) + e, satisfies both the assertions (i) and (ii)
in Theorem 4 which, respectively, reduce to

(i) ex∗ + 2q1(1, x∗) = 21;
(ii) ϕ(x) + 2q1(x∗, x) > ϕ(x∗), ∀ x ∈ [−1, 1]\−−→{xn} = (x∗, 1].
Note that excluding all the forward-limits in (ii) is essential since for any x < x∗, one has
ϕ(x) + 2q1(x∗, x) = ϕ(x) < ϕ(x∗), i.e., (ii) is not valid.

Take λ = 1 and x0 = 0. Then, the desired point of Theorem 4 is then x∗ = 0.



– In Example 5, it is easy to check the validity of condition (C2). For any strict-ϕ-
decreasingly forward-distance-series-convergent generalized-Picard sequence {xn} in R,
the sequence {xn} is a Cauchy sequence in the complete metric space (R, | · |). Therefore,
the classical Ekeland’s variational principle applied to the closed set {xn} ∪ {x∗} ensures
the existence of some element x∗ satisfying condition (C2).

Next, we will provide an efficient sufficient condition for the nonempty intersection con-
dition (C2) which is less restrictive than lower semicontinuity.

Definition 9 (strict-decreasingly forward-lsc functions) Let (X, q) be a pseudo-quasimetric
space and ϕ : X → R ∪ {+∞} be an extended real-valued function on X .

(i) The function ϕ is said to be strict- decreasingly forward- lower- semicon-
tinuous, if for every forward-convergent sequence {xn} such that {ϕ(xn)} is strictly
decreasing, one has

ϕ(y∗) ≤ lim
n→∞ ϕ(xn), ∀ y∗ ∈ −−→{xn},

where
−−→{xn} = {y∗ ∈ X | lim

n→∞ q(xn, y∗) = 0} is the collection of forward-limits of the

sequence {xn}.
(ii) A related notion is that of decreasingly forward- lsc function considered by

Kirk and Saliga (2001) (called by them lower-semicontinuity from above) meaning that
ϕ(x∗) ≤ limn→∞ ϕ(xn) for every sequence {xn} forward-convergent to x∗ and such
that ϕ(xn+1) ≤ ϕ(xn),∀n ∈ N.

(iii) Following Karapinar and Romaguera (2015) we call the function ϕ forward-
nearly- lsc if, whenever a sequence {xn} of distinct points in X is forward-convergent
to a forward-limit x∗, then ϕ(x∗) ≤ lim inf

n→∞ ϕ(xn).

Similarly, we could define the concepts of strict-decreasing backward-lower-semicontinuity,
of decreasing backward-lower-semicontinuity, and of backward-near-lower-semicontinuity.

It is worth mentioning that the class of strict-decreasingly forward-lower-semicontinuous
functions is broader than the union of that of the decreasingly forward-lsc functions and
that of the nearly lsc functions. Since the strict-ϕ-decreasing requirement of the sequence
{xn} implies that xn �= xm for all n �= m, every nearly lsc function is strict-ϕ-decreasingly
forward-lsc.

Let us provide some examples with functions satisfying these conditions.

Example 7 (decreasingly forward-lsc, strict-decreasingly forward-lsc and lsc functions)

– Consider the functions ϕ, ϕ1 : (R, | · |) → (R, | · |) given by

ϕ(x) :=
{
x if x ≥ 0

−1 if x < 0
and ϕ1(x) :=

{
−x if x > 0

1 if x ≤ 0 .

Then ϕ is strict-decreasingly forward13-lsc at 0, but not decreasingly lsc (and so not lsc)
at 0, since the sequence xn = −1/n, n ∈ N, is convergent to 0 and ϕ(xn) = −1 for
all n ∈ N, so that limn→∞ ϕ(xn) = −1 < 0 = ϕ(0). The function ϕ1 is decreasingly
forward-lsc at 0, but not lsc. Indeed, there are no sequences xn → 0 with {ϕ1(xn)} strictly
decreasing. If xn → 0 and ϕ1(xn+1) ≤ ϕ1(xn) for all n, then ϕ1(xn) = 1 for sufficiently
large n, so that limn→∞ ϕ1(xn) = 1 = ϕ(0). The function ϕ1 is not lsc at 0 because
limx↘0 ϕ1(x) = 0 < 1 = ϕ1(0).

13 The space in question is a metric space and thus there is no difference between two topologies.



– The function ϕ(x) = x is not strict-decreasingly forward-lsc in the quasimetric space
([0, 1], q4)14, where q4 is defined by

q4(x, y) =

⎧⎪⎨
⎪⎩
x − y if x ≥ y;
1 + x − y if x < y but (x, y) �= (0, 1);
1 if (x, y) = (0, 1).

In this space, the strict-ϕ-decreasingly forward-Cauchy sequence {xn} with xn = 1
n has

two forward-limits x∗ = 0 and y∗ = 1. Obviously,

lim inf
n→∞ ϕ(xn) = lim

n→∞
1

n
= 0 = ϕ(0) = ϕ(x∗) �= ϕ(1) = ϕ(y∗).

This proves that ϕ is not strict-decreasingly lsc in (X, q4). Incidentally, this furnishes
another example of a quasimetric space (hence T1) where the uniqueness condition for
forward-limits does not hold (see Example 2). It is easy to check that the sequence
xn = 1/n is also forward-Cauchy.

– The everywhere discontinuous function ϕ(x) = 0 for x ∈ Q and ϕ(x) = 1 for x ∈ R\Q,
defined on (R, | · |), is strict-decreasingly lsc because there are no strictly ϕ-decreasing
sequences. The function ϕ is not lsc at every point x ∈ R\Q, because ϕ(x) = 1 > 0 =
lim infu→x ϕ(u). Also, it is not upper-semicontinuous at every x ∈ Q.

We shall present now some completeness conditions guaranteeing the validity of condition
(C2) from Theorem 4. Consider also the condition

(C2′) for every sequence {xn}∞n=0, generalized Picard with respect to Sλ,q , there exists
y ∈ X such that Sλ,q(y) ⊂ ⋂∞

n=0 Sλ,q(xn),

where Sλ,q(x) is defined by (3.2).
By Proposition 3, (C2′) ⇒ (C2).

Lemma 1 Let (X, q) be a pseudo-quasimetric space, ϕ : X → R∪{+∞} a proper function,
x0 ∈ domϕ, and {xn}∞n=0 a generalized Picard sequence of Sλ,q forward-convergent to some
x∗.

(1) If the function ϕ is decreasingly forward-lsc on domϕ then

x∗ ∈
∞⋂
n=0

Sλ,q(xn) . (3.8)

By Proposition 2 this implies Sλ,q(x∗) ⊂ ⋂∞
n=0 Sλ,q(xn).

(2) If the function ϕ is strict-decreasingly forward-lsc on domϕ, then (3.8) holds if, in
addition, the sequence {xn} is strictly ϕ-decreasing.

Proof Work again with the sets S(x) = S1,q(x) (as in the proof of Theorem 4).
Since

xk+1 ∈ S(xk) ⇐⇒ q(xk, xk+1) ≤ ϕ(xk) − ϕ(xk+1),

it follows that the sequence {ϕ(xn)}∞n=0 is decreasing and

q(xn, xn+k) ≤ ϕ(xn) − ϕ(xn+k)

14 The conjugate quasimetric of the one studied in Lin et al. (2011, Example 3.16).



so that

q(xn, x∗) ≤ q(xn, xn+k) + q(xn+k, x∗) ≤ ϕ(xn) − ϕ(xn+k) + q(xn+k, x∗), ∀n, k ∈ N0.

Letting k → ∞ and taking into account that ϕ(x∗) ≤ limk→∞ ϕ(xn+k) and
limk→∞ q(xn+k, x∗) = 0, one obtains

q(xn, x∗) ≤ ϕ(xn) − ϕ(x∗) ⇐⇒ x∗ ∈ S(xn), ∀n ∈ N0.

The same proof works in the case that the function ϕ is strict-decreasingly forward-lsc. ��

Proposition 5 (sufficient conditions for (C2) and (C2′)) Let (X, q) be a pseudo-quasimetric
space and ϕ : X → R ∪ {+∞} a proper function.

(1) If every forward-distance-series-convergent and strictly ϕ-decreasing sequence in the
space (X, q) is forward-convergent and the function ϕ is strict-decreasingly forward-lsc
on domϕ, then condition (C2) is satisfied.

(2) If the space (X, q) is forward-distance-series-complete and the functionϕ is decreasingly
forward-lsc on domϕ and bounded from below, then condition (C2′) is satisfied.

Proof Let x0 ∈ domϕ and {xn}∞n=0 a generalized Picard sequence with respect to Sλ,q .

(1) If the sequence {xn} is forward-distance-series-convergent and strictly ϕ-decreasing,
then, by the completeness hypothesis, it has a forward-limit x∗. By Lemma 1 it follows
Sλ,q(x∗) ⊂ ⋂∞

n=0 Sλ,q(xn), i.e. condition (C2) is satisfied.
(2) The generalized Picard sequence {xn} is ϕ-decreasing, so that, by Proposition 4, it is

forward-distance-series-convergent. By hypothesis it has a forward-limit x∗. We can
apply again Lemma 1 to conclude that Sλ,q(x∗) ⊂ ⋂∞

n=0 Sλ,q(xn), i.e. condition (C2′)
is satisfied.

��

Corollary 3 Let (X, q) be a pseudo-quasimetric space and ϕ : X → R ∪ {+∞} a proper
extended-real-valued function. Assume that every forward-distance-series-convergent and
strictly ϕ-decreasing sequence in the space (X, q) is forward-convergent, the function ϕ is
proper, bounded from below, and strict-decreasingly forward-lsc. Then, for any x0 ∈ domϕ

and λ > 0, there is x∗ ∈ Sλ,q(x0) such that for every y∗ ∈ Sλ,q(x∗), one has

(i) ϕ(y∗) + λq(x0, y∗) ≤ ϕ(x0);
(ii) ϕ(x) + λq(y∗, x) > ϕ(y∗),∀x ∈ X\{y∗}q ;
(iii) q(x∗, y∗) = 0, Sλ,q(y∗) ⊂ {y∗}q ,

ϕ(x) = ϕ(y∗) = ϕ(x∗), ∀x ∈ Sλ,q(y∗), and

ϕ(x) > ϕ(y∗), ∀x ∈ {y∗}q � Sλ,q(y∗).

Assume, in addition, that the uniqueness condition (C3) from Corollary 1 holds. Then, for 
any x0 ∈ dom ϕ and λ >  0, there  is  x∗ ∈ X that satisfies conditions (i) and (ii) of the same 
corollary.

Proof By Proposition 5, condition (C2) is satisfied. As the function ϕ is bounded from below, 
we can apply Theorem 4 to conclude. ��



Remark 10 The forward-limit uniqueness of strictly ϕ-decreasing sequences allows us to
use the pseudo-quasimetric versions of Ekeland’s variational principle when the space is not
forward-complete; for example, the space (R, q1), where q1(x, y) = y − x if x ≤ y and
q1(x, y) = 0 otherwise (see Example 1). Consider the sequence xn = −n for all n ∈ N.
Then q1(xn, xn+k) = 0 for all n, k ∈ N, so that {xn} is forward-Cauchy. However, this
sequence has no forward-limit. Given x∗ ∈ R, q1(xn, x∗) = x∗ + n for all n > x∗ and thus
limn→∞ q1(xn, x∗) = +∞. This proves that x∗ is not a forward-limit of {xn}. Since x∗ was
arbitrary, the sequence has no forward-limit.

Remark 11 (a) Corollary 3 is more general than both Karapinar and Romaguera (2015,
Theorem 2(3)) and Bao et al. (2015b, Corollary 3.3).

(b) Proceeding in a similar way, the backward nonempty intersection condition (C2B) is
fulfilled provided that the cost function is strict-decreasingly backward-lsc. Thus, we
could formulate a backward version of Corollary 3.

(c) The nonempty intersection condition (C2) is similar to the one used in Bao et al. (2015,
Theorem 4.1). Assume that (X, q) is a complete metric space, condition (C2) reduces to

(C2′′) for any strict-ϕ-decreasingly forward-Cauchy generalized-Picard sequence {xn}, one
has Sλ,q(y∗) ⊂ Sλ,q(xn) for all n ∈ N, where y∗ is the unique limit of the sequence
{xn}

since there is no difference between forward-Cauchy and backward-Cauchy sequences and
the limit (if it exists) is unique. Condition (C2′′) was first used in Khanh and Quy (2013).

(d) Theorem 4 and its Corollaries 1 and 3 can be seen as far-going extended versions of Eke-
land’s variational principle in pseudo-quasi-metric spaces which might not be forward
Hausdorff. In several less general settings, versions of Ekeland’s variational principle
were established by Bao (2015), Bao et al. (2015a, b, c, 2016) (forward Hausdorff15

quasimetric spaces), by Cobzaş (2011) (T1 quasimetric space16 is T1 - for any distinct
points x and y in X each of them has a neighborhood not containing the other), by Ume
(2002) (regular17 quasimetric spaces).

(e) Based on the fact that if (X, p) is a partial pseudo-metric space, then the space (X, q)with
q(x, y) = p(x, y) − p(y, y) is a pseudo-quasimetric space, it is possible to formulate
new versions of Ekeland’s variational principle as well as their equivalent fixed point
theorems in partial pseudo-metric spaces. They aremore general than the existing results
in partial metric spaces; see Aydi et al. (2015).

It iswell known that the originalEkeland’s variational principle has been shownbySullivan
to be equivalent to the completeness of metric spaces. For an analysis of connections between
various types of completeness, variational principles and fixed point theorems see the survey
paper (Cobzaş 2016).

In the rest of this section, wewill show that Corollary 3 yields a characterization of forward
completeness of pseudo-quasimetric spaces.

To the best of our knowledge, Karapinar and Romaguera were the firsts who estab-
lished a version of Ekeland’s variational principle in Karapinar and Romaguera (2015) for

15 Known as ‘left Hausdorff’ in the cited papers.
16 The topology τ(q).
17 Cobzaş (2011, Remark 1.4) pointed out that the topology τ(q) is regular under the assumptions made in
the cited paper.



non-necessarily T1 quasimetric18 spaces, and proved that their weak version of Ekeland’s
variational principle is equivalent to the completeness of the corresponding quasimetric space.

Theorem 5 (Karapinar and Romaguera 2015, Theorem 2) For a pseudo-quasimetric space
(X, q) the following conditions are equivalent.

(1) (X, q) is forward-forward complete.
(2) For every proper bounded below and forward-nearly-lsc function f : X → R ∪ {+∞}

and for every ε > 0 there exists yε ∈ X such that

(i) f (yε) ≤ inf f (X) + ε;
(ii) f (yε) < f (x) + εq(yε, x), ∀x ∈ X\{yε}q , and

(iii) f (yε) ≤ f (x), ∀x ∈ {yε}q .
In fact, Karapinar and Romaguera (2015) formulated a backward version (i.e. for right

q-K -completeness) of Theorem 5. We presented here its forward analog.
The following theorem shows that Corollary 3 (see also Remark 9) gives a characterization

of completeness of pseudo-quasimetric spaces.

Theorem 6 (a characterization of forward complete pseudo-quasimetric spaces) For a
pseudo-quasimetric space (X, q) the following statements are equivalent.

(1) (X, q) is forward-forward complete.
(2) For every proper, bounded from below and strictly-decreasing forward-lsc functional

ϕ : X → R ∪ {+∞}, and for any x0 ∈ domϕ, there is x∗ ∈ X such that for every
y∗ ∈ S1,q(x∗) = {u ∈ X | ϕ(u) + q(x∗, u) ≤ ϕ(x∗)} one has

(i) ϕ(y∗) + q(x0, y∗) ≤ ϕ(x0);
(ii) ϕ(x) + q(y∗, x) > ϕ(y∗), ∀ x ∈ X\{y∗}q , and

(iii) ϕ(y∗) ≤ ϕ(x), ∀ x ∈ {y∗}q .
Proof (1) ⇒ (2) By Proposition 3, the space (X, q) is forward-distance-series-complete.
Consequently, the hypotheses of Corollary 3 are fulfilled. Taking into account Remark 9, it
follows that condition (iii) from (2) holds too.

(2) ⇒ (1) Assume that (X, q) is not forward-forward complete and show that there exists
a function ϕ satisfying the hypotheses from (2), but for which the conclusions (i)-(iii) fail.

By Proposition 3, (X, q) is not forward-distance-series-complete so that there exists a
sequence {xn}n∈N0 in X with

∑∞
n=0 q(xn, xn+1) < ∞, which has no forward limit. By

Proposition 3 the sequence {xn}n∈N0 is forward-Cauchy, so that, by Theorem 1), it has no
forward convergent subsequences.

We shall distinct two cases.
Case I. Suppose that

∃m, ∀k ≥ m, ∃nk > k, ρ(xk, xnk ) > 0 . (3.9)

Then, for n0 = m there exists n1 > n0 such that ρ(xn0 , xn1) > 0. Taking k = n1 it follows
the existence of n2 > n1 such that ρ(xn1 , xn2) > 0. Continuing in this manner we obtain a

18 A quasimetric in the sense of Karapinar et al. is a pseudo-quasimetric defined in Definition 2 satisfying 
that x = y if and only if q(x, y) = q(y, x) = 0.



sequence n0 < n1 < . . . such that ρ(xnk , xnk+1) > 0 for all k ∈ N0. Taking into account this
subsequence and relabeling, we can suppose that

ρ(xn, xn+1) > 0, ∀n ∈ N0. (3.10)

For

s :=
∞∑
k=1

q(xn, xn+1) < ∞ .

consider the functionϕ : X → Rdefinedbyϕ(x) = 2s for all x ∈ X\{x0, x1, x2, . . .}, ϕ(x0) =
s and ϕ(xn+1) := ϕ(xn) − q(xn, xn+1) for all n ≥ 0. Obviously, the sequence {xn} is
strictly ϕ-decreasing, since q(xn, xn+1) > 0 for all n ∈ N0. One obtains successively
ϕ(x1) = ϕ(x0) − q(x0, x1), ϕ(x2) = ϕ(x1) − q(x1, x2) = ϕ(x0) − q(x0, x1) − q(x1, x2),
and, by induction,

ϕ(xn) = ϕ(x0) −
n−1∑
i=0

q(xi , xi+1) .

Taking into account that ϕ(x0) = s, it follows

ϕ(xn) =
∞∑
i=n

q(xi , xi+1) > 0 , (3.11)

which shows that the functionalϕ is bounded frombelowby 0. Since any strictlyϕ-decreasing
sequence must be a subsequence of {xn}, it follows that there are no strictly ϕ-decreasing
forward convergent sequences, implying that the functionalϕ is strictlyϕ-decreasing forward-
lsc. By hypothesis, there exists x∗ ∈ X satisfying the conditions (i)-(iii). Condition (i) implies
q(x0, x∗) ≤ ϕ(x0) − ϕ(x∗), hence ϕ(x∗) ≤ ϕ(x0) = s, so that x∗ = xm for some m ∈ N0.
Condition (ii) for x = xm+1 yields

ϕ(xm+1) > ϕ(xm) − q(xm, xm+1) ,

in contradiction to the definition of ϕ.
Case II. Suppose that (3.9) does not hold, that is

∀m, ∃k ≥ m, s.t. ∀n > k, ρ(xk, xn) = 0 . (3.12)

For m = 0 let k = n0 ≥ 0 be such that ρ(xn0 , xn) = 0 for all n > n0. Now, for m = 1 + n0
let n1 > n0 be such that ρ(xn1 , xn) = 0 for all n > n1. It follows ρ(xn0 , xn1) = 0.

Continuing in this manner we obtain a sequence n0 < n1 < . . . such that ρ(xnk , xnk+1) =
0 for all k ∈ N0. Relabeling, we can suppose that the sequence (xn) satisfies

ρ(xn, xn+1) = 0, ∀n ∈ N0. (3.13)

Let B := {xn : n ∈ N0}, and define the function ϕ : X → R by

ϕ(x) =
{

1
2n if x = xn for some n ∈ N0,

2 for x ∈ X\B.

Again, any strictly ϕ-decreasing sequence must be a subsequence of {xn}, implying that there
are no strictly ϕ-decreasing forward convergent sequences, so that the functional ϕ is strictly
ϕ-decreasing forward-lsc.



Suppose that there exists x∗ ∈ X satisfying the conditions (i)-(iii). By (i),ϕ(x∗) ≤ ϕ(x0) =
1, so that y = xm ∈ B for some m ∈ N0.

If (3.13) holds, then, by the triangle inequality,

ρ(xm, xm+k) ≤
k∑

i=1

ρ(xm+i−1, xm+i ) = 0 ,

i.e. xn ∈ {xm}q , for all n ≥ m. By (iii),

ϕ(xm) ≤ ϕ(xn) = 1

2n
, ∀n ≥ m,

implying ϕ(xm) = 0, a value not taken by ϕ. ��
Remark 12 The function considered in Case II in the above proof is inspired by one con-
sidered in Karapinar and Romaguera (2015, Theorem 2). Note that the authors of Karapinar
and Romaguera (2015) did not consider this case (i.e. the possibility that q(xn, xn+1) = 0
for all n) in their proof.

The following example shows that condition (iii) in Theorem 6 is essential for the com-
pleteness of the pseudo-quasimetric space (X, q).

Example 8 Let xn = −n, n ∈ N0, and X = {xn : n ∈ N0} with the metric q(xn, xm) =
(xm − xn)+ = (−m+n)+ = n−m if n > m and= 0 if n ≤ m. Then q(xn, xn+1) = 0 for all
n ∈ N0 and the space (X, q) is not forward-complete (see Remark 6). Let ϕ : X → [0,∞)

be an arbitrary function. For x∗ = x0,

ϕ(x∗) = ϕ(x0) ≤ ϕ(x0) = ϕ(x0) + q(x∗, x0) .

Since q(x0, xn) = 0 for all n ∈ N0 the condition

ϕ(x0) < ϕ(xn) + q(x0, xn), ∀n ∈ N0 : q(x0, xn) > 0

is trivially satisfied.

4 Behavioral applications: when completeness is equivalent to the
existence of traps

Soubeyran (2009, 2010, 2016) showed that, quite surprisingly, Ekeland’s variational principle
offers a prototype of the variational rationality model. In this simple but very important
benchmark case, we have:

– The space (X, q) is a quasimetric or a pseudo-quasimetric space. It refers to a space
of actions (doings), havings or beings, where q : X × X → R is a quasimetric or a
pseudo-quasimetric.

– The scalar function g : X → R is a “to be increased payoff”, some profit or satisfaction
level, g = sup

x∈X
g(x) < +∞ is the highest payoff the agent can expect to realize (a

maximum seen as an aspiration level), while ϕ(x) = g − g(x) ≥ 0 refers to his “to be
decreased” residual dissatisfaction to fail to reach g.

– Advantages to change are A(x, y) = g(y) − g(x) = ϕ(x) − ϕ(y).
– Inconveniences to change are I (x, y) = C(x, y) − C(x, x) ≥ 0, where C(x, y) ≥ 0

refers to costs to be able to change and C(x, x) ≥ 0 represents costs to be able to stay.



– The worthwhile-to-change ratio λ which defines how, each period, it is worthwhile to
change, is constant all along the transition.

Soubeyran (2009, 2010, 2016) has shown, in great details, in which circumstances
inconveniences to change can be modeled as pseudo-quasi-metrics q(x, y) = I (x, y) =
C(x, y)−C(x, x) ≥ 0. In this case, inconveniences to change can be zero even when y �= x .
This means that costs to be able to change C(x, y) can be equal to costs to be able to stay
C(x, x) for some change x � y �= x . Be cautious, these costs to be able to do are very
different from traditional costs to do (execution costs).

Then, in the current period n + 1, a change which moves from repeating the last action
x = xn ∈ X to perform the current action y = xn+1 ∈ X isworthwhile if A(x, y) ≥ λI (x, y),
where the highest is λ > 0, the more it is worthwhile to change. A worthwhile change x � y
satisfies ϕ(x) − ϕ(y) ≥ λq(x, y). Given ϕ(.), x and λ, the (VR) approach defines, each
current period, the worthwhile to change set, Sλ,q(x) = {y ∈ X | ϕ(x) − ϕ(y) ≥ λq(x, y)}
and the related worthwhile stay and change dynamic xn+1 ∈ Sλ,q(xn). A current stay is such
that xn+1 = xn , while a current change is such that xn+1 �= xn . A variational trap x∗ ∈ X is
worthwhile to approach, i.e., xn+1 ∈ Sλ,q(xn) and worthwhile to reach, i.e., x∗ ∈ Sλ,q(xn)
for all n ∈ N but not worthwhile to leave, that is Sλ,q(x∗) = {x∗}. Then, it is easy to see
that Ekeland’s variational principle gives sufficient conditions for the existence of variational
traps, starting from any initial action.

Our paper gives sufficient conditions for the existence of variational traps in the case
where inconveniences to change are pseudo-quasimetrics. Furthermore, our paper shows that
completeness of the pseudo-quasimetric space X is equivalent to the existence of variational
traps. It means that in such pseudo-quasimetric spaces, the fact that every worthwhile stay
and change dynamic ends in some trap is equivalent to completeness. Then, in such complete
spaces, no worthwhile stay and change dynamic can wander. Then, each period, if an agent
prefers to change from his previous position to a new one, because such change is worthwhile,
sooner or later, he will end in a trap where it is not worthwhile to change. This is a very nice
result in Behavioral Sciences.

5 Conclusions

In this paper, we establish new versions of Ekeland’s variational principle for strict-
decreasingly forward- (resp. backward-)lsc functions in possible incomplete pseudo-quasi-
metric spaces; in particular, in R with q(x, y) = y − x if y ≥ x and 0 otherwise. It is impor-
tant to emphasize that the motivation of this research comes from applications in behavioral
sciences.

We further extend the characterization of the completeness of T1-quasimetric (resp. qua-
simetric) spaces in Cobzaş (2011), (resp. Karapinar and Romaguera 2015).

A natural question arise: why matters the use of pseudo-quasimetrics instead of quasi-
metrics in the statements of variational principles? That is, why the existence of y different
from x such that q(x, y) = 0 does matter so much?

The motivation comes from its interest in applications to Behavioral Sciences, based on
the VR approach, where passing from quasidistances to pseudo-quasidistances as a model
for inconveniences to change is essential, as explained below.

In this case a change from x to y, y different from x , can generate no inconveniences,
that is I (x, y) = C(x, y) − C(x, x) = q(x, y) = 0, because costs of being able to change
C(x, y) equal costs of being able to stay, C(x, x). In this case a worthwhile change from x to



y is such that g(y) − g(x) ≥ hq(x, y) = 0, that is such that g(y) ≥ g(x). Then, in this case,
an improving change, and even more a strictly increasing change, becomes worthwhile.

This is also why our assumptions on strictly ϕ-decreasing sequences and strict-
decreasingly forward-lsc functions are natural and matter much.

Ekeland’s variational principle has been investigated in different setting; (see, e.g., Ansari
2014; Bao et al. 2016). In Al-Homidan et al. (2008) the authors introduced the notion of
Q-distance in quasi-metric spaces and established an equilibrium version of the Ekeland-
type variational principle. Our further research will examize whether our results could be
formulated in terms of a Q distance.
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