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1 Introduction

We propose an inexact multi-objective proximal algorithm with a strong (semi) local
search aspect that eventually reaches a Pareto–Clarke critical point of a nonneces-
sary differentiable multi-objective function, whose regularization term is a proximal
distance. The motivation for this paper comes from behavioral sciences. Our algo-
rithm gives a new formulation and resolution of the following famous distributive
justice problem in the context of group dynamics: In each period, if a group creates
a cake, the problem is, for each member, to get a high enough share of this cake; if
this is not possible, then it is better to quit, breaking the stability of the group. In a
dynamic context, this problem is an instance of the very general and famous “Value
creation, value appropriation problem,” which plays a central role in management
science, economics, psychology, sociology, game theory, and political science, where
value creation problems cannot be determined independently of value appropriation
problems, such as distributive justice and bargaining problems. Our approach con-
siders the Fréchet subdifferentials introduced in [1], which have, in the convex case,
an important relationship with the directional derivative, which will be useful in the
convergence analysis of the method.

Methods such as the proximal point algorithm are descent processes. In the scalar
case, this property is an immediate consequence of the definition of the method.
However, in higher instances, to reach this property, additional assumptions must be
made. To solve this issue, Bonnel et al. [2] introduced an omega improving set as in
(9), to analyze inexact (and exact) proximal algorithms in vector optimization. In that
approach, the convexity of each omega improving set plays an important role, since, for
convex sets, the normal cone has a well-known structure, allowing a clearer analysis of
the method. However, since our objective function is not a convex function, the set in
(9) is not convex. Recently, Bento et al. [3] presented the exact version of the scheme
defined in (9), under the convexity of the omega set. However, this assumption seems
to be rather restrictive (see Examples 4.1 and 4.2). To solve this issue, we analyze
the tangent cone of an omega set at the current iterate, which allows us to reach a
structure similar to that in [2]. We emphasize that our analysis holds without requiring
the convexity of the set in (9).

The algorithm we choose mixes three different kinds of well-known methods from
the literature: local search, adaptive, and multi-objective proximal algorithms. That is,
we consider three points:

• Local search algorithm: There is an enormous amount of literature on this topic,
but the multi-objective case seems to be largely underdeveloped; see Aarts and
Lenstra [4]. A local search multi-objective subproblem is a problem is to find a
subset of neighbors of the current iterate. For example, the neighborhood of a
vertex cover is another vertex cover only differing by one node. At the previous
stage, a local search method starts from a candidate solution and then iteratively
moves to a neighbor solution in an adaptive neighborhood structure that depends
on each stage. The justification of the term local search is the following: Every
candidate solution has more than one neighbor solution; the choice of the next
move is taken using only information about the solutions in the neighborhood
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of the current one. When the choice of the neighbor solution is made by taking
the one locally maximizing the criterion, the meta-heuristic takes the name hill
climbing. When no improving configurations are present in the neighborhood, the
local search is stuck at a locally optimal point. This local optima problem can be
cured by using restarts (repeating the local search with different initial conditions)
or more complex schemes based on iterations (e.g., an iterated local search), on
memory (e.g., reactive search optimization), or on memoryless stochastic modi-
fications (e.g., simulated annealing). Local search methods include hill-climbing
search, simulated annealing search, local beam search, geneticmethods, ant colony
optimization, and tabu search.

• Multi-objective proximal algorithms: This method adds a perturbation term to the
initial vectorial function. The term is chosen in such a way that the proximal vecto-
rial function becomes simple enough, that is, linear or convex in all its components.
Hence, the perturbed multi-objective program must be rather easy to optimize.
In our case, we get convex vectorial proximal payoffs. This is a very important
point. It entirely justifies our method, which replaces a very complicated initial
multi-objective optimization problem by a succession of much simpler convex
multi-objective perturbed optimization problems. Furthermore, themulti-objective
proximal method considers a sequence of intermediate steps and a succession of
intermediate subproblems. The algorithm requires that the current solution of each
subproblem exists, be unique (if possible), and be rather easy to calculate. In this
case, each successive subproblem is well defined and implementable.

• Semi-local search multi-objective proximal algorithms: In the case of our specific
context, the neighborhood structure is semi-local, that is, not restricted to neigh-
bors. In the scalar case, a class of semi-local search proximal algorithms has been
examined in ametric space by Attouch and Soubeyran [5]. Themotivation to study
these semi-local search proximal methods came directly from a recent variational
VR approach (Soubeyran, [6–8]). Hence, our process is a semi-local search inex-
act multi-objective proximal methodwith a nonconvex neighborhood and adaptive
structure. The motivation to study such an algorithm comes from behavioral sci-
ences (e.g., economics, psychology, and sociology), where the problem of group
dynamics and distributive justice is crucial. The static Rawls problem of distribu-
tive justice is to maximize the weighted sum of the different objectives of a group
of agents (the efficiency aspect, to get the larger pie for the group) as well as to
protect the shares of the poor agents of the group (the distributive justice aspect).

The organization of the paper is as follows. In Sect. 2, some notations and basic
results used throughout the paper are presented. In Sect. 3, we introduce the definition
of proximal distance and its induced proximal distance, study the main properties of
our objective function, and present some results of multi-objective optimization. Our
inexact multi-objective proximal method is presented in Sect. 4, and the main results
are stated and proved. We will show, in Sect. 5, that our multi-objective program,
where each objective is the maximum of a subset of subobjectives, models the famous
static Rawls distributive justice problem. In Sect. 6, we consider the also famous Lewin
group dynamic problem, adding a dynamic distributive justice component, where the
problem is to know how to reach, step by step, a static distributive justice solution as
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a Pareto point. Hence, we show how our algorithm models, in a crude but compelling
way, a dynamic group process that converges to a solution of the static Rawlsian
max-min problem of distributive justice. Some final remarks are made in Sect. 7.

2 Basic Approach and Notation

In this section, we present several concepts of nonsmooth analysis that will be useful
throughout this presentation. Let f : R

n → R∪{+∞} be finite at a point x̄ and ε ≥ 0.
The set

∂̂ε f (x̄) :=
{
w ∈ R

n : lim inf
x→x̄

f (x) − f (x̄) − 〈w, x − x̄〉
‖x − x̄‖ ≥ −ε

}

is the analytic ε-subdifferential [1, Definition 1.83, page 87] of f at x̄ with the elements
referred to as analytic ε-subgradients of f at x̄ . If f : R

n → R ∪ {+∞} is a convex
function, the analytic ε-subdifferential can be described in more detail, i.e., if f :
R

n → R ∪ {+∞} is convex and finite at a point x̄ , then

∂̂ε f (x̄) = {
w ∈ R

n : 〈w, x − x̄〉 ≤ f (x) − f (x̄) + ε‖x − x̄‖, x ∈ R
n} ; (1)

see [1, Theorem 1.93, page 95]. Note that the set on the right-hand side of (1) is the
subdifferential of the convex function f (x)+ ε‖x − x̄‖ at x̄ . By the classical Moreau-
Rockafellar theorem, this set is equal to ∂ f (x̄) + εB for any proper convex function
f : R

n → R ∪ {+∞}, where B denotes the closed unit ball in R
n . Observe that for

ε > 0, the latter set is different from the classical ε-subdifferential of convex analysis
defined as the collection ofw ∈ R

n satisfying 〈w, x − x̄〉 ≤ f (x)− f (x̄)+ε, x ∈ R
n ;

see Hiriart–Urruty and Lemaréchal [9]. Based on (1), it is straightforward to check that
the analytic ε-subdifferential for convex functions has the following representation:

∂̂ fε(x̄) = {
w ∈ R

n : f ′(x̄; v) ≥ 〈w, v〉 − ε‖v‖, v ∈ R
n}

, (2)

where f ′(x̄; v) denotes the usual directional derivative.
Let f : R

n → R be a locally Lipschitz function at x̄ ∈ R
n with constant L > 0 and

v ∈ R
n . The Clarke’s directional derivative [10, page 25] of f at x̄ in the direction v,

denoted by f ◦(x̄; v), is defined as

f ◦(x̄; v) := lim sup
t↓0 y→x̄

f (y + tv) − f (y)

t
,

and Clarke’s subdifferential [10, page 27] of f at x̄ , denoted by ∂◦ f (x̄), is defined as

∂◦ f (x̄) := {
w ∈ R

n : f ◦(x̄; v) ≥ 〈w, v〉, v ∈ R
n}

.

The function v �→ f ◦(x̄; v) is finite, positive homogeneous , i. e., f ◦(x̄; λv) = λ f 
◦(x̄; v), and subadditive, i. e., f ◦(x̄; v+w) ≤ f ◦(x̄; v)+ f ◦(x̄; w), for all λ >  0 and
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v,w ∈ R
n . Moreover, f ◦(x̄; v) is upper semi-continuous as a function of (x̄, v), i.e.,

if {(xk, vk)} is a sequence in R
n ×R

n that converges to some point (x, v) ∈ R
n ×R

n ,
then

lim sup
k→+∞

f ◦(xk; vk) ≤ f ◦(x; v); (3)

see [10, page 25, Proposition 2.1.1]. Another well-known property of Clarke’s direc-
tional derivative is the following: given two locally Lipschitz functions f1, f2 : R

n →
R at x̄ ∈ R

n , we have

( f1 + f2)
◦(x̄; v) ≤ f ◦

1 (x̄; v) + f ◦
2 (x̄; v) (4)

for all v ∈ R
n ; see [10, page 38, Proposition 2.3.3].

Next, we recall the definition of the tangent and the normal cones presented in [10].
Given a nonempty closed set Ω ⊂ R

n , the tangent cone [10, page 53, Theorem 2.4.5]
TΩ(x̄) to Ω at a point x̄ ∈ Ω is defined as follows:

v ∈ TΩ(x̄) ⇐⇒
⎧⎨
⎩
for every sequence{xk} ⊂ Ωconverging to x̄ and every sequence
{tk} ⊂]0,+∞[converging to 0, there is a sequence{vk},
converging to v such that, xk + tkvk belongs to Ω for all k.

An immediate consequence of the definition is that TΩ(x̄) is a closed convex cone in
R

n . Having defined a tangent cone, the likely candidate for the normal cone is the one
obtained from TΩ(x̄) by polarity. We define NΩ(x̄), the normal cone [10, page 51]
to Ω at x̄ , as NΩ(x̄) := {w ∈ R

n : 〈w, v〉 ≤ 0, v ∈ TΩ(x̄)}. For any nonempty set
Ω ⊂ R

n , δΩ denotes the indicator function of Ω . Note that δΩ is a convex function
iff Ω is a convex set, and δΩ is l.s.c. iff Ω is closed.

3 Basic Framework for a Distributive Justice Multi-objective Program

In our approach, we choose a proximal distance d : R
n × R

n → R+ ∪ {+∞} as the
regularization term. Such a well-known distance allows us to analyze the convergence
of the algorithm under various settings. Following [11], let us recall the definition of
the proximal and induced proximal distances.

Definition 3.1 A function d : R
n × R

n → R+ ∪ {+∞} is called a proximal distance
with respect to an open nonempty convex set C ⊂ R

n if for each y ∈ C it satisfies the
following properties:

(d1) d(·, y) is proper, lsc, convex, and C1 on C ;
(d2) dom d(·, y) ⊂ C̄ and dom ∂1d(·, y) = C , where ∂1d(·, y) denotes the subgra-

dient map of the function d(·, y) with respect to the first variable;
(d3) d(·, y) is level-bounded on R

n , i.e., lim‖u‖→+∞ d(u, y) = +∞;
(d4) d(y, y) = 0.

For each y ∈ C , let ∇1d(·, y) denote the gradient map of the function d(·, y) with
respect to the first variable. Besides the above conditions, we consider that such a d
satisfies the following property:
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(d5) there exists σ > 0 such that for all x̃ ∈ C , d(·, x̃) is σ -strongly convex over C ,
i.e.,

〈∇1d(x, x̃) − ∇1d(y, x̃), x − y〉 ≥ σ‖x − y‖2, x, y ∈ C,

for some norm ‖ · ‖ in R
n .

We denote byD(C) the family of functions d satisfying (d1)-(d5). Next, following
the approach presented in [11], we associate to a given d ∈ D(C) a corresponding
induced distance H that satisfies some desirable properties.

Definition 3.2 Given C ⊂ R
n , open and convex, and d ∈ D(C), a function H :

R
n × R

n → R+ ∪ {+∞} is called the induced proximal distance to d if H is finite-
valued on C × C and for each x, y ∈ C satisfies the following properties:

(H1) H(x, x) = 0;
(H2) 〈z − y,∇1d(y, x)〉 ≤ H(z, x) − H(z, y), z ∈ C .

Hereafter, C is an open nonempty convex set C ⊂ R
n . We write (d, H) ∈ Φ(C) to

quantify the triple [C, d, H ] that satisfies the premises of Definition 3.2. Similarly,
we write (d, H) ∈ Φ(C̄) for the triple [C̄, d, H ] whenever there exists H , which
is finite-valued on C̄ × C , satisfies (H1)-(H2) for any z ∈ C , and is such that z ∈
C̄ has H(z, ·) level-bounded on C . Clearly, one has Φ(C̄) ∈ Φ(C). For examples
and a thorough discussion about proximal and induced proximal distances, see, for
instance, [11,12]. We adopt the standard notation in multi-objective optimization. We
denote I := {1, . . . , m}. Further, the sets of n-vectors with nonnegative (positive) real
components are denoted by R

n+(Rn++). For each x, y ∈ R
n , we have x � y ⇐⇒

y − x ∈ R
n+ and x ≺ y ⇐⇒ y − x ∈ R

n++. Similarly, we can define this relation with
the reverse inequality. Before we present our most significant results, let us introduce
the notion of Pareto–Clarke critical point of a multi-objective function. Let D be a
closed and convex set and F : R

n → R
m be locally Lipschitz on R

n . We say that a
point x∗ ∈ D is a Pareto–Clarke critical point of F in D if, for any y ∈ D, there
exists j0 ∈ I such that f ◦

j0
(x∗; y − x∗) ≥ 0. We denote by S ∗

D(F), the set of the
Pareto–Clarke critical points of F in D; see [13]. In this context, we have the following
result, which is very useful in our convergence analysis.

Proposition 3.1 Let D be a closed and convex set and F : R
n → R

m be locally
Lipschitz on R

n. If Ω is defined as {y ∈ R
n : F(y) � F(x)}, then for all z̄ ∈

Ω\S ∗
D(F), {

v ∈ R
n : F◦(z̄; v) � 0

} ⊂ TΩ(z̄), (5)

where F◦(z̄; v) := ( f ◦
1 (z̄; v), . . . , f ◦

m(z̄; v)).

Proof First, let us prove that

{v ∈ R
n : F◦(z̄; v) ≺ 0} ⊂ TΩ(z̄). (6)

holds. Consider any v ∈ Rn , such that F◦(z̄; v) ≺ 0. Hence, f j
◦(z̄; v) < 0, j ∈ I . It 

follows from the definition of f j
◦(z̄; v) that there are δ and ε > 0 such that, for 
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all y ∈ B(z̄, δ) and t ∈]0, ε[, f j (y + tv) − f j (y) ≤ −εt , j ∈ I . Now, let {xk} be
any sequence in Ω converging to z̄, and {tk} be any sequence decreasing to 0. By the
definition of Ω , f j (xk) ≤ f j (x) for all j ∈ I , and for all k sufficiently large,

f j (xk + tkv) ≤ f j (xk) − εt ≤ f j (x) − εt, j ∈ I.

It follows that {xk + tkv} (for a large k) belongs to Ω , and this establishes that v ∈
TΩ(z̄). Now, let us prove (5). Since z̄ is not a Pareto–Clarke critical point of F , there
exists v0 ∈ D such that f ◦

j (z̄; v0 − z̄) < 0, for all j ∈ I . If v belongs to the left-
hand side of (5), then for all k ∈ N, f ◦

j (z̄; v + (1/k)(v0 − z̄)) < 0, since f ◦
j (z̄; ·) is

subadditive. Based on (6), v + (1/k)(v0 − z̄) ∈ TΩ(z̄). As TΩ(z̄) is a closed set and
{v + (1/k)(v0 − z̄)} converges to v, we have v ∈ TΩ(z̄). ��

The objective of this paper is to study the convergence of an inexact multi-objective
proximal method for a particular class of multi-objective functions that are not neces-
sarily differentiable. Let us introduce such a special class of multi-objective functions,
which represent distributive justice payoffs in behavioral sciences (see Sect. 5), and
study their main properties. Set I j := {1, . . . , 	 j }, with 	 j ∈ Z+, for j ∈ I . Let
F : R

n → R
m be a multi-objective function F(x) := ( f1(x), . . . , fm(x)), where

f j (x) := max
i∈I j

fi j (x), j ∈ I, (7)

fi j : R
n → R is a continuously differentiable function on C and continuous on C̄

(closure of C), for all i ∈ I j . We can easily see from (7) that each f j : R
n → R is

locally Lipschitz on C . Throughout this paper, we make the following assumptions:

A1. For all j ∈ I , −∞ < inf x∈Rn f j (x);
A2. For all j ∈ I , ∇ fi j is Lipschitz continuous on C with constant Li j ≥ 0 for each

i ∈ I j .

Functions with the structure defined in (7) are very flexible when we are working
with algorithms such as proximal point type. In general, such functions are not convex
functions.However, the next result shows us that, under certain conditions, its proximal
regularization is a convex function.

Lemma 3.1 Consider any d ∈ D(C), x̃ ∈ C, λ ∈ R++ and ω := (ω1, . . . , ωm) ∈
R

m++, satisfying
sup
i∈I j

Li j < λσω j , j ∈ I. (8)

If F : R
n → R

m is a multi-objective function as in (7), then the functions Pi j :=
fi j + λω j d(·, x̃) and Pj := f j + λω j d(·, x̃) are strongly convex on C. Moreover, the
function 〈F(·), z〉 + λ 〈ω, z〉 d(·, x̃) is strongly convex on C for each z ∈ R

m+\{0}.
Proof Consider j ∈ I , i ∈ I j , and x, y ∈ C . Since ∇ Pi j (x) = ∇ fi j (x) +
λω j∇1d(x, x̃), we have

〈∇ Pi j (x) − ∇ Pi j (y), x − y〉 = 〈∇ fi j (x) − ∇ fi j (y), x − y〉
+λω j 〈∇1d(x, x̃) − ∇1d(y, x̃), x − y〉.
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Using property (d5) and Cauchy inequality, the last equality becomes

〈∇ Pi j (x) − ∇ Pi j (y), x − y
〉 ≥ −‖∇ fi j (x) − ∇ fi j (y)‖‖x − y‖ + λσω j‖x − y‖2.

As ∇ fi j is Lipschitz on C with constant Li j , the last inequality gives us

〈∇ Pi j (x) − ∇ Pi j (y), x − y〉 ≥ (λσω j − Li j )‖x − y‖2.

Combining last inequality with (8), we conclude that Pi j is strongly convex. Since
maxi∈I j Pi j = Pj , we deduce the strong convexity of the function Pj . It is straight-
forward to check the strong convexity of the function 〈F(·), z〉 + λ 〈ω, z〉 d (·, x̃).

��

4 An Inexact Multi-objective Proximal Method

In this section, we present an inexact multi-objective proximal method. Hereafter,
F : R

n → R
m is the multi-objective function as defined in (7) and it satisfies A1

and A2. Let d ∈ D(C), {λk}, {εk} ⊂ R++, {ek} ⊂ R
m++, and {zk} ⊂ R

m+\{0}.
Choose x0 ∈ C . Given xk ∈ C , if xk ∈ S ∗

C
(F), then set xk+p = xk for all p ≥ 1. If

xk /∈ S ∗
C
(F), the inexact multi-objective proximal point algorithm formally generates

a sequence {xk} as follows

0 ∈ ∂̂εk

(〈
F(·), zk

〉
+ γkd(·, xk)

)
(xk+1) + γk∇1d(xk+1, xk) + NΩk (xk+1), (9)

k = 0, 1, . . . , where Ωk := {
x ∈ R

n : F(x) � F(xk)
}
and γk := λk

〈
ek, zk

〉
.

Remark 4.1 If εk = 0, and F : R
n → R

m is a convex multi-objective function, then
inclusion (9) implies that

0 ∈ ∂
(〈

F(·), zk
〉
+ 2γkd(·, xk)

)
(xk+1) + NΩk (xk+1), k = 0, 1, . . . .

Using standard arguments of analysis, we can conclude that

xk+1 ∈ argminw

{
F(x) + 2λkd(x, xk)ek : x ∈ Ωk

}
,

which is the finite dimensional version, with the respective choices of d, of the exact 
proximal point method for multi-objective optimizations presented in [2,14], where

argminwG(x) := {x∗ ∈ Rn : there is no ȳ ∈ Rn such that G(ȳ) ≺ G(x∗)}.

Before we introduce the main theorem of the present paper, we recall the following 
well-known results of nonnegative sequences.

8



Lemma 4.1 (see [15]) Let {uk}, {αk}, and {βk} be nonnegative sequences of real
numbers satisfying uk+1 ≤ (1 + αk)uk + βk such that

∑
k αk < ∞,

∑
k βk < ∞.

Then, the sequence {uk} converges.

Lemma 4.2 (see [15]) Let {λk} be a sequence of positive numbers, {ak} a sequence
of real numbers, and bn := σ−1

n
∑n

k=1 λkak , where σn := ∑n
k=1 λk . If σn → ∞,

lim inf an ≤ lim inf bn ≤ lim sup bn ≤ lim sup an.

Theorem 4.1 Let λ+ > 0, μ > 0, (d, H) ∈ Φ(C̄), and σ > 0 be the constant
that appears in the strong convexity of d. Assume that λk ⊂ R++, {ek} ⊂ R

m++, and
{zk} ⊂ R

m+\{0} satisfy

‖zk‖1 = 1, ‖ek‖ = 1, μ < ek
j , (1/σμ)max

i∈I j
Li j < λk ≤ λ+, (10)

j ∈ I , k = 0, 1, . . . . Then, the sequence {xk} generated by (9) is well defined and
xk+1 ∈ C ∩ Ωk , for k = 0, 1, . . . . Moreover, if {xk} is bounded and {εk} ⊂ R++ is
such that

∑
k εk < ∞, then each accumulation point of {xk+1} is a Pareto–Clarke

critical point of F in C̄.

Proof We prove the well-definition by induction over k. Let k = 0 and x0 ∈ C . Define
ϕ0 : R

n → R ∪ {+∞} by ϕ0(x) = ψ(x) + δΩ0(x), where

ψ(x) =
{ 〈F(·), z0〉 + γ0d(·, x0), x ∈ C,

+∞, x /∈ C.

Owing to −∞ < inf x∈Rn f j (x), for all j ∈ I , z0 ∈ R
m+\{0}, the function x �→

〈F(x), z0〉 is bounded below, and taking into account that γ0 > 0 and d
(·, x0

)
satisfies

(d3) of Definition 3.1, it follows that ϕ0 is coercive. Then, as Ω0 is closed, we can
apply [16, Theorem 1.9, page 11] to ensure that there exists x̃ ∈ Ω0 such that x̃ ∈
argmin

{
ψ(x) + γ0d

(
x, x0

) : x ∈ Ω0
}
. From [10, Corollary, page 52], we have

0 ∈ ∂◦ (
ψ(x) + γ0d(x, x0)

)
(x̃) + NΩ0(x̃). As (10) holds, Lemma 3.1 implies that

〈F(·), z0〉+γ0d(·, x0) is a convex function on C and consequentlyψ is convex. Since
dom ψ ∩ dom(γ0d(·, x0)) = C �= ∅, we can apply [17, Theorem 23.8, page 223] to
obtain 0 ∈ ∂ψ(x̃)+γ0∂1d(x̃, x0)+ NΩ0(x̃).Taking into account that dom ∂1d(·, y) =
C , it follows from the last inclusion that x̃ ∈ C . Since x �→ 〈F(x), z0〉 + γkd(x, x0)
is a convex function on C , using (2) we have

∂
(
〈F(x), z0〉 + γ0d(x, x0)

)
(x̃) ⊂ ∂̂ε0

(
〈F(x), z0〉 + γ0d(x, x0)

)
(x̃),

with ε0 > 0. Therefore, we can consider x1 := x̃ ∈ C ∩ Ω0. Thus, the method is
well defined for k = 1. The proof of the induction step proceeds similarly. Therefore,
method (9) is well defined and xk+1 ∈ C ∩Ωk , for k = 0, 1, . . . . Now, let us prove the
second part of the theorem. Based on (9), there exists vk+1 ∈ NΩk (xk+1) satisfying

− vk+1 − γk∇1d(xk+1, xk) ∈ ∂̂εk

(〈
F(·), zk

〉
+ γkd(·, xk)

)
(xk+1), k ≥ 0. (11)

9



Consider any y0 ∈ C̄ as fixed. We claim that

lim inf
k→+∞

⎛
⎝−

m∑
j=1

zk
j f ◦

j

(
xk+1; y0 − xk+1

)
−

〈
vk+1, y0 − xk+1

〉⎞⎠ ≤ 0. (12)

Indeed, since (10) holds, we can apply Lemma 3.1 to conclude that x �→ Gk(x) :=〈
F(x), zk

〉 + γkd(x, xk) is a convex function on C . Then, we can combine (11) with
(2) to obtain

G ′
k(xk+1; y0 − xk+1) ≥

〈
−vk+1 − γk∇1d(xk+1, xk), y0 − xk+1

〉

−εk‖y0 − xk+1‖, k ≥ 0.

From (H2), with z = y0, y = xk+1, x = xk , we have

〈y0 − xk+1,∇1d(xk+1, xk)〉 ≤ H(y0, xk) − H(y0, xk+1), k ≥ 0. (13)

Since
(
d(·, xk)

)◦
(xk+1, v) = 〈∇1d(xk+1, xk), v〉 holds for all v ∈ R

n , it follows from
(4) that

G ′
k(xk+1; y0 − xk+1) ≤

m∑
j=1

zk
j f ◦

j

(
xk+1; y0 − xk+1

)

+γk

〈
y0 − xk+1,∇1d(xk+1, xk)

〉
, k ≥ 0.

Combining the last inequality with (13) and (13), for all k ≥ 0 we obtain

H(y0, xk) − H(y0, xk+1) + ‖y0 − xk+1‖ εk

2γk

≥ 1

2γk

⎛
⎝−

m∑
j=1

zk
j f ◦

j

(
xk+1; y0 − xk+1

)
−

〈
vk+1, y0 − xk+1

〉⎞⎠ .

As {xk} is bounded, there exists α > 0 such that ‖y0 − xk+1‖ ≤ α, k ≥ 0. Since
‖zk‖1 = 1 and {ek} and {λk} satisfy (10), we have

γk = λk

〈
ek, zk

〉
= λk

m∑
j=1

ek
j z

k
j ≥ μ(1/σμ)max

i∈I j
Li j

m∑
j=1

zk
j = 1/σ max

i∈I j
Li j .

10



Hence, 1/γk ≤ (1/σ maxi∈I j Li j )
−1, k ≥ 0. Then, there exists M > 0 satisfying

H(y0, xk) − H(y0, xk+1) + Mεk

≥ 1

2γk

⎛
⎝−

m∑
j=1

zk
j f ◦

j

(
xk+1; y0 − xk+1

)
−

〈
vk+1, y0 − xk+1

〉⎞⎠ , k ≥ 0.

Summing the last inequality over k = 1, . . . , n, for all k ≥ 0, we have

H(y0, x1) − H(y0, xn+1) + M
n∑

k=1

εk

≥
n∑

k=1

1

2γk

⎛
⎝−

m∑
j=1

zk
j f ◦

j

(
xk+1; y0 − xk+1

)
−

〈
vk+1, y0 − xk+1

〉⎞⎠ .

Since H(·, ·) ≥ 0, for all k ≥ 0 we obtain

σ−1
n H(y0, x1) + Mσ−1

n

n∑
k=1

εk

≥ σ−1
n

n∑
k=1

1

2γk

⎛
⎝−

m∑
j=1

zk
j f ◦

j

(
xk+1; y0 − xk+1

)
−

〈
vk+1, y0 − xk+1

〉⎞⎠ ,

where σn := ∑n
k=1(1/2γk). As 1/γk ≥ 1/λ+, then σn → ∞, and considering that∑∞

k=1 εk < ∞, we can use Lemma 4.2 to obtain (12).
Now, consider any point x∗ such that lim	→+∞ xk	+1 = x∗. Suppose, by con-

tradiction, that x∗ is not a Pareto–Clarke critical point of F in C̄ . Then, there exists
y0 ∈ C̄ such that

f ◦
j (x∗; y0 − x∗) < 0, j ∈ I. (14)

From (14) and (3), there exists 	0 ∈ N such that for all 	 ≥ 	0,

f ◦
j

(
xk	+1; y0 − xk	+1

)
< 0, j ∈ I.

Since xk	+1 ∈ Ωk	
\S ∗̄

C
(F), the last inequality with Proposition 3.1 implies that

y0 − xk	+1 ∈ TΩk	
(xk	+1), 	 ≥ 	0. As vk	+1 ∈ NΩk	

(xk	+1) and y0 − xk	+1 ∈
TΩk	

(xk	+1), 	 ≥ 	0, we have
〈
vk	+1, y0 − xk	+1

〉 ≤ 0, for 	 ≥ 	0. Thus, the last
inequality along with (12) implies that

lim sup
	→+∞

m∑
j=1

zk	

j f ◦
j

(
xk	+1; y0 − xk	+1

)
≥ 0.

11



Combining a standard property of lim sup with the homogeneity of f ◦, we obtain

m∑
j=1

lim sup
	→+∞

f ◦
j

(
xk	+1; zk	

j (y0 − xk	+1)
)

≥ 0.

Without loss of generality, suppose that lim	→+∞ zk	

j = z̄ j . Using the last inequality
with (3), we conclude that

m∑
j=1

f ◦
j

(
x∗; z̄ j (y0 − x∗)

) ≥
m∑

j=1

lim sup
	→+∞

f ◦
j

(
xk	+1; zk	

j (y0 − xk	+1)
)

≥ 0.

Further, from the homogeneity of f ◦,
∑m

j=1 z̄ j f ◦
j (x∗; y0 − x∗) ≥ 0. Hence, there

exists j0 ∈ I such that f ◦
j0
(x∗; y0 − x∗) ≥ 0. This is not possible since (14) holds.

Therefore, x∗ is a Pareto–Clarke critical point of F in C̄ . ��
Let us illustrate Theorem 4.1 with some examples.

Example 4.1 (Nonnegative constraints) To solve that problem minw{F(x, y):
(x, y) ∈ R

2+}, where F : R
2 → R

2 is defined as F(x, y) = (max{x2 + y2,
−(x2 + y2) + 1}, x2 + y2), we will take advantage of the flexibility of the prox-
imal distances. To find a Pareto–Clarke critical point of F in R

2+, we will apply
our inexact multi-objective proximal point method with an appropriate proximal
distance d with respect to the convex set C = R

2++. In fact, there are sev-
eral examples of such distances, some of them satisfy (d5), see [11]. Now, since
(1/2, 0) � F(x, y) for all (x, y) ∈ R

2, and the gradients of (x, y) �→ x2 + y2

and (x, y) �→ −(x2 + y2) + 1 are Lipschitz continuous on R
2, the assumptions

A1 and A2 are satisfied. Note that for all x p ∈ R
2 with (1/2, 0) � F(x p) ≺

(1, 0), the level set Ωp := {
(x, y) ∈ R

2 : F(x, y) � F(x p)
}
is not convex, once

(−1/
√
2, 0), (1/

√
2, 0) ∈ Ωp and 1/2(−1/

√
2, 0) + 1/2(1/

√
2, 0) /∈ Ωp. Choosing

x0 with (1/2, 0) � F(x0) ≺ (1, 0), the results of Bento [3, Theorem 1] cannot be
applied for this example. FromTheorem 4.1, xk+1 ∈ C ∩Ωk , for k = 0, 1, . . . . Hence,
0 � F(xk+1) � F(xk) � F(x0), and so,

{
F(xk)

}
is bounded. If xk := (xk

1 , xk
2 ), from

definition of F , it follows that both {xk
1 } and {xk

2 } are bounded. Then, {xk} is bounded.
Now, we can apply Theorem 4.1 to guarantee the existence of a Pareto–Clarke critical
of F in C̄ . Note that, in this case, the inexact multi-objective proximal point method
(9) becomes

0 ∈ ∂
(〈

F(·), zk
〉
+ γkd(·, xk)

)
(xk+1) + εkB + γk∇1d(xk+1, xk) + NΩk (xk+1),

k = 0, 1, . . . . Hence, there exist uk+1 ∈ B and vk+1 ∈ NΩk (xk+1) satisfying

0 ∈ ∂
(〈

F(·), zk
〉
+ γkd(·, xk)

)
(xk+1) + εkuk+1 + γk∇1d(xk+1, xk) + vk+1,
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k = 0, 1, . . . . Putting zk := (zk
1, zk

2), there exists a sequence {αk} ⊂ [0, 1] such that,
for all k = 0, 1, . . . ,

0 =
(
2αk(xk

1 , xk
2 ) − 2(1 − αk)(xk

1 , xk
2 )

)
zk
1 + 2(xk

1 , xk
2 )z

k
2 + εkuk+1

+2γk∇1d(xk+1, xk) + vk+1.

Example 4.2 Define F : R
2 → R by F(x, y) = max

{
e−x2−y2 , ex2+y2−2

}
. As

0 ≤ F(x, y) for all points (x, y) ∈ R
2, and the gradients of (x, y) �→ e−x2−y2

and (x, y) �→ ex2+y2−2 are Lipschitz continuous on R
2, the assumptions A1 and A2

are satisfied. Moreover, note that for all x p ∈ R
2 with e−1 ≤ F(x p) < 1, the level set

Ωp := {
(x, y) ∈ R

2 : F(x, y) ≤ F(x p)
}
is not convex, once (−1, 0), (1, 0) ∈ Ωp

and the combination 1/2(−1, 0)+1/2(1, 0) /∈ Ωp. Choosing x0 with e−1 ≤ F(x0) ≤
1, the results of Bento [3, Theorem 1] cannot be applied for this example. Similarly,
Theorem 4.1 guarantees the existence of a Pareto–Clarke critical of F in C̄ .

4.1 Convex Case

In this subsection, we establish convergence of the inexact multi-objective proximal
point method (9) for the convex case. For this, let us assume that F is convex, i.e.,

F(αx + (1 − α)y) � αF(x) + (1 − α)F(y), x, y ∈ R
n, α ∈ [0, 1].

To set the convergence of any sequence generated by (9), we need to make further
assumptions on the induced proximal distance H , which were also considered in [11].
Let (d, H) ∈ Φ+(C̄) ∈ Φ(C̄) be such that the function H satisfies the following two
additional properties: For y ∈ C̄ and {yk} ⊂ C ,

(Ha) limk→+∞ yk = y, whenever {yk} is bounded and limk→+∞ H(y, yk) = 0;
(Hb) limk→+∞ H(y, yk) = 0, whenever limk→+∞ yk = y.

We also make the following assumption:

A3. Ω := ⋂+∞
k=0 Ωk �= ∅.

Under these assumptions, we prove that the inexact multi-objective proximal point
algorithm (9) converges to a Pareto–Clarke critical of F .

Theorem 4.2 Let (d, H) ∈ Φ+(C̄) and let {xk} be a sequence generated by (9). If
{xk} is bounded, F : R

n → R
m is convex and

∑
k εk < ∞, then {xk} converges to a

Pareto–Clarke critical point of F in C̄.

Proof Since A3 holds, Ωk+1 is nonempty. Then, consider y ∈ Ωk+1. Since F is
convex, we have

f ◦
j (xk+1; y − xk+1) ≤ f j (y) − f j (xk+1), j ∈ I, k ≥ 0.
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Hence, owing to y ∈ Ωk+1,

f ◦
j (xk+1; y − xk+1) ≤ 0, j ∈ I, k ≥ 0. (15)

On the other hand, by using similar arguments as in the proof of Theorem 4.1, we
conclude that there exist M > 0 and vk+1 ∈ NΩk (xk+1) satisfying

H(y, xk) − H(y, xk+1) + Mεk

≥ 1

2γk

⎛
⎝−

m∑
j=1

zk
j f ◦

j

(
xk+1; y − xk+1

)
−

〈
vk+1, y − xk+1

〉⎞⎠ , k ≥ 0. (16)

Considering (15), it follows from Proposition 3.1 that y − xk+1 ∈ TΩk (xk+1), for all
k ≥ 0. Moreover, since vk+1 ∈ NΩk (xk+1) and y − xk+1 ∈ TΩk (xk+1), k ≥ 0, we
have

〈
vk+1, y − xk+1

〉 ≤ 0, k ≥ 0. Hence, we can combine the last inequality with
(15) and (16) to obtain

Mεk + H(y, xk) ≥ H(y, xk+1), k ≥ 0.

Applying Lemma 4.1, we conclude that {H(y, xk)} converges to some point β(y).
Let x∗ be an accumulation point of {xk+1}. Since xk+1 ∈ Ωk ∩ C , we have
F(xk+1) � F(xk) for all k. From the continuity of F , we can conclude that
F(x∗) � F(xk+1) for all k, which means that x∗ ∈ Ωk+1 ∩ C̄ . Based on (Ha),
we obtain lim	→+∞ H(x∗, xk	+1) = 0. Considering that {H(y, xk)} converges, we
conclude that limk→+∞ H(x∗, xk+1) = 0. Now, by (Hb) it follows that {xk} con-
verges to x∗. Therefore, from Theorem 4.1, x∗ is a Pareto–Clarke critical point of F
in C̄ , which proves the theorem. ��
Remark 4.2 It is worth to point out thatA1was used to guarantee the well-definedness
of proximal-type methods in the nonconvex setting. However, under the assumption
of convexity, we do not need A1.

5 A Static Rawls Solution to the Problem of Distributive Justice

In economics and philosophy, the literature on social welfare is intended to express a
statement of objectives of the society. Bentham’s utilitarian approach [18] measures
social welfare as the total sum of individual incomes,

∑
i∈I gi , or the average of

individual incomes, (1/n)
∑

i∈I gi , where n refers to the number of individuals. In
this case, society tries to maximize the total incomes of all people in the society,
without considering how incomes are distributed. It does not distinguish between an
income transfer from the rich to the poor people and vice versa. If an income transfer
from the poor to the rich people ends in a bigger increase in the utility of the rich than
to a decrease in the utility of the poor people, the utilitarian approach advocates that
the society must accept such a transfer because the total utility of society has increased
as a whole.
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In contrast, in philosophy,Rawls [19] proposedmeasuring the socialwelfare of soci-
ety by thewell-beingof the leastwell-off individualmember of society,min {gi ; i ∈ I }.
Hence, Rawls advocates that the society must maximize the income of the poorest per-
sons in society without regard to the income of other individuals. In this way, he devel-
oped a theory of distributive justice, that is, a theory of the “good” as justice, and justice
conceived as fairness. Let us propose a simple model for [19] this max-min principle.

Let X be the universal space of actions (doings), havings, or beings, depending on
the applications. X includes all past elements and all the new items that can be discov-
ered as time evolves. Consider a society made of a list of agents i ∈ I . This society is
divided into nonoverlapping groups J = I1 ∪ · · · ∪ Im . Each agent i belongs to only
one group I j ⊂ J , that is, J = ∪m

j=1 I j and Ih ∩ I j = ∅, h �= j. An institution spends
public resources x ∈ X to improve the redistribution of wealth within this society.

Each agent i ∈ I j of a group I j earns a gain gi, j = gi, j
[
ai , a j−{i}, x

] ∈ R+, ai ∈
Ai, j (x),which depends of his own action ai ; the profile of actions a j−{i} done by other
agents of his group j ; and rules, norms, taxes, subventions, and public investments
x ∈ X set and spent by an institution. His feasible set of actions Ai, j (x) depends itself
on the group j it belongs to and on the chosen collective action x of the institution.

Each period, the institution first sets an action x ∈ Ω ⊂ X . Then, within each
group j , agents play a noncooperative game or a cooperative game that determines a
unique profile of actions a∗

i (x) ∈ Ai, j (x) within each group. The equilibrium gain of

each agent i ∈ I j is gi, j (x) = gi, j

[
a∗

i (x), a∗
j−(i)(x)

]
. Within each group j ∈ J, the

minimum gain earned by an agent of this group is g j (x) = min
{
gi, j (x) : i ∈ I j

}
.

Then, the vector of minimum gains earned within each group of the society is G(x) =
(g1(x), . . . , gm(x)). The institution follows the famous max-min rule of the Rawls
theory of justice if it maximizes (in a vectorial sense) this vector of minimum gains,
that is, if it solves the multi-objective optimization problem maxx∈Ω G(x). A solution
x∗ ∈ Ω is a weak Pareto point of the multi-objective maximization problem if there
is no x ∈ Ω that strictly dominates x∗, that is, such that G(x) � G(x∗), i.e., such that
g j (x) > g j (x∗), j ∈ I .

Therefore, with reference to amulti-objective distributive justice program thatmax-
imizes minimum objectives, our multi-objective program refers to the minimization
of maximum objectives.

6 A Lewin–Rawls Group Dynamic of Distributive Justice

In this section, we show how our semi-local search inexact multi-objective proximal
algorithm models, in a crude but interesting way, a dynamic group process that con-
verges to a solution of the static Rawlsian max-min problem of distributive justice,
using our model given in Sect. 5. For this purpose, we will take advantage of a recent
VR approach to human behavior (Soubeyran, [6–8]).

6.1 Lewin Theory of Group Dynamics

The famous psychologist Kurt Lewin [20,21] is the pioneer of research on group
dynamics, action research, and change processes. His “force field analysis theory”
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focused attention on the way groups and individuals act and react to changing. Lewin 
[20] is the father of approach-avoidance dynamics (see Townsend and Busemeyer
[22] and Elliot [23]). Approach motivation is the energization of behavior by, or
the direction of behavior toward, positive stimuli (objects, events, and possibilities),
whereas avoidance motivation is the energization of behavior by, or the direction of
action away from, negative stimuli (objects, events, and possibilities).

In this context, Lewin [20,21] emphasized that two kinds of forces influence a 
temporary situation: forces that drive the movement toward a goal (motivational and 
helping forces) and forces that block movement toward a goal (resistance to change 
and hindering forces). A “force” can be people, resources, attitudes, traditions, values, 
needs, desires, etc. Lewin’s famous balancing principle states that human behavior 
can be modeled as a succession of temporary equilibria. That is, when driving and 
restraining forces are of almost equal size, the quasi-equilibrium is not broken, and to 
be able to change from one temporary equilibrium to the next one, an agent or a group 
must create an imbalance between forces, i.e., to increase the drivers and to reduce the 
restraints. In this dynamical context, Lewin [20,21] emphasizes the significant role of 
resistance in changing, using, for a typical unit change, a three-stage model of change 
(unfreezing, change, and freezing).

6.2 The Variational Rationality Approach

Recently, the VR approach [6–8] offers, in a dynamical context, a general model of 
individual human behaviors and group dynamics. It models many human behaviors 
as worthwhile “stay and changes” approach-avoidance dynamics. These dynamics 
include a starting point, a transition, and some end (if any). They start from some 
undesirable initial states. They follow acceptable transitions made of a succession 
of stays and changes because agents do not always stay or always change. Stays 
refer to habits, routines, norms, rules, and exploitation phases, while changes refer to 
exploration, search, learning, training, and innovations. These transitions can end (if 
so) in some desired ends or much before, in some traps where agents, being stuck in the 
middle, can fail to reach their desires. Such transitions are worthwhile, and hence are 
acceptable, when each successive stay or change is itself worthwhile. This means that, 
in each period, an agent prefers to change rather than to stay if his motivation to change 
is high enough relative to his resistance to change. Otherwise, he will prefer to stay. An 
end is a (variational) trap that is worth approaching and reaching, but not worthwhile 
to leave. Quite surprisingly, the VR approach, whose initial goal was to propose a 
general model of human behavior in a dynamical context, not only unified a lot of 
stay and change dynamics in behavioral sciences, but also unified many variational 
principles and methods in optimization theory in terms of few behavioral principles.

6.2.1 A Formal Presentation

In the VR approach (see [6–8]), one considers, successively, (1) individuals i ∈ I 
(agents) and groups of agents I j ; (2) different positions x, y ∈ X for individuals and 
groups of agents, where positions can be actions (doings), havings (possessions), or
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beings; (3) some change x � y from x to y �= x or stay x � y = x for agents
and groups; (4) human stay and change dynamics including (i) a given initial position
x0, (ii) a transition

{
x0, x1, . . . , xk, xk+1, . . .

}
defined as a succession of changes and

stays xk
� xk+1,where xk+1 �= xk or xk = xk , and (iii) a possible end x∗ (if any); (5)

acceptable change and stay as worthwhile change and stay (where the termworthwhile
will be defined below); (6) worthwhile human transitions, where each change or stay
xk

� xk+1, with xk+1 �= xk or xk = xk , is worthwhile; (7) ends x∗ ∈ X , defined
as variational traps, which are both (a) aspiration points, worthwhile to reach from
some or any position of the transition, and (b) stationary trap, not worthwhile to leave;
and (8) desired ends or desires x∗∗ ∈ X , which are positions preferred to any other
position belonging to some subset.

Then, the VR approach emphasizes that, when final solutions cannot be reached in
one step, transitions are necessary and so must be acceptable.

6.2.2 Worthwhile Change

Let us define, successively, in the simplest VR structure (see [8]) the following: (1)
vectorial payoffs G(x) = (g1(x), . . . , gm(x)) ∈ R

m , where j ∈ I represent different
groups of agents and g j (x) ∈ R

m is the payoff of group j, given the chosen action x ∈
X ; (2) vectorial advantages to change from x to y, A(x, y) = G(y)− G(x) ∈ R

m ; (3)
vectorial inconveniences to change I (x, y) = C(x, y)−C(x, x)where (4) the costs of
being able to change from x to y areC(x, y) = (c1(x, y), . . . , cm(x, y)) ∈ R

m+ and (5)
the costs of being able to stay at x are C(x, x) = (c1(x, x), . . . , cm(x, x)) ∈ R

m+; (6)
scalar motivation to change M(x, y) = U [A(x, y)] ∈ R+, where U [A] is the utility
of vectorial advantages to change A = A(x, y); and (7) scalar resistance to change
R(x, y) = D [I (x, y)] ∈ R+,where D [I ] is the disutility of vectorial inconveniences
to change I = I (x, y).

In this simple VR model, a change from x to y will be said to be worthwhile
if motivation to change is high enough relative to resistance to change, that is,
M(x, y) ≥ ξ R(x, y), where ξ > 0 is a chosen worthwhile to change ratio. The
subset of worthwhile changes at x is Wξ (x) := {y ∈ X : M(x, y) ≥ ξ R(x, y)} ⊂
X. Then, a worthwhile stay and change transition is xk+1 ∈ Wξ k+1(xk) ={
y ∈ X, M(xk, y) ≥ ξ k+1R(xk, y)

}
, k ≥ 0, where the worthwhile to change ratio

ξ k+1 > 0 is adapted each current period k + 1. In this setting,

(i) an aspiration point x∗ ∈ X is such that x∗ ∈ Wξ k+1(xk), k ∈ N, k ≥ k0;
(ii) a stationary trap x∗ ∈ X is such that Wξ∗(x∗) = {x∗}, where ξ∗ > 0 is the

worthwhile to change ratio chosen at the end.

6.3 The Present Paper

As an application, we consider the specific VR structure, where utilities M = U [A]
and disutilities R = D [I ] are weighted sums of the utilities and disutilities of
advantages A j and inconveniences I j to change over all groups j ∈ I , that is,
U [A] = ∑m

j=1 z jU j
[
A j

]
and D [I ] = ∑m

j=1 z j D j
[
I j

]
. In this paper, we assume
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that utilities and disutilities are linear, that is, U j
[
A j

] = A j and D j
[
I j

] = I j ,
j ∈ I . Weights are z = (z1, . . . , z j , . . . , zm) ∈ R

m+, z �= 0. Then, in terms of scalar
products, M = U [A] = 〈A, z〉 and R = D [I ] = 〈I, z〉, where, for convenience,
I (x, y) = (I1, . . . , Im). For simplification, we suppose that C(x, x) = 0 (for further
details, see [8]). Then, a change is worthwhile if 〈G(y) − G(x), z〉 ≥ ξ 〈C(x, y), z〉.
In our mathematical part, it is assumed that F(x) = −G(x), C(x, y) = d(x, y)e, and
ξ = λ/2 > 0, where γ = λ〈e, z〉, which implies that the set of worthwhile changes
at x becomes

Wλ/2(x) = {
y ∈ R

n : 〈F(x) − F(y), z〉 ≥ (λ/2)〈e, z〉d(x, y)
}
. (17)

In our distributive justice example, G(x) = (g1(x), . . . , gm(x)) ∈ R
m refers to a

vector of payoffs (gains), where g j (x) is the gain of group j ∈ J . The mathematical
part takes into account dissatisfactions or losses F(x) = ( f1(x), . . . , fm(x)), where
f j (x) = −g j (x), j ∈ J .
In this paper, a very nice aspect of our worthwhile transition ending in a final

distributive justice solution is that it is adaptive. That is, weights {zk+1} given for each
current period k+1 to the different objectives are variable. They can be chosen all along
a worthwhile to change process. Our model is a mix between a Rawlsian approach
and a utilitarian (Bentham) approach. Each period, each group tries to maximize the
minimum payoff of all its members. Then, an institution chooses weights, each period,
to maximize a weighted sum of their payoffs. The VR approach shows the importance,
for convergence, of the strength of resistance to change. In our example, resistance to
change of all groups refers, in the current period k +1, to R(xk, x) = (γk/2)d(x, xk).
Then, the higher the value of γk = λk〈ek, zk〉, the higher is resistance to change. The
proof of the convergence result shows that convexity of the (to be decreased) proximal
payoff Pk(xk, x) = 〈F(x), zk〉 + (γk/2)d(x, xk) depends of the size of γk > 0. The
higher γk > 0 is, the more convex is the proximal payoff. Moreover, as seen above,
the higher γk > 0 is, the stronger is resistance to change.

In the present mathematical method, it is assumed that worthwhile stay and changes
improve the dynamic xk+1 ∈ Ωk = {

x ∈ X : F(x) � F(xk)
}
. That means that, each

period, the institution tries to improve the proximal payoff of every group (with no
group accepting a loss, including costs to be able to change). Then, no group can
raise an objection to the proposed change. In this way, the transition toward a final
distributive justice solution is acceptable for each group as a worthwhile stay and
change dynamic. The costs of being able to change are usually asymmetric. They are
modeled as proximal distances. See Sect. 3 and also [6–8] for more details on this
topic. In this paper, we also suppose that the costs of being able to change are shared
in some proportion of a total cost of being able to change, where these proportions can
be chosen, each period. A weak variational trap is both a limit point of a worthwhile
transition and a stationary trap notworthwhile to leave. Such a trapmodels the approach
and the end of a worthwhile stay and change process. Usually, a critical point is not
a stationary trap, but, in the next result, we will show that any accumulation point of
any sequence generated by our (semi) local search inexact multi-objective proximal
method (9) is a stationary trap.
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Theorem 6.1 Suppose that all assumptions of Theorem 4.1 hold. If d(x, y) =
H(x, y) = 1/2‖x − y‖2, then each accumulation point of {xk+1} is a stationary
trap x∗, relative to the worthwhileness of changing set Wλ∗(x∗), for any λ∗ > λ̃.
Moreover if F is convex, {xk} converges to a stationary trap.

Proof Let x∗ be an accumulation point of {xk+1}. Now, let us prove that x∗ is a
stationary trap relative to the worthwhileness of changing set Wλ∗(x∗). From The-
orem 4.1, x∗ ∈ S∗̄

C
(F). Then, there exists j0 ∈ I such that 0 ∈ ∂◦ f j0(x∗), and

we have ∂◦ f j0(x∗) = ∂◦
(

f j0(·) +
(
λkek

j0
/2

)
‖ · −x∗‖2

)
(x∗), and, consequently,

0 ∈ ∂◦
(

f j0(·) +
(
λkek

j0
/2

)
‖ · −x∗‖2

)
(x∗). As f j (·) +

(
λkek

j/2
)

‖ · −x∗‖2 is a

strict convex function for all j ∈ I , k ∈ N, we deduce from the last inclusion that

f j0(x) +
(
λkek

j0
/2

)
‖x − x∗‖2 > f j0(x∗), x ∈ R

n . In view of (17), we have that

Wλ∗(x∗) = {x∗} for all λ∗ > λ̃. Therefore, x∗ is a stationary trap. The second part
follows immediately from Theorem 4.2. ��

7 Conclusions

In this paper, we present an inexact multi-objective proximal method in a proximal
metric setting, whose regularization term is a proximal distance. Our main conver-
gence result is restricted to suitable multi-objective nondifferentiable functions. In our
approach, we do not have the convexity of the set defined in (9) and we use the defi-
nition of the tangent cone of the improving constraint omega set, which allows us to
reach a structure similar to that in [2]. Our motivation has been to give, in the context
of group dynamics, a new model and resolution of a distributive justice problem that
balances, in each step, value creation at the group level and value appropriation at
the individual level. In future research, we intend to investigate our inexact method
when F satisfies the Kurdyka–Łojasiewicz property. In [24], the authors presented an
abstract descent method in the quasi-metric setting. Although both methods, Method
3.1 in [24] and iterative scheme (9), are defined in the scalar and multi-objective set-
ting, respectively, these schemes are similar in two aspects: both are proximal-type
and applied for nonconvex functions. However, the full convergence of Method 3.1
in [24] is obtained for Kurdyka–Łojasiewicz functions and in the present paper for
convex. More attention will need to extend the results of [24] to the multi-objective
setting. We foresee further progress in this topic in the near future.
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