

Phytoene and Phytofluene Isolated from a Tomato Extract are Readily Incorporated in Mixed Micelles and Absorbed by Caco-2 Cells, as Compared to Lycopene, and SR-BI is Involved in their Cellular Uptake

Paula Mapelli-Brahm, Charles Desmarchelier, Marielle Margier, Emmanuelle Reboul, Antonio Meléndez Martínez, Patrick Borel

▶ To cite this version:

Paula Mapelli-Brahm, Charles Desmarchelier, Marielle Margier, Emmanuelle Reboul, Antonio Meléndez Martínez, et al.. Phytoene and Phytofluene Isolated from a Tomato Extract are Readily Incorporated in Mixed Micelles and Absorbed by Caco-2 Cells, as Compared to Lycopene, and SR-BI is Involved in their Cellular Uptake. Molecular Nutrition and Food Research, 2018, 62 (22), pp.1800703. 10.1002/mnfr.201800703. hal-01986021

HAL Id: hal-01986021 https://amu.hal.science/hal-01986021v1

Submitted on 24 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Phytoene and phytofluene isolated from a tomato extract are readily incorporated in mixed micelles and absorbed by Caco-2 cells, as compared to lycopene, and SR-BI is involved in their cellular uptake.

Paula Mapelli-Brahm^{1†}, Charles Desmarchelier^{2†}, Marielle Margier², Emmanuelle Reboul², Antonio J. Meléndez Martínez¹, Patrick Borel^{2*}

¹Food Colour & Quality Lab., Area of Nutrition & Food Science, Universidad de Sevilla, 41012
 Seville, Spain.
 ²C2VN, Aix Marseille Univ, INRA, INSERM, Marseille, France.

[†]Paula Mapelli-Brahm and Charles Desmarchelier are joint first authors.

Keywords: lutein; β-carotene, bioaccessibility; bioavailability; carotenoids

*To whom correspondence should be addressed: Patrick.Borel@univ-amu.fr UMR 1260 INRA/1263 INSERM/Université d'Aix-Marseille Centre CardioVasculaire et Nutrition (C2VN) Faculté de Médecine 27, boulevard Jean Moulin 13385 Marseille cedex 05 France Tel: +33-(0)4-91-32-42-77

Abbreviations: BLT1, block lipid transport-1; CD36, CD36 molecule; CDB, conjugated double bonds; FBS, fetal bovine serum; NPC1L1, NPC1 like intracellular cholesterol transporter 1; PT, phytoene; PTF, phytofluene; *SCARB1* (gene)/SR-BI (protein), scavenger receptor class B type I; SSO, sulfo-*N*-succin-imidyl oleate.

ABSTRACT

Scope: Absorption mechanisms of (PT) and phytofluene (PTF) are poorly known. Our main objectives were to measure their micellization and intestinal cell uptake efficiencies, and to compare them to that of commonly consumed carotenoids. Other objectives were to assess the involvement of protein(s) in their cellular uptake and whether they compete with other carotenoids for micellization and cellular uptake. **Methods and results:** Tomato extract purified PT and PTF, mainly present as *cis*-isomers, were much better incorporated in synthetic mixed micelles than pure all-*trans* lycopene. PT impaired lycopene micellization (-56%, *P*<0.05) while PT and PTF did not significantly affect micellization of other carotenoids, and vice versa. At low concentration, Caco-2 PTF uptake was higher (*P* < 0.05) than that of PT and lycopene (29%, 21% and not detectable). SR-BI, but not CD36 neither NPC1L1, was involved in PT and PTF uptake. PT and PTF impaired (*P* < 0.05) β -carotene uptake (-13 and -22%, respectively).

Conclusions: The high bioaccessibility of PT and PTF can be partly explained by their high micellization efficiency, which is likely due to their natural *cis* isomerization and/or to their high molecular flexibility. SR-BI is involved in their cellular uptake, which can explain competitions with other carotenoids.

1 **1. Introduction**

2 Phytoene (PT) and phytofluene (PTF) are carotenes, *i.e.* non-oxygenated carotenoids, which are found in a wide variety of fruits and vegetables, e.g. in tomatoes, carrots, and light orange apricots 3 4 (at concentrations of around 1.4 and 0.4; 1.4 and 0.6; and 7.2 and 2.4 mg/100g edible portion, for PT and PTF, respectively).^[1, 2] These carotenoids contain 3 (PT) and 5 (PTF) conjugated double 5 6 bonds (CDB), while commonly consumed carotenoids contain at least 10 CDB (Supporting 7 Information Figure S1). This provides them with a unique feature in the carotenoid kingdom: they 8 do not absorb visible light and thus are colourless for human.^[3] In addition, their lower number of CDB gives them a more twisted shape compared to commonly consumed carotenoids, ^[4, 5] which 9 has been suggested to affect their bioavailability and biological actions. ^[2] Moreover, it could also 10 be expected that their tendency to oxidation would be lower.^[2] 11

12 PT and PTF are readily absorbed by the human body, being found in blood and several tissues. 13 ^[6,7] They have recently received increased interest because several studies have found positive 14 associations between their consumption/blood concentration and some health benefits. The intake of 15 PT and/or PTF could be related to an improvement of the immune system and a reduction in the risk to develop various diseases, including certain cancers. ^[2, 8, 9] Moreover, several studies have 16 indicated that they could protect the skin against UV-damage and provide cosmetic benefits. ^[10-13] 17 18 To reach the bloodstream and then target tissues, carotenoids must first be released from the food matrix in which they are embedded and be incorporated into mixed micelles. ^[14, 15] PT and 19 20 PTF have been shown to exhibit higher bioaccessibility than other carotenoids present in the same food matrices. ^[16–19]. Indeed, a bioaccessibility ranking of carotenoid species seems to emerge 21 22 regardless of the food matrix: PT and PTF > lutein > β -carotene > lycopene. However, available 23 data do not allow us to conclude whether the high bioaccessibility of PT and PTF originates from a higher extraction efficiency from food matrices, due to specific intracellular localisation compared 24 to other carotenoids, ^[20] or from a higher intrinsic solubility in mixed micelles, ^[21] due to their 25 peculiar chemical and physical properties, or both. Once in mixed micelles, it is assumed that PT 26 27 and PTF are taken up by enterocytes, transported to their basolateral side, and incorporated into chylomicrons before being secreted into the lymph. ^[14, 15, 22] These uptake and transport processes 28 29 are apparently very efficient for the colourless carotenoids because e.g. PT is a major carotenoid in 30 various tissues and its bioavailability has been shown to be nearly triple than that of lycopene.^[23] 31 Yet, their intestinal absorption mechanisms have not been studied and compared to those of 32 commonly studied carotenoids. Nevertheless, studies in the last decade have allowed experts in this 33 field to conclude that enterocyte uptake of commonly consumed carotenoids is not only passive but

3

- facilitated by membrane proteins.^[24–27] Indeed, it has been shown that CD36 molecule (CD36) is
 involved in cell uptake of provitamin A carotenoids ^[24] and lutein, ^[28] scavenger receptor class B
 type I (SR-BI) is involved in cell uptake of provitamin A carotenoids, ^[24, 29] lycopene ^[28] and lutein,
 ^[26] and NPC1 like intracellular cholesterol transporter 1 (NPC1L1) is involved in lutein uptake. ^[30, 31] Yet, it is not known whether any of these proteins are involved in cell uptake of the colourless
- 39 carotenoids.

40 Our main objective was to obtain fundamental data on two key steps that are assumed to govern 41 the bioavailability of the colourless carotenoids, *i.e.* micellization and apical uptake by intestinal 42 cells. For that, we first measured the incorporation efficiency of tomato extract purified PT and PTF 43 in synthetic mixed micelles and compared it to that of pure commonly consumed carotenoids. We 44 next assessed whether previously mentioned proteins involved in uptake of commonly consumed 45 carotenoids were also involved in that of these colourless carotenoids. Finally, because these 46 colourless carotenoids might be used as supplements in the future we assessed in all experiments 47 whether they compete with the studied commonly consumed carotenoids.

48

49 **2. Materials and methods**

50

51 2.1. Chemicals

52 PT and PTF (99.6% and 99.8% pure as checked by HPLC) were isolated from a tomato extract as described previously.^[19] Purified PT contained 96% of 15-cis-isomer and 4% of all-trans-isomer 53 54 and purified PTF contained 94% of cis-isomers and 6% of all-trans-isomer. Note that in most foods, 55 human tissues and biological fluids, PT and PTF are expected to be present as a mixture of isomers, the *cis* isomers assumed to be predominant. ^[5, 32] All-*trans* α -carotene, lycopene and lutein ($\geq 95\%$ 56 pure) were a gift from DSM Ltd. (Basel, Switzerland). All-*trans* β -carotene (\geq 97% pure), 2-oleoyl-57 1-palmitoyl-sn-glycero-3-phosphocholine (phosphatidylcholine), 1-oleoyl-rac-glycerol 58 59 (monoolein), 1-palmitoyl-sn-glycero-3-phosphocholine (lysophosphatidylcholine), 3β-hydroxy-5cholestene (free cholesterol), oleic acid, and sodium taurocholate were purchased from Sigma-60 61 Aldrich (Saint-Quentin-Fallavier, France). DMEM containing 4.5 g/L glucose, trypsin-EDTA (500 62 mg/L and 200 mg/L, respectively), non-essential amino acids, penicillin/streptomycin and PBS 63 were purchased from Life Technologies (Illkirch, France). Fetal bovine serum (FBS) came from 64 PAA (Vélizy-Villacoublay, France). Block lipid transport-1 (BLT1), used as chemical inhibitor of 65 SR-BI, was purchased from Sigma-Aldrich. Ezetimibe β-D-glucuronide, used as chemical inhibitor of NPC1L1, was purchased from Sequoia-Research (Pangbourne, UK). Sulfo-N-succin-imidyl 66 oleate (SSO), used as chemical inhibitor of CD36, was synthesized as previously published. ^[33] 67

68

69 2.2. Preparation of carotenoid-rich mixed micelles

Mixed micelles containing carotenoids were synthesized as previously described, ^[34] with minor modifications. In summary, we first mixed solvent solutions of carotenoids with solvent solutions of micelle lipids and evaporated the mixture. Then we added DMEM containing 5 mM sodium taurocholate and we synthesized mixed micelles by sonication. The mixed micelle fraction was optically clear and stored at -20 °C until Caco-2 cell experiments.

75

76 2.3. Micellization experiments

77

78 2.3.1 Measurement of carotenoid micellization

The amount of carotenoids that could be incorporated in the mixed micelle fraction was measured at three target carotenoid concentrations, 0.5, 2 and 10 µM. These concentrations are expected to be found in the human intestinal lumen after either low dietary, high dietary, or pharmacological intake of these carotenoids. They were estimated from a previous work ^[19] where carotenoid concentrations were measured in gastro-intestinal fluid following *in vitro* digestions of different doses of these compounds.

85

86 2.3.2. Protocol to study competitions between carotenoids for micellization

87 To study this competition, we compared the amount of carotenoid recovered in mixed micelles 88 when only one carotenoid was added at 0.5μ M during mixed micelle synthesis (control) to the 89 carotenoid amount recovered in micelles when 0.5μ M of another carotenoid was added to the 90 previous one during mixed micelle synthesis.

91

92 2.4. Caco-2 cell experiments

93

94 2.4.1. Culture of Caco-2 cells

95 Caco-2 clone TC-7 cells were a gift from Dr. M. Rousset (UMR-S872, Paris, France). Cells 96 were thawed at passage number 70 or higher and were cultured as previously described. ^[26] Three 97 weeks before each experiment, the cells were seeded on Millicell[®] hanging cell culture inserts (1 98 µm pore size polycarbonate membrane, Millipore S.A.S., Molsheim, France) in 6-well plates at a 99 density of 25×10^4 cells/well to allow for differentiation. Twelve hours before each experiment, 100 media were changed to FBS-free medium at both sides. Based on preliminary results (**Supporting**

5

101 Information Figure S2) and unless otherwise stated, an incubation time of 2 h was selected for the 102 following Caco-2 cells experiments.

103

104 2.4.2. Protocol to evaluate the maximal amount of micellar PT and PTF that could be theoretically
105 taken up by Caco-2 cells

106 The apical side of Caco-2 cell monolayers received different concentrations of micellar PT and 107 PTF, more precisely from 0.3 to 6.9 μ M. The amount of PT and PTF taken up by the cells was 108 measured at the end of the incubation time (2 h). Q_{max} , which is the maximal amount of carotenoid 109 that could be theoretically taken up by the cells, and apparent *K*, which is the micellar carotenoid 100 concentration at which uptake is half the Q_{max} , were calculated.

111

112 2.4.3. Comparison of uptake of different carotenoid species by Caco-2 cells

0.5 μM purified PT or PTF, or pure lutein, lycopene or β-carotene were incorporated in mixed
micelles and added to the apical side of Caco-2 cells monolayers. The amount of carotenoids taken
up by the cells was measured after 2 h incubation.

116

117 2.4.4. Competitions between micellar carotenoids for their uptake by Caco-2 cells

118 Cells were incubated with mixed micelles containing one carotenoid together with mixed 119 micelles containing either no carotenoid (control) or another carotenoid. These experiments were 120 carried out with micellar carotenoid concentrations of about $1 \mu M$.

121

122 2.4.5. Apical efflux of micellar PT and PTF by Caco-2 cells

123 Apical efflux was assessed as previously described. ^[34] First, the apical side of the cells was 124 incubated during 4 h with carotenoid-rich mixed micelles that contained around 10 μ M carotenoids. 125 Cells were then washed with PBS and incubated for 15 min with FBS-free medium. Lastly, cells 126 were incubated during 30, 60, or 120 min with carotenoid-free mixed micelles at the apical side and 127 the amount of carotenoid recovered in the apical medium was measured.

128

129 2.4.6. Effect of NPC1L1 and SR-BI chemical inhibitors on micellar PT and PTF uptake by Caco-2 130 cells

131 Cells were first pre-incubated with either 10 μ M DMSO (control) or 10 μ M of the

132 corresponding chemical inhibitor (ezetimibe glucuronide for NPC1L1 or BLT1 for SR-BI) for 1 h.

133 The apical side then received 1 mL of carotenoid-rich mixed micelles (at 1.4 μ M of PT or 1.2 μ M

134 of PTF) supplemented with either 10 µM DMSO (control) or 10 µM of the corresponding chemical

inhibitor while the basolateral side received FBS-free medium. The cellular uptake of carotenoidswas measured after 2 h incubation.

137

138 2.5. HEK cell culture experiments

To confirm previous results obtained on the protein apparently involved, or not, in PT and PTF uptake by Caco-2 cells, and to further assess the potential involvement of CD36, which is not expressed in Caco-2 TC-7 cells, ^[35] we performed uptake studies in GripTiteTM cells, *i.e.* genetically engineered Human Embryonic Kidney cells (HEK 293-T cells).

HEK cells were cultured and transfected as previously described. ^[24] For transfection, 3 µg of
DNA was used, *i.e.* empty pIRES plasmid or human *CD36* in pIRES plasmid to study the
involvement of CD36; and empty pCDNA3.1 plasmid or human *SCARBI* in pCDNA3.1 plasmid to
study the involvement of SR-BI. The transfections were checked by Western blot analysis. ^[33]

147 Carotenoids in mixed micelles were no used in these experiments because they exert toxic 148 effects on HEK cells. Therefore, the carotenoids vehicles were prepared as follows: First, 149 carotenoids in hexane were incorporated in a glass tube and, after evaporation of the solvent, 6 μL 150 of ethanol were added to facilitate the subsequent solubilisation of carotenoids in FBS. Then, 1.2 151 mL of FBS and 10.8 mL of DMEM were added and the final mixture was vortexed and sonicated 152 for two min.

Before each experiment, carotenoid concentration in the complete medium was analysed by 153 HPLC. Three conditions were tested: 1) HEK cells transfected with the empty plasmid (control 154 155 condition), 2) HEK cells transfected with a plasmid containing either SCARB1 or CD36, and 3) HEK cells transfected with a plasmid containing either SCARB1 or CD36 together with an inhibitor 156 of the corresponding protein (BLT1 at 10 μ M or SSO at 400 μ M, ^[36] respectively). Thus, the cells 157 158 received 1 mL of complete medium in which was added 5 µM of either PT or PTF, supplemented with either DMSO for the first and second conditions, or with the corresponding inhibitor for the 159 160 third condition. After 3 h of incubation, carotenoid concentration was measured in the media and 161 the scraped cells.

162

163 **2.6.** Carotenoid extraction and HPLC analysis

164 Carotenoid extraction was carried out as previously described, ^[33] using α -carotene as internal 165 standard. Carotenoid extracts were re-dissolved in 100 µL of ethyl acetate and 10-80 µL were 166 injected. HPLC analyses were carried out on a Dionex system, ^[37] using a YMC-C₃₀ column (5 µm, 167 4.6 × 250 mm) kept at 30 °C with a YMC-C₃₀ pre-column (5 µm, 10 × 4 mm). The mobile phase 168 consisted of a mixture of methanol and methyl *tert*-butyl ether with an elution gradient that was

- 169 described previously.^[37] The quantification was performed by considering the data extracted at 286
- 170 (PT), 350 (PTF), 450 (β-carotene, lutein and α-carotene), and 470 nm (lycopene), using
- 171 Chromeleon software (version 6.50 SP4 Build 1000, Dionex) and external calibration curves.
- 172

173 **2.7.** Calculations and statistics

174 Carotenoid uptake efficiency by cells was expressed as the percentage of carotenoids recovered 175 in the scraped cells at the end of the experiments relative to the sum of carotenoids recovered in the 176 apical chamber plus those recovered in the scraped cells.

177 Carotenoid efflux efficiency by cells was calculated as the relative amount of carotenoid
178 recovered in the apical medium at the end of the experiment compared to that measured in the cells
179 after 4 h incubation.

180 When micellization and uptake experiments were done using the same mixed micelles than 181 those used to measure carotenoid micellization, the percentage of theoretical bioavailability of a 182 carotenoid was calculated as: micellization efficiency (%) \times uptake efficiency (%).

- All experiments were done in triplicate, except those to study the implication of SR-BI and NPC1L1 in the uptake of PT and PTF by Caco-2 cells, which were performed on two different days and included 4 replicates per day. Results are expressed as means ± SEM.
- Statistical analyses were performed using SPSS (version 20, SPSS Inc., Chicago, IL, USA) statistical package. Prior to Student *t*-test or ANOVA, homogeneity of variances was checked by Levene's test and normality of distributions by Q-Q plots. When the *F*-test in ANOVA was significant, Tukey's test was used as a *post hoc* test for pairwise comparisons but Dunnett's test was used when comparing means from several experimental groups against a single control group mean. For all tests, the bilateral alpha risk was $\alpha = 0.05$.
- 192 Relationships between two continuous variables were examined by regression analysis on193 KaleidaGraph software (version 3.6, Synergy software, Reading, PA).
- 194

3. Results

196

197 3.1. Incorporation efficiency of PT and PTF in synthetic mixed micelles as compared to that of 198 commonly consumed carotenoids

199 Marked differences in incorporation efficiency of the investigated carotenoids were observed 200 (**Figure 1-A**). PT and lutein displayed the highest incorporation efficiencies, which were linear over 201 the three concentrations tested. PTF incorporation efficiency was similar to that of PT and lutein up 202 to about 2 μ M, *i.e.* high dietary concentrations, but it then it apparently started to plateau when the 203 concentration increased. Lycopene exhibited the lowest incorporation efficiency with a maximum
 204 micellar concentration of 0.06 µM at all three concentrations tested.

205

206 3.2. Competition between colourless carotenoids and other carotenoids for micellization

207 Neither did PT or PTF compete for their micellization when they were added concurrently at 208 0.5 μM during mixed micelle synthesis. The addition of 0.5 μM PTF during mixed micelle 209 synthesis did not significantly impair lutein or lycopene micellization. Concerning PT, its addition 210 did not significantly impair lutein micellization whereas it significantly (P<0.05) impaired that of 211 lycopene (-55.6%). Finally, the incorporation efficiencies of PT and PTF were not significantly 212 affected by the simultaneous addition of lutein, β-carotene or lycopene during mixed micelle 213 synthesis (data not shown).

214

3.3. Effect of the concentration of micellar PT and PTF on their uptake efficiency by Caco-2 cells

PT and PTF uptake by Caco-2 cells as a function of their micellar concentration followed hyperbolic curves (**Figure 1-B**). Thus, their uptake efficiency decreased when their micellar concentration increased. More precisely, PT uptake efficiency decreased from 23.4% to 14.6% (at 0.3 and 6.9 μ M, respectively) and that of PTF from 32.0% to 14.8% (at 0.4 and 2.2 μ M, respectively). Calculated Q_{max} and *K* of PT were almost 6- and 10-fold higher than that of PTF, respectively (**Table 1**).

223

224 3.4. Comparison of carotenoid uptake by Caco-2 cells

The uptake efficiency of lutein, β -carotene and PTF was not significantly different (*P*= 0.121). Conversely, PT uptake efficiency was significantly lower than that of PTF and β -carotene (**Table 2**). The uptake of lycopene was too low to be accurately measured and was therefore markedly lower than that of the other studied carotenoids.

229

230 3.5. Competitions between micellar carotenoids for their uptake by Caco-2 cells

The effect of the addition of either micellar PT or PTF on the cellular uptake of commonly consumed carotenoids is shown in **Figures 2-A** and **2-B**. Micellar lutein uptake was not significantly affected by the addition of either micellar PT or PTF (**Figure 2-A**). Conversely, micellar β -carotene uptake was significantly impaired by PT and PTF (-12.9% and -21.6%, respectively) (**Figure 2-B**). The effect of the addition of either micellar PT or PTF on lycopene uptake is not shown because it could not be accurately measured due to the very low amount of lycopene taken up by the cells. 238 The effect of the addition of the other studied carotenoids on PT and PTF uptake by Caco-2 239 cells is shown in Figures 2-C and 2-D. The uptake of micellar PT was significantly impaired when 240 micellar PTF, β -carotene or lutein were added in the apical chamber (-30.8, -52.4 and -27.8%, 241 respectively, P< 0.001) (Figure 2-C). Conversely, only micellar lutein significantly impaired 242 micellar PTF uptake (-40%, *P*< 0.001) (Figure 2-D). 243 244 3.6. Apical efflux of PT and PTF by Caco-2 cells 245 The apical efflux of PT and PTF following their apical uptake was not significantly different, *i.e.* 246 around $14 \pm 2\%$ for both carotenoids (P=0.649), and it did not significantly vary from 30 to 120 min 247 (data not shown). 248 249 3.7. Effect of NPC1L1 and SR-BI chemical inhibitors on micellar PT and PTF uptake by Caco-2 250 cells 251 Ezetimibe glucuronide, a chemical inhibitor of NPC1L1, did not significantly affect PT or PTF 252 uptake (Figure 3-A). Conversely, uptake of PT and PTF was significantly decreased (-76.9 and -85.4%, respectively, P < 0.001) when BLT1, a chemical inhibitor of SR-BI inhibitor, was added to 253

254 255

256 3.8. Effect of transfection of membrane proteins on micellar PT and PTF uptake by HEK cells

257 PT and PTF uptake was significantly higher in HEK cells transfected with *SCARB1*, which 258 encodes for SR-BI, than in HEK cells transfected with an empty plasmid (P < 0.01 and P < 0.05 for 259 PT and PTF, respectively). Furthermore, the addition of BLT1 to the *SCARB1* transfected cells led 260 to abolish the higher uptake observed in these cells (**Figure 3-B**). In addition, transfection of HEK 261 cells with *CD36* did not significantly change their PT and PTF uptake efficiency (data not shown).

262

263 **4. Discussion**

the apical medium.

264

265 This study was based on the hypothesis that the high bioavailability of PT and PTF relative to that of other carotenoids found in the same food matrices is due, at least in part, to their peculiar 266 267 molecular properties, which could lead to higher solubility in mixed micelles and/or to higher 268 uptake efficiency by intestinal cells. To verify this hypothesis, we first purified PT and PTF from 269 tomato extract and we compared their micellization and their cellular uptake efficiency to that of 270 pure commonly consumed carotenoids. We observed that PT and PTF possess a much higher 271 intrinsic ability to be incorporated into synthetic mixed micelles than lycopene, another linear non-272 oxygenated carotenoid. In fact, at low and high dietary concentrations, i.e. 0.5 and 2.0 µM, their

273 micellization efficiency was similar to that of lutein, which is an oxygenated carotenoid 274 acknowledged to have a higher micellization efficiency compared to carotenes.^[38, 39] We 275 hypothesize that this high intrinsic solubility in mixed micelles is due either to the fact that PT and 276 PTF were mainly present in the form of *cis*-isomers, which is similar to their isomerization status in foods, and/or to the fact that these carotenoids have a higher molecular flexibility than the other 277 278 studied carotenoids. Concerning the first hypothesis, although it is not known whether the cis-279 isomers of PT and PTF have higher solubility in micelles than their respective all-trans isomers, we 280 hypothesis that this is very likely because this has been shown for another linear carotene, *i.e.* lycopene. ^[39, 40, 41] Concerning the second hypothesis, it has been shown that, due to their lower 281 number of CDB (Supporting Information Figure S1), PT and PTF can fold more freely and adopt 282 less rigid shapes than commonly consumed carotenoids.^[32] Furthermore, the higher number of 283 sigma bonds in these molecules, where rotation is possible,^[43] leads to a more pronounced twist in 284 the back-bone of these molecules.^[4, 5] In fact, torsional energies of the linear carotenoids 285 investigated rank as follows: PT (ca. 57 kcal/mol, 3 CDB) < PTF (ca. 61 kcal/mol, 5 CDB) < 286 287 lycopene (ca. 73 kcal/mol, 11 CDB).^[32] This higher flexibility and twist ability are assumed to 288 translate into better insertion of these carotenoids between lipid molecules composing mixed micelles. However, we cannot conclude whether the high bioaccessibility of PT and PTF is due to 289 290 their *cis*-isomerization, to their high molecular flexibility, or both. We secondly studied the uptake of PT and PTF by intestinal cells. The first key observation was that their uptake efficiency was 291 292 much higher than that of lycopene. In fact, the uptake efficiency of PTF was equivalent to that of 293 lutein and β-carotene. The second key observation was that the saturable uptake of PT and PTF 294 strongly suggested a protein-mediated uptake. Another interesting observation was that PT uptake 295 was higher than that of PTF at high dietary concentrations, i.e. > 2 μ M (Supporting Information 296 Figure S2), while it was lower at low dietary concentrations (Table 2). This effect of the colourless 297 carotenoid concentration on their relative cellular uptake efficiency was unexpected but it was in agreement with a previous study.^[44] In this clinical study the bioavailability of PTF was higher than 298 299 that of PT in the group of subjects who ingested the lowest concentrations of colourless carotenoids (≈0.9 mg of PT and PTF/day for 12 weeks), while it was the opposite in the group who ingested the 300 301 highest concentrations (4.6 mg of PT and 3.2 mg of PTF/day for 12 weeks). We hypothesize that 302 this concentration effect can be due to differences between PT and PTF regarding their relative affinity for membrane transporter(s). Indeed, the higher apparent Q_{max} of PT, as compared to that of 303 304 PTF, could be explained by the hypothesis that PTF possesses a higher affinity for the main 305 transporter of these colourless carotenoids than PT. This last hypothesis is supported by its lower 306 apparent K and by the fact that PTF significantly inhibited PT uptake while the opposite was not

307 observed. The percentages of theoretical bioavailability of PT and PTF at 0.5 μ M, *i.e.* at a low 308 dietary concentration, were 18.3 and 26.1%, respectively, which was in agreement with the results 309 obtained in the previously mentioned study. ^[44]

310 After obtaining results suggesting that the colourless carotenoids uptake is protein-mediated, we evaluated whether proteins that have been shown to participate in the uptake of commonly 311 consumed carotenoids, *i.e.* SR-BI, CD36, and NPC1L1, ^[27] are also involved in PT and PTF uptake. 312 313 Overall, our results suggest that SR-BI is involved in the uptake of PT and PTF while CD36 and 314 NPC1L1 are not. The involvement of SR-BI is in agreement with the results obtained for other carotenes, *i.e.* lycopene and β -carotene. ^[24, 25, 45] The lack of involvement of CD36 suggests that this 315 protein is more specifically associated with the uptake of provitamin A carotenoids. ^[24] Another 316 interesting finding was that about 14% of PT and PTF taken up by the cells was apparently effluxed 317 318 back to their apical side. This is consistent with previous data suggesting that other fat-soluble micronutrients such as tocopherol, cholecalciferol or phylloquinone, ^[33, 46, 47] are partially effluxed 319 by Caco-2. After having obtained key information on the mechanisms implicated in absorption of 320 321 these carotenoids and because these phytochemicals might be used in the future as dietary 322 supplements, whether they exhibit demonstrated benefits for health, we assessed whether they compete with commonly consumed carotenoids for either their micellization or intestinal cell 323 324 uptake. Indeed, significant competitions at these key steps of carotenoid absorption could lead to a decrease in absorption of carotenoids that possess well-acknowledged health effects, e.g. β -carotene 325 326 and lutein. Concerning micellization, only one competition was observed, *i.e.* PT significantly impaired lycopene micellization. It seems logical to observe that the carotenoid that has the highest 327 328 ability to be incorporated in mixed micelles significantly impaired the micellar incorporation of the 329 one that has the lowest ability to be incorporated in micelles. Concerning cellular uptake, our results 330 suggest that PT and PTF can partially impair the intestinal uptake of β -carotene, and vice versa. This is in agreement with previous results showing that commonly consumed carotenoids compete 331 for their intestinal uptake, ^[48] and this is likely explained by the fact that all these carotenoids share 332 333 at least one common membrane transporter, in that case SR-BI.

In summary this study has provided results allowing us to suggest why the bioaccessibility of PT and PTF is unexpectedly high as compared to that of the other main linear dietary carotene, *i.e.* lycopene. Indeed, this is likely because these colourless carotenoids are present mainly as *cis*isomers in foods and/or because of their high molecular flexibility. This study has also provided us data suggesting that SR-BI, which is involved in uptake of commonly consumed carotenoids, is also involved in cellular uptake of PT and PTF, which in turn explains competitions for cellular uptake. We have also data obtained data suggesting that a fraction of absorbed PT and PTF is effluxed back

12

to the intestinal lumen. We acknowledge some limitations of this study. First, we compared

- 342 micellization of mainly *cis*-isomers of PT and PTF with that of all-*trans* isomers of commonly
- 343 consumed carotenoids. Thus, we cannot conclude that all-*trans* PT and PTF are better incorporated
- 344 in micelles than all-*trans* common carotenoids. Nevertheless, this would have a low interest for
- 345 nutritionists because these colourless carotenoids are naturally present in foods as *cis*-isomers. Yet,
- this could be of interest for peoples who would like to chemically synthesize these compounds. The
- 347 second main limitation is that we did not use an *in vitro* digestion model to assess bioaccessibility.
- 348 Nevertheless, this model was used in previous studies and our aim was to go further by obtaining
- 349 data on the intrinsic solubility of these carotenoids in micelles in order to understand why they are
- 350 so bioaccessible.

Author contributions

PB designed the research project with PMB, CD, and AMM; PB, CD and ER designed the protocol; PMB and VM conducted the micellization studies; PMB, MM, VM and MN conducted the cell studies; PMB and CH measured carotenoid concentrations by HPLC; PMB analysed the results with CD and ER; PMB and CD performed statistical analyses; PB, PMB and CD wrote the paper with consultation from ER; PB had primary responsibility for the final content of the manuscript. All authors have read and approved the final manuscript.

Acknowledgements

The authors would like to thank Vincent Mignot, Charlotte Halimi and Marion Nowicki (C2VN, Marseille) for valuable technical assistance.

Funding

PMB received funding to carry out a Short-Term Scientific Mission at PB's human micronutrition team in Marseille from the European COST Action EUROCAROTEN (CA15136, European network to advance carotenoid research and applications in agro-food and health, www.eurocaroten.eu, http://www.cost.eu/COST_Actions/ca/CA15136).

The Carnot Star Institute provided funding for consumables.

AMM and PMB acknowledged funding from the Andalusian Council of Economy, Innovation, Science and Employment (project ref. CAROTINCO-P12-AGR-1287).

Conflict of interest

AMM is a member of the advisory board of IBR-Israeli Biotechnology Research, Ltd. (Yavne, Israel).

5. References

[1] Biehler, E., Alkerwi, A., Hoffmann, L., Krause, E., Guillaume, M., Lair, M.-L, Bohn, T. Contribution of violaxanthin, neoxanthin, phytoene and phytofluene to total carotenoid intake: Assessment in Luxembourg. *J. Food Compos. Anal.* 2012, *25*, 56–65.

[2] Meléndez-Martínez, A.J., Mapelli-Brahm, P., Benítez-González, A., Stinco, C.M. A comprehensive review on the colorless carotenoids phytoene and phytofluene. *Arch. Biochem. Biophys.* 2015, *572*, 188–200.

[3] Rodriguez-Amaya, D.B., A guide to carotenoid analysis in foods, ILSI Press, Washington, D.C. 2001.

[4] Lima, I.T., Sousa, L., Freitas, R. da S., Ribeiro Junior, L.A., de Sousa Junior, R.T., da Silva
Filho, D.A. A DFT study of a set of natural dyes for organic electronics. *J. Mol. Model.* 2017, *23*, 1–
9.

[5] Meléndez-Martínez, A.J., Stinco, C.M., Liu, C., Wang, X.-D. A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. *Food Chem.* 2013, *138*, 1341–50.

[6] Khachik, F., Carvalho, L., Bernstein, P.S., Muir, G.J., Zhao, D.-Y., Katz, N.B. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. *Exp. Biol. Med. (Maywood).* 2002, *227*, 845–51.

[7] Campbell, J.K., Engelmann, N.J., Lila, M.A., Erdman, J.W. Phytoene, phytofluene, and lycopene from tomato powder differentially accumulate in tissues of male Fisher 344 rats. *Nutr. Res.* 2007, *27*, 794–801.

[8] Engelmann, N.J., Clinton, S.K., Erdman, J.W.J. Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene. *Adv. Nutr.* 2011, *2*, 51–61.

[9] Meléndez-Martínez, A.J., Mapelli-Brahm, P., Stinco, C.M. The colourless carotenoids phytoene and phytofluene: From dietary sources to their usefulness for the functional foods and nutricosmetics industries. *J. Food Compos. Anal.* 2018, *67*, 91–103.

[10] von Oppen-Bezalel, L., Fishbein, D., Havas, F., Ben-Chitrit, O., Khaiat, A. The photoprotective effects of a food supplement tomato powder rich in phytoene and phytofluene, the colorless carotenoids, a preliminary study. *Glob. Dermatology* 2015, *2*, 178–182.

[11] Mathews-Roth, M.M., Pathak, M.A. Phytoene as a protective agent against sunburn (+280 nm) radiation in guinea pigs. *Photochem. Photobiol.* 1975, *21*, 261–263.

[12] Mathews-Roth, M.M. Antitumor activity of β -carotene, canthaxanthin and phytoene. *Oncol.* 1982, *39*, 33–37.

[13] von Oppen-Bezalel, L., Havas, F., Ramot, O., Kalo, E., Fishbein, D., Ben-Chitrit, O.
 Phytoene and Phytofluene for (Photo) Protection, Anti Aging, Lightening and Evening of Skin
 Tone. SOFW J. 2014, 140, 8–12.

[14] Desmarchelier, C., Borel, P. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. *Trends Food Sci. Technol.* 2017, *69*, 270–280.

[15] Bohn, T., Desmarchelier, C., Dragsted, L.O., Nielsen, C.S., Stahl, W, Rühl, R., Keijer, J., Borel, P. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. *Mol. Nutr. Food Res.* 2017, *61*, 1–37.

[16] Rodrigues, D.B., Chitchumroonchokchai, C., Mariutti, L.R.B., Mercadante, A.Z., Failla,
 M.L. Comparison of two static in vitro digestion methods for screening bioaccessibility of
 carotenoids in fruits, vegetables and animal products. *J. Agric. Food Chem.* 2017, *65*, 11220–11228.

[17] Mapelli-Brahm, P., Stinco, C.M., Rodrigo, M.J., Zacarías, L., Meléndez-Martínez, A.J. Impact of thermal treatments on the bioaccessibility of phytoene and phytofluene in relation to changes in the microstructure and size of orange juice particles. *J. Funct. Foods* 2018, *46*, 38–47.

[18] Jeffery, J.L., Turner, N.D., King, S.R. Carotenoid bioaccessibility from nine raw carotenoidstoring fruits and vegetables using an in vitro model. *J. Sci. Food Agric.* 2012, *92*, 2603–10.

[19] Mapelli-Brahm, P., Corte-Real, J., Meléndez-Martínez, A.J., Bohn, T. Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices. *Food Chem.* 2017, *229*, 304–311.

[20] Schweiggert, R.M., Carle, R. Carotenoid deposition in plant and animal foods and its impact on bioavailability. *Crit. Rev. Food Sci. Nutr.* 2017, *57*, 1807–1830.

[21] Sy, C., Gleize, B., Dangles, O., Landrier, J.F., Veyrat, C.C., Borel, P. Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations. *Mol. Nutr. Food Res.* 2012, *56*, 1385–1397.

[22] Reboul, E., Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. *Nutrients* 2013, *5*, 3563–3581.

[23] Moran, N.E., Clinton, S.K., Erdman, J.W. Differential bioavailability, clearance, and tissue distribution of the acyclic tomato carotenoids lycopene and phytoene in mongolian gerbils. *J. Nutr.* 2013, *143*, 1920–1926.

[24] Borel, P., Lietz, G., Goncalves, A., Szabo de Edelenyi, F., Lecompte, S., Curtis, P., Goumidi,
L., Caslake, M.J., Miles, E., Packard, C., Calder, P., Mathers, J.C., Minihane, A.M., Tourniaire, F.,
Kesse-Guyot, E., Galan, P., Hercberg, S., Breidenassel, C., González Gross, M., Moussa, M.,
Meirhaeghe, A., Reboul, E. CD36 and SR-BI are involved in cellular uptake of provitamin A

carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans. *J. Nutr.* 2013, *143*, 448–456.

[25] Moussa, M., Landrier, J.-F., Reboul, E., Ghiringhelli, O., Coméra, C., Collet, X., Fröhlich,
K., Böhm, V., Borel, P. Lycopene absorption in human intestinal cells and in mice involves
scavenger receptor class B type I but not Niemann-Pick C1-like 1. *J. Nutr.* 2008, *138*, 1432–6.

[26] Reboul, E., Abou, L., Mikail, C., Ghiringhelli, O., André, M., Portugal, H., Jourdheuil-Rahmani, D., Amiot, M.-J., Lairon, D., Borel, P. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). *Biochem. J.* 2005, *387*, 455–461.

[27] Reboul, E., Borel, P. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. *Prog. Lipid Res.* 2011, *50*, 388–402.

[28] Moussa, M., Gouranton, E., Gleize, B., Yazidi, C. El, Niot, I., Moussa, M., Gouranton, E., Gleize, B., Yazidi, C. El, Besnard, P., Borel, P., Landrier, J.-F. CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures. *Mol. Nutr. Food Res.* 2011, *55*, 578–584.

[29] Van Bennekum, A., Werder, M., Thuahnai, S.T., Han, C.H., Duong, P., Williams, D.L., Wettstein, P., Schulthess, G., Phillips, M.C., Hauser, H. Class B scavenger receptor-mediated intestinal absorption of dietary β-carotene and cholesterol. *Biochemistry* 2005, 44, 4517–4525.

[30] During, A., Dawson, H., Harrison, E. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. *J Nutr* 2005, *135*, 2305–12.

[31] Sato, Y., Suzuki, R., Kobayashi, M., Itagaki, S., Hirano, T., Noda, T., Mizuno, S., Sugawara, M., Iseki, K. Involvement of cholesterol membrane transporter Niemann-Pick C1-like 1 in the intestinal absorption of lutein. *J. Pharm. Pharm. Sci.* 2012, *15*, 256–264.

[32] Meléndez-Martínez, A.J., Paulino, M., Stinco, C.M., Mapelli-Brahm, P., Wang, X.-D. Study of the time-course of cis/trans (Z/E) isomerization of lycopene, phytoene, and phytofluene from tomato. *J. Agric. Food Chem.* 2014, *62*, 12399–12406.

[33] Reboul, E., Goncalves, A., Comera, C., Bott, R., Nowicki, M., Landrier, J.F., Jourdheuil-Rahmani, D., Dufour, C., Collet, X., Borel, P. Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. *Mol. Nutr. Food Res.* 2011, *55*, 691–702.

[34] Desmarchelier, C., Margier, M., Prévéraud, D.P., Nowicki, M., Rosilio, V., Borel, P., Reboul,
 E. Comparison of the micellar incorporation and the intestinal cell uptake of cholecalciferol, 25 hydroxycholecalciferol and 1-α-hydroxycholecalciferol. *Nutrients* 2017, *9*.

[35] Werder, M., Han, C.H., Wehrli, E., Bimmler, D., Shulthess, G, Hauser, H. Role of scavenger receptors SR-BI and CD36 in selective sterol uptake in the small intestine. *Biochemistry* 2001, *40*, 11643–11650.

[36] Coort, S., Willems, J., Coumans, W., Vusse, van der, G., Bonen, A., Glatz, J.F., Luiken, J.J. Sulfo-N-succinimidyl esters of long chain fatty acids specifically inhibit fatty acid translocase (FAT/CD36)-mediated cellular fatty acid uptake. *Mol. Cell. Biochem.* 2002, *239*, 213–219.

[37] Gleize, B., Steib, M., André, M., Reboul, E. Simple and fast HPLC method for simultaneous determination of retinol, tocopherols, coenzyme Q10and carotenoids in complex samples. *Food Chem.* 2012, *134*, 2560–2564.

[38] Lemmens, L., Colle, I., Van Buggenhout, S., Palmero, P., Van Loey, A., Hendrickx, M.
Carotenoid bioaccessibility in fruit- and vegetable-based food products as affected by product (micro)structural characteristics and the presence of lipids: A review. *Trends Food Sci. Technol.* 2014, *38*, 125–135.

[39] Sun, Q., Yang, C., Li, J., Raza, H., Zhang, L. Lycopene: Heterogeneous catalytic E/Z isomerization and in vitro bioaccessibility assessment using a diffusion model. *J. Food Sci.* 2016, *81*, C2381–C2389.

[40] Failla, M.L., Chitchumroonchokchai, C., Ishida, B.K. In vitro micellarization and intestinal cell uptake of cis isomers of lycopene exceed those of all-trans lycopene. *J. Nutr.* 2008, *138*, 482–486.

[41] Cooperstone, J.L., Ralston, R.A., Riedl, K.M., Haufe, T.C., Schweiggert, R.M., King, S.A., Timmers, C.D., Francis, D.M., Lesinski, G.B., Clinton, S.K., Schwartz, S.J. Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial. *Mol. Nutr. Food Res.* 2015, *59*, 658–669.

[42] Barba, F.J., Mariutti, L.R.B., Bragagnolo, N., Mercadante, A.Z., Barbosa-Cánovas, G.V., Orlien, V. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. *Trends Food Sci. Technol.* 2017, *67*, 195–206.

[43] Britton, G., S. Liaaen-Jensen, Pfander, H., Carotenoids - Volume 4, Birkhäuser Verlag, Basel – Boston - Berlin 2008.

[44] Aust, O., Stahl, W., Sies, H., Tronnier, H., Heinrich, U. Supplementation with tomato-based products increase lycopene, phytofluene, and phytoene levels in human serum and protects against. *Int. J. Vitam. Nutr. Res.* 2003, *75*, 54–60.

[45] During, A., Harrison, E. Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells. *J. Lipid Res.* 2007, *48*, 2283–2294.

[46] Goncalves, A., Margier, M., Roi, S., Collet, X., Niot, I., Goupy, P., Caris-Veyrat, C. Reboul,
E. Intestinal scavenger receptors are involved in vitamin K1 absorption. *J. Biol. Chem.* 2014, *289*, 30743–30752

[47] Reboul, E., Klein, A., Bietrix, F., Gleize, B., Malezet-Desmoulins, C., Schneider, M.,

Margotat, A., Lagrost, L., Collet, X., Borel, P. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. *J. Biol. Chem.* 2006, *281*, 4739–4745.

[48] Reboul, E., Thap, S., Tourniaire, F., André, M., Juhel, C., Morange, S., Amiot, M.J., Lairon, D., Borel, P. Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption. *Br. J. Nutr.* 2007, *97*, 440–446.

TABLES

Carotenoid	Apparent Q_{\max} (nmol)	Apparent $K(\mu M)$	R^2
Phytoene	$3.17\pm0.05^{\rm a}$	$13.67\pm0.35^{\mathrm{a}}$	1.000
Phytofluene	$0.53\pm0.04^{\text{b}}$	$1.44\pm0.25^{\text{b}}$	0.997

Table 1. Parameters of phytoene and phytofluene uptake by Caco-2 cells.

Caco-2 clone TC-7 cells were thawed at passage number 67. Three weeks before each experiment, the cells were seeded on culture inserts (1 μ m pore size polycarbonate membrane) in 6-well plates at a density of around 25×10⁴ cells/well to allow for differentiation. Twelve hours before each experiment, media were changed to FBS-free medium at both sides. Cells received 1 mL of carotenoid-rich synthetic mixed micelles at around 0.5 μ M on the apical side. Carotenoid uptake was measured after 2 h incubation. Results are shown in **Figure 1B**. Best fitting curves were hyperbolic ones: y=ax/(b+x). Apparent Q_{max} represents the maximal amount of carotenoid that could be taken up by cells. Apparent *K* is the micellar carotenoid concentration at which the amount taken up is half the Q_{max} . Values represent means ± SEM of 3 replicates. Mean values with unlike superscript letters within a column were significantly different (*P*< 0.05).

Carotenoid	Uptake (%)
Phytoene	$20.8\pm0.6^{\text{b}}$
Phytofluene	$28.9\pm1.2^{\text{a}}$
β-carotene	$30.6\pm0.7^{\text{a}}$
Lutein	25.8 ± 2.1^{ab}

 Table 2. Carotenoid uptake by Caco-2 cells at a micellar concentration corresponding to a low

 dietary intake of carotenoids.

Caco-2 clone TC-7 cells were thawed at passage number 92. Three weeks before each experiment, the cells were seeded on culture inserts (1 μ m pore size polycarbonate membrane) in 6-well plates at a density of about 25×10⁴ cells/well to allow for differentiation. Twelve hours before each experiment, media were changed to FBS-free medium at both sides. Cells received 1 mL of carotenoid-rich synthetic mixed micelles at around 0.5 μ M on the apical side. Carotenoid uptake was measured after 2 h incubation. Values represent means ± SEM of 3 replicates. Lycopene uptake could not be accurately measured because it was lower than the HPLC detection limit. Mean values with unlike superscript letters were significantly different (*P*< 0.05).

FIGURE LEGENDS

Figure 1. Characterization of phytoene and phytofluene micellization and uptake by Caco-2 cells. (A) Incorporation of phytoene, lutein, phytofluene, and lycopene in synthetic mixed micelles. Mixed micelles with varying concentrations of pure carotenoids were synthesized and their carotenoid concentration was measured by HPLC. Linear trend lines: Phytoene: y=0.874x (R²= 0.999); lutein: y=0.823x (R²= 0.999). Curvilinear trend lines: Phytofluene: $y=-0.0734x^2 + 0.899x$ (R²= 1.000); lycopene: $y=-0.0008x^2 + 0.0137x$ (R²= 0.836). (B) Effect of micellar phytoene and phytofluene concentrations on their uptake by Caco-2 cells. The apical side of the cells received mixed micelles that contained different concentrations of phytoene and phytofluene. Basolateral side received FBS-free medium. Carotenoid concentrations were measured in scraped cells after 2 h incubation. The best fit curves were hyperbolic ones: y=ax/(x+b). Values represent means of 3 replicates and error bars indicate standard error of the mean.

Figure 2. Competitions between micellar carotenoids for their uptake by Caco-2 cells. (A) Effect of phytoene and phytofluene on lutein uptake. (B) Effect of phytoene and phytofluene on β -carotene uptake. (C) Effect of phytofluene and commonly consumed carotenoids on phytoene uptake. (D) Effect of phytoene and commonly consumed carotenoids on phytofluene uptake. The apical side of the cells received 1 mL of mixed micelles that contained the carotenoid of interest plus either carotenoid-free mixed micelles (control) or mixed micelles loaded with another carotenoid species. The target micellar concentration of each carotenoid in each competition conditions was 1 μ M. Carotenoid uptake was measured after 2 h incubation. The effect of phytoene and phytofluene on lycopene uptake could not be accurately measured because lycopene uptake was too low to be accurately measured in our experimental conditions. Values represent means of 3 replicates and error bars indicate SEM. Asterisks indicate significant differences from the control (absorption of the carotenoid of interest alone): *, *P*< 0.05; ***, *P*< 0.001.

Figure 3. Implication of NPC1L1 and SR-BI on phytoene and phytofluene uptake by cells. (A) Effect of chemical inhibitors of NPC1L1 and SR-BI on phytoene and phytofluene uptake by

Caco-2 cells. Cell apical sides were pre-incubated for 1 h with either 10 μ M DMSO (control) or 10 μ M chemical inhibitor (ezetimibe glucuronide for NPC1L1 or BLT1 for SR-BI). Apical sides received thereafter phytoene- or phytofluene-loaded synthetic mixed micelles at 1.4 and 1.2 μ M, respectively. Carotenoid uptake was assessed after 2 h incubation. The experiment was carried out twice, with 4 replicates in each case. This figure shows results of one experiment. Asterisks indicate

significant differences from the control (***, P < 0.001). (B) Effect of transfection of HEK cells with SR-BI gene and further addition of SR-BI chemical inhibitor on phytoene and phytofluene uptake by these cells. Cells were first transfected with either an empty plasmid (control) or a plasmid containing *SCARB1*, i.e. the gene encoding the SR-BI protein. Then cells received complete medium enriched with either micellar phytoene or phytofluene at 5 μ M, supplemented or not with 10 μ M DMSO or BLT1 (the chemical inhibitor of SR-BI). Incubation time was 3 h. For each carotenoid bars bearing unlike superscript letters are significantly different (P < 0.05). In each figure values represent means of 3 replicates and error bars indicate SEM.