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Abstract

We provide an axiomatic characterization of a family of criteria for

ranking completely uncertain and/or ambiguous decisions. A completely

uncertain decision is described by the set of all its consequences (assumed

to be finite). An ambiguous decision is described as a finite set of possible

probability distributions over a finite set of prices. Every criterion in the

family compares sets on the basis of their conditional expected utility, for

some probability function taking strictly positive values and some utility

function both having the universe of alternatives as their domain.

1 Introduction

Suppose that a (public) decision maker examines the possibility of adopting an

economically costly regulation that would limit carbon emissions in the next 50

years with the aim of preventing global warming. The decision maker is uncer-

tain about the impact of carbon emission on the average earth temperature and

tries to get evidence from the best scientists and available models about this. For

instance, the decision maker could obtain in Meinshausen, Meinshausen, Hare,
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Raper, Frieler, Knutti, Frame, and Allen (2009) the collection of estimated dis-

tributions of increase in earth temperature (above the pre-industrial level) that

would result from doubling the amount of carbon in the atmosphere depicted in

Figure 1. The decision maker could possibly obtain similar distributions of in-

creases in the earth temperature for alternative scenarios of variations of carbon

emissions, and base the regulation policy on the information provided by those

alternative collections of distributions. This is a an example of a decision taken

Figure 1: Estimated distributions of the increase in the Earth temperature in

the next 50 years (source: Meinshausen, Meinshausen, Hare, Raper, Frieler,

Knutti, Frame, and Allen (2009))

under objective ambiguity. There is ambiguity because the (probabilistic) knowl-

edge required to take the decision is not unique. As shown on Figure 1, there

are several estimates of the distributions of increase of the earth temperature.

Some of them are imprecise and exhibit a large discrepancy in the predicted

rises of temperature. Others are more concentrated around their "central ten-

dency". The decision maker has no additional a priori knowledge that would

enable a further discrimination between these different estimates. The ambi-

guity is, however, objective in the sense that these probability distributions are

given to the decision maker by credible - here scientific - sources that he/she

has all the reasons to believe. Other examples of decisions involving objective

ambiguity include those involved in the well-known Ellsberg (1961) paradox or
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the excellent one, provided by Ahn (2008), of an ill patient having to choose

between two medical treatments associated with ambiguous evidence on their

probability of survival.

From a formal point of view, deciding under objective ambiguity involves

comparing sets of possible probability distributions such as that described in

Figure 1. It differs to that extent from decision making under (subjective) ambi-

guity studied in an important literature (see e.g. Epstein and Zhang (2001), Ghi-

rartado and Marinaccin (2002), Ghirartado, Maccheroni, and Marinacci (2004),

Klibanoff, Marinacci, and Mukerji (2005), Segal (1987) or Segal (1990)) that

describes decisions as Savagian acts. Recall that the later are functions from a

set of (mutually exclusive) states of nature - that can be enriched to lotteries à

la Anscombe and Aumann (1963) - into a set of consequences. Describing deci-

sions as Savagian acts imposes a mathematical structure that may not always

be present in actual decision making processes. For instance, the public decision

maker who is given the probability distributions of figure 1 is unlikely to have

clear ideas - if any at all - on the "states of natures" that have generated these

probabilities, or those that produce the various average temperature levels ob-

served on the Earth surface in the next 50 years. On the other hand, such a

decision maker can very well understand that a given global warming policy be

associated with a collection of different probability distributions concerning a

consequence of interest - for instance the average earth temperature. Additional

justifications for describing decision making under objective ambiguity in terms

of set rankings can be found in Ahn (2008) or Olszewski (2007).

Ranking sets of objects describe also the decision making process in situa-

tions of "ignorance" or "radical uncertainty - as these are sometimes called. In

these situations, an element of a set is interpreted as a "certain" consequence

that the decision associated to that set can have. The literature on ignorance

has given rise also to a significant literature surveyed, for instance, in Barberà,

Bossert, and Pattanaik (2004). Most of the criteria for decision making stud-

ied in this literature are based on the best and the worst consequences of the

decisions or on associated lexicographic extensions.1 There are two obvious lim-

itations of such “extremist” rankings. The first is that it is natural to believe

(in line with various “expected utility” hypotheses) that decision makers are

concerned with "averages" rather than "extremes". For instance, suppose that

 is a decision under ignorance that can result in earning either $1 or $1 000

000 while  is an alternative decision that can lead to any integer amount of

money lying between $0 and $999 999. Since the extreme earnings associated

to  are strictly greater than those of , “extremist” criteria based on the min

or the max will favor the former over the latter. However, a convincing case can

be made for  over  on the grounds that, on "average" a larger gain is likelier

in the former. A second drawback of "extremist" rankings is that they do

not allow for a diversity of attitudes toward ignorance across decision makers.

In situations where decisions have only monetary consequences and all decision

makers prefer more money to less, they will all have identical rankings over

1Notable exceptions are Baigent and Xu (2004) and Nitzan and Pattanaik (1984).
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decisions under positional rules such as maximin, maximax, leximin and so on.

This is unsatisfactory since the fact that decision makers have the same prefer-

ence over certain outcomes should not imply that they have the same attitude

toward ignorance.2

In this paper, we pursue the line of inquiry of Gravel, Marchant, and Sen

(2012) by providing an axiomatic characterization of a family of rankings of

sets of objects that applies to decision making under either objective ambigu-

ity - if the elements in the sets are probability distributions - or ignorance -

if the elements are ultimate consequences. Contrary to the "extremist" criteria

considered in the literature on ignorance, the criteria that we examine can all

be though of as "smooth" averages of values attached by the decision maker to

the probability distributions (in the objective ambiguity setting) or the certain

consequences (in the ignorance setting) associated to a particular decision. In

Gravel, Marchant, and Sen (2012), we characterize the family of rankings of

all finite subsets of a rich universe that can be thought of as resulting from

the following two-step procedure. In the first step, all conceivable probabil-

ity distributions (objective ambiguity) or certain consequences (ignorance) are

evaluated by some (utility) function. In the second step, decisions are compared

on the basis of their expected utility (given the function chosen in the first

step) under the (uniform) assumption that all probability distributions (objec-

tive ambiguity) or consequences (ignorance) of a decision are equally likely. We

call "Uniform Expected Utility" (UEU) any such ranking of sets. For example,

if our public decision maker was using a UEU criterion, he or she would first

assign to every conceivable probability distribution of the Earth temperature a

numerical utility valuation - that may or may not have an expected utility form

- and would compare alternative sets of probability distributions such as that of

Figure 1 on the basis of their expected valuations under the assumption that all

distributions in the set are equally likely. This uniform treatment of the different

possible distributions of the Earth temperature is somewhat restrictive. Why

would a public decision maker consider equally "credible" the different scientific

studies that have given rise to the distributions of figure 1 ?

The criteria characterized in this paper avoid this limitation, while keeping

the "smoothness" associated with the fact of evaluating a decision on the ba-

sis of some average value. Specifically, any criterion characterized herein can

be thought of as resulting from the following two-step procedure. In the first

step, the decision maker assigns to every conceivable distribution of the Earth

temperature (say) two different numerical valuations. One such valuation is

interpreted, just as in the UEU case, as reflecting the "utility" associated to the

distribution. Again, this "utility" can, but does not need to, be an "expected

utility". The other valuation, restricted by our characterization to be strictly

positive, is interpreted as reflecting the a priori "plausibility" attached by the

decision maker to every conceivable distribution of the Earth temperature. For

instance, the decision maker may believe that a sure increase of the Earth tem-

2The median-based rankings characterized in Nitzan and Pattanaik (1984) are also subject

to this difficulty although they avoid the criticism of been based on “extreme” values.
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perature by 3◦ is more likely than the unpredictable distribution of that increase
associated with some of the distributions of figure 1. In the second step, the de-

cision maker compares alternative sets of distributions of the Earth temperature

on the basis of their "expected utility", with expectations taken with respect

to the likelihood function determined in the first step conditional on the fact

that the distribution of Earth temperature is present in the set. We refer to

any such criterion as to a Conditional Expected Utility (CEU) criterion. Any

UEU criterion is a member of this family that assumes, in the first step, that

all distributions of Earth temperature are equally likely. Hence the CEU family

of criteria is a (significant) generalization of the UEU family that enables the

decision maker to weights differently the different estimates of the distributions

of the earth temperature in terms of their plausibility.

The CEU family of rankings of finite sets of objects characterized in this

paper bears formal similarities with the family of criteria characterized in Ahn

(2008) (and before him by Bolker (1966), Bolker (1967) and Jeffrey (1965))

for atomless sets of objects. A set of objects is atomless if, except perhaps

for singleton sets (considered by Ahn (2008) but excluded by Bolker (1966),

Bolker (1967) and Jeffrey (1965)), it always contains a proper subset that is not

a singleton. Atomless sets contain therefore a continuum of elements and can

not be finite like the set underlying figure 1, the urns considered in Ellsberg’s

experience or the choice of a medical treatment discussed in Ahn (2008). The fact

that we consider only finite sets makes our setting very different one from that

of Ahn (2008). As indicated in Gravel, Marchant, and Sen (2012), we believe

that our finite subsets framework is an important one conceptually, at least

from the viewpoint of practical implementability and testability, and descriptive

faithfulness. We are not for instance aware of any public decision maker involved

in regulating carbon emissions that would be given an atomless set of different

probabilities distributions over the earth temperature.

The characterization of the CEU family of rankings of finite sets of objects

obtained in this paper uses three axioms, and assumes that the objects are taken

from a "rich" environment that may (or may not) be endowed with a topological

structure. Two of our axioms are common with those Ahn (2008), and one of

the two, called Averaging, was also used in the characterization of the UEU

family of finite sets. Ahn (2008) obtains his characterization by combining

the two axioms with two continuity conditions, and by exploiting the structure

provided by his atomless set-theoretic structure. We obtain ours by combining

the two axioms with an Archimedean condition, and by exploiting the assumed

"richness" of the universe from which the finite sets are taken. Yet, and contrary

to what we achieved for the characterization of UEU in Gravel, Marchant, and

Sen (2012), we are not for the moment capable of providing a version of our

main characterization result that would ride explicitly on a topological structure

imposed on the universe of objects, and that would replace the richness condition

and the archimedean axiom by an appropriate continuity condition. Moreover

the richness condition that we use is, perhaps, unnecessarily strong. For one

thing, it rules out, when applied to finite sets of objects taken from a topological

space, any UEU criterion that uses a continuous utility function.
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The organization of the remaining of this paper is as follows. The next section

introduces the formal setting and discusses the axioms and the family of crite-

ria characterized. The results are presented in section 3, and discussed, along

with examples showing the independence of the axioms, in Section 4. Section 5

provides some conclusion.

2 The Model

2.1 Notation

The sets of integers, non-negative integers, real numbers and non-negative real

numbers are denoted respectively by N, N+, R and R+. If  is a vector in R

for some strictly positive integer  and  is a real number, we denote by  the

scalar product of  and . Our notation for vectors inequalities is =, ≥ and .

By a binary relation % on a set Ω, we mean a subset of Ω × Ω. Following the
convention in economics, we write  %  instead of ( ) ∈ . Given a binary

relation %, we define its symmetric factor ∼ by  ∼  ⇐⇒  %  and  %  and

its asymmetric factor Â by  Â  ⇐⇒  %  and not ( % ). A binary relation

% on Ω is reflexive if the statement  %  holds for every  in Ω, is transitive

if  %  always follows  %  and  %  for any    ∈ Ω and is complete if
 %  or  %  holds for every distinct  and  in Ω. An equivalence class  of

a binary relation % on Ω is a subset of Ω such that  ∼ 0 for all  0 ∈  and

it is not the case that  ∼ 0 if  ∈  and 0 ∈ Ω\. A reflexive, transitive and
complete binary relation is called an ordering. An ordering is trivial if it has

only one equivalence class.

2.2 Basic concepts

Let be an arbitrary universe of objects that we will refer to as "consequences".

But keeping in mind the objective ambiguity context discussed in the preceding

section, we could as well interpret  as the set of all conceivable probability

distributions over a more fundamental set of "prizes" (perhaps different rises of

the average Earth temperature). While we do not make any specific assumptions

on , it will be clear subsequently that the axioms that we impose makes it

natural to regard this set as infinite and rich.

We denote by P() the set of all non-empty finite subsets of (with generic

elements , , , etc.). Any such a subset is interpreted as a description of

all consequences of an uncertain decision or, for short, as a decision. In an

objective ambiguity setting, these consequences would be themselves probability

distributions. A certain (non-ambiguous) decision with consequence  ∈  is

identified by the singleton {}.
Let % (with asymmetric and symmetric factors Â and ∼ respectively) be an

ordering on P(). We interpret the statement  %  as meaning “decision

with consequences in  is weakly preferred to decision with consequences in ”.

A similar interpretation is given to the statements  Â  (“strictly preferred

6



to”) and  ∼  (“indifference”).

We want to identify the properties (axioms) of the ordering % that are

necessary and sufficient for the existence of a function  :  → R and a function
 :  → R++ that are such that that, for every  and  in P():

 %  ⇐⇒

P
∈

()()P
∈

()
≥

P
∈

()()P
∈

()
 (1)

We refer to an ordering numerically represented as per (1) for some functions 

and  as to a Conditional Expected Utility (CEU) criterion. Indeed, the func-

tion  is naturally interpreted as assigning to every consequence - or lottery in

the objective ambiguity framework - a number that reflects its a priori "plau-

sibility", while the  function is interpreted as a utility function that evaluates

the "desirability" of every consequence from the decision maker’s view point.

Hence an ordering represented by (1) can be seen as comparing decisions on

the basis of the expected utility of their consequences conditional upon the fact

that they will materialize. We notice that the requirement that ()  0 for

every  ∈  guarantees indeed that the "event" on which the conditioning is

performed is well-defined.

We notice also that the family of UEU criteria characterized in Gravel,

Marchant, and Sen (2012) is, a priori, a subclass of CEU family, in which

the function  is any constant function. Yet, as we shall see later, the charac-

terization that we provide of this family is not complete as it does not cover

all criteria that belong to the family represented by (1). The reason for this is

that we characterize this family by assuming that both the universe  and the

ordering % satisfies the following "richness" condition (somewhat stronger than
the condition of the same name used in Gravel, Marchant, and Sen (2012)).

Condition 1 Richness. For every sets , , ,  and 0 in P() such that
0 ∼  ≺  ≺  ∼ , there are sets  and 0 satisfying  ∩ ( ∪  ∪) =
∅ = 0 ∩ ( ∪  ∪0) such that  ∼ , 0 ∼  and  ∪ ∼  ∼ 0 ∪ .

This condition requires the domain to be sufficiently rich, and the ordering

% to be sufficiently "smooth", for opening up the possibility of "matching"

- in terms of indifference - any given decision by appropriate combinations of

other decisions that are strictly better, and strictly worse than that decision. We

emphasize that this condition restricts both the universe from which the objects

are taken and the ordering %. For instance, a "discontinuous" ordering like, say,
the Leximin one that would compare sets on the basis of lexicographic extension

of their "worst" - as per the ordering % restricted to singletons - elements would
violate this condition. It is somewhat difficult to appraise the strength of this

condition. On the one hand, it may seem to be a weak condition because its

asserted existence of specific sets  and 0 is contingent upon the sets , ,
,  and 0 having the properties indicated in the antecedent of the condition.
On the other hand, as shown in the next section, the richness condition has
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some strength since, if  is a topological space, it excludes from the class

of rankings represented by (1) those for which the function  is constant and

continuous. Moreover, this richness condition is not necessary for an ordering

to be represented by (1).

Before turning to the three axioms that are necessary (and sufficient) for

an ordering on P() satisfying the richness condition to be a CEU criterion,

we find useful to compare our framework to that of Ahn (2008), in which  is

explicitly taken to be the − 1 dimensional simplex −1 : { ∈ R+ :  ∈ [0 1]

for all  = 1   and

X
=1

 = 1}, interpreted as the set of all conceivable

lotteries on some finite set of  prices. Instead of considering finite subsets of

−1, Ahn (2008) applies his analysis to subsets of −1 that are equal to
the closure of their interior (using the topology of the Euclidean distance) and

to singletons. This means that all non-singleton sets considered in Ahn (2008)

contains continuously many elements. Ahn (2008) characterizes all orderings %
of the subsets of −1 that are equal to the closure of their interior - along with
singletons - that can be written as:

 %  ⇐⇒
R

()

()
≥
R

()

()
 (2)

for some continuous function  : −1 −→ R and some probability measure 
on the Borel subsets of −1. Orderings that can be represented as per (2) have
also been characterized by Bolker (1966), Bolker (1967) and Jeffrey (1965) (see

e.g. Broome (1990) for a nice discussion of the Bolker-Jeffrey theory). One can

view the representation (1) as a finite version of the representation (2) in which

the measure  is defined, for any finite set , by:

() =
X
∈

() (3)

Yet we (over ?) emphasize that our restriction to finite sets makes the analysis

very different from that of Ahn (2008) and Bolker (1966), Bolker (1967) and

Jeffrey (1965).

The first axiom used in our characterization of the family of orderings of

P() represented by (1) is the following "Archimedean" one.

Axiom 1 Archimedean. For all sets , , ,  and  in P() such that

 ∼  ∼  ∼  6∼ ,  ∪  Â  ∪  and  ∩ ( ∪) = ∅, if there are two
infinite sequences of sets 0 1         and 0 1        , satisfying

 ∩ ( ∪ ∪) = ∅,  ∩ ( ∪∪) = ∅,  ∼ ,  ∼ , ∪ ∼ ∪
and  ∪ ∼  ∪ for all  6=  ∈ N, then there must be some  ∈ N for which
 ∪S

=0 %  ∪S
=0 holds .

As usual, Archimedean axioms are difficult to write but they say a simple

thing: no decision is infinitely more valuable than any other. As stated here,
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the axiom applies to decisions  and  between which the decision maker is in-

different. Suppose that the uncertainty surrounding these decisions is increased

in the sense that the set of their possible consequences is "enlarged" to conse-

quences in some set  that are not equivalent to  and . Perhaps  is a set

of consequences that the decision maker considers better than  or . Perhaps

it is worse. Suppose also that the decision that leads to consequences in  ∪ 
is strictly better than a decision with consequences in  ∪  Consider then

replacing, in this enlargement to , the initial sets of consequences  and 

by any set in some sequences  and  (respectively, for  = 0 ) that are,

again respectively, disjoint from  and from . These sets are also, in every

sequence, disjoint from each other. Suppose that this replacement is a matter of

indifference for the decision maker. Intuitively then, the sets 0 1        

can all be considered to be "clones" of  relative to  in the sense that the deci-

sion maker is totally indifferent between a decision with consequences in any of

these sets or in  and a decision with consequences in  or in . Similarly, sets

0 1        are clones of  relative to . The Archimedean axiom says

that replacing, in this enlargement to , decision  by an equivalent decision 

and replacing, in the very same enlargement to  decision  by an equivalent

decision  can not reverse the ranking of  ∪  vis-à-vis  ∪  to such an

extent that the reversal - if any - can not be outweighed by adding to ∪ and

to  ∪  a suitably long sequence of clones of  and  respectively. That is,

decisions  and  can not be "infinitely more important" than decisions  and

 relative to  when they are themselves indifferent to  and  respectively.

While this axiom may seem technical and, when understood, "natural", it is

required in the characterization, as shown in example 1 of section 4. Ahn (2008)

does not use an Archimedean axiom. He uses, instead, two continuity axioms

that can not be defined in the abstract universe considered here that may not

have a topological structure.

The two next axioms however are used by Ahn. The first of them is the

Averaging axiom (using the terminology of Broome (1990)) that was also used in

the characterization of the UEU family of criteria provided in Gravel, Marchant,

and Sen (2012). The formal statement of this axiom is as follows.

Axiom 2 Averaging. Suppose  and  ∈ P() are disjoint. Then  %  iff

 ∪ %  iff  %  ∪.

This axiom was called "disjoint set betweenness" by Ahn (2008). It says

that enlarging the possible outcomes of a decision  to those of a (disjoint)

decision  is worth doing (resp. not worth doing) if and only if the set  of

added consequence is better (resp. worse) than the set  to which it is added. It

captures an intuitive property satisfied by calculations of "average" in various

settings (e.g. adding a student to a class will increase the average of the class

if and only if the grade of the added student is larger than the average of the

class). The "only if" part of the axiom is strong since it asserts that the only

reason for ranking a set  above (resp. below) a set  is when the addition of

 to  is considered a good (resp. bad) thing. A weaker version of Averaging
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(that only requires the "if" part in its statement) is used in Olszewski (2007).

A very similar axiom is also used in Gul and Pesendorfer (2001) for ranking

menus of alternatives in a way that reflects "temptation" and "self-control".

The last axiom is called Balancedness by Ahn (2008). It is stated as follows.

Axiom 3 Balancedness. Suppose  and  are two sets in P() such that
 ∼ . Then, if there is a set  ∈ P() satisfying ( ∪ ) ∩  = ∅ and

 ∼  Â  for which  ∪  %  ∪  holds,  ∪ %  ∪ must hold for all

sets  ∈ P() for which ( ∪) ∩ = ∅ and  ∼  Â .

This axiom is a separability condition that plays a key role in guaranteeing

that the measure of finite sets provided (as per expression (3)) by the function 

in the representation (1) is well-defined. The difficulty indeed in the characteri-

zation of the family of CEU criteria is to disentangle the role played by the two

functions of expression (1) that represent two different notions. The function 

serves as identifying the "utility" of a decision. The function  serves as identi-

fying the likelihood of the outcomes of the decision. When do we have evidence

that a (finite) collection of outcomes of a decision is "more likely" than another

? One such evidence - put forth by the balancedness axiom - is provided when

two decisions  and  are equivalent for the decision maker in utility terms, but

are not anymore equivalent if the outcomes that they may yield are enlarged

to outcomes of another decision  that is considered worse to both  and .

Suppose specifically that a decision leading to either  or  is better than a

decision leading to either  or . Such a preference for ∪  over  ∪  can

only come from the fact that the good outcomes in ∪  (that are in ) are

"more likely" than the good outcomes (in ) in ∪. The balancedness axiom
guarantees that the definition of what it means for  to be more likely than

 does not depend upon which particular set  worse than both  and  is

chosen.

3 Main results

Let us define the sets () and () of minimal (resp. maximal) decisions

in  by () = { ∈ P() :  -  ∀ ∈ P()} and () = { ∈ P() :
 %  ∀ ∈ P()}. Each of these set can of course be empty. We define the
set P∗() by P∗() = P() \ (()∪()). Hence, the set P∗() contains
all finite subsets of  that are not maximal or minimal with respect to the

ordering %. One may of course have P∗() = P() if there are no maximal
nor minimal sets for the ordering %. Yet, we know of at least one context where
the set P∗() will be different from P(). This will be the case if, as in Ahn
(2008), the universe  is the  − 1 dimensional simplex interpreted as the set
of all lotteries on a finite set of prices. In such a setting, it would seem natural

that there be a "best" prize (say the certainty that no increase in the Earth

temperature will take place in the next 50 years) and a "worst prize" (say the

certainty that the earth temperature will increase by 10◦ C in the next 50 years).
If this is the case, the singleton that gives unambiguously the lottery that assigns
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a probability 1 to the best (resp. to the worst) prize would be maximal (resp.

minimal) in P().
We first prove the result on the set P∗(). Once having obtained the nu-

merical representation as per (1) on P∗(), we show that the representation

can be extended to the whole set P(). The proof is based on several auxiliary
results that we now present. We relegate all proofs in the Appendix.

The first result is the simple, but important, fact that if the ordering % is

not trivial and satisfies Averaging, then if decisions  and  are respectively

maximal and minimal in the set P(), then  and  must be disjoint. We

formally state this result as follows.

Lemma 1 Let % be a non-trivial ordering of P() satisfying Averaging. Then
if sets  and  ∈ P() are such that  %  %  for all sets  ∈ P(), then
 ∩ = ∅.

The second result establishes a somewhat strong implication of the Richness

condition when it is combined with the Averaging axiom, and applied to a non-

trivial ordering. Indeed, the richness condition implies that, for any two decisions

faced by the decision maker, is possible to replace one them by another that is

indifferent to it and that leads to different consequences than those of the two

initial decisions. The formal statement of this lemma is as follows.

Lemma 2 Let % be a non-trivial ordering of P() satisfying Richness and
Averaging. Then, for every   ∈ P(), there exists  ∈ P() such that
 ∼  and  ∩ ( ∪ ) = ∅.

An important implication of this lemma, and of the richness condition on

which it rides, is that any ordering of P() satisfying Averaging and Richness
if the universe  is finite must be trivial. Averaging and Richness, if they are to

apply to a non-trivial ordering, force to be infinite. More precisely, it forces the

set P∗() to be itself infinite in the sense that, for any decision  ∈ P∗(), one
can find decisions  and  in P∗() that are, respectively, strictly better and
strictly worse than . Hence, the set P∗() of non-maximal and non-minimal
decisions is not only infinite. It is also "unbounded" with respect to the ordering

%. The formal statement of this fact is as follows.

Lemma 3 If % is a non-trivial ordering on P() satisfying Richness and Av-
eraging, then, for every set  ∈ P∗(), there are decisions  and  ∈ P∗()
such that  ≺  ≺ .

Endowed with these two first lemma, we define, for any decision  ∈ P∗(),
the set P() = { ∈ P() :  ∼ } of all decisions that are equivalent to
. This set is not empty since it contains  itself by reflexivity. We then define

the binary relation % on P() by: %  iff there exists a decision  disjoint

from  and  such that ∪ % ∪ and  ≺ . Notice that, since we work

on the set P∗(), we do not define % on a maximal (or minimal) equivalence

class. This binary relation % is naturally interpreted as meaning "is at least as
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probable as". Hence decision  is at least as probable as decision  if  and

 provides the decision maker with the same "utility" - equal to that of the

benchmark decision  - and if merging  to a strictly worse decision  is better

than merging  with that same worse decision. Thanks to the Balancedness

axiom, this binary relation is well-defined in the sense that it des not depend

upon the particular set  used to define it. The following lemma, also proved in

the Appendix, establishes more precisely that the binary relation % is in fact

an ordering of the set P().

Lemma 4 Assume that % is a non-trivial ordering on P() satisfying Bal-
ancedness and Averaging. Then, for any decision  ∈ P∗(), the relation %

is an ordering of P().

In the next lemma, we establish the formal definition of the asymmetric

factor Â and the symmetric factor ∼ of the ordering %.

Lemma 5 Assume that % is an ordering on P() satisfying Richness, Bal-
ancedness and Averaging. Then, for any decision  ∈ P∗() any decisions 
and  in P() and any decision  ∈ P() such that  Â  and ∩(∪) =
∅,

1.  Â  if and only if  ∪  Â  ∪.
2.  ∼  if and only if  ∪  ∼  ∪.

The next lemma is quite important. It establishes the possibility of repre-

senting the "plausibility" ordering % of sets that are indifferent to each other

- as per the ordering % - by a set-additive strictly positive numerical function

which behaves indeed like a probability measure. The proof this lemma rides

on an important theorem on additive numerical representation established in

Krantz, Luce, Suppes, and Tversky (1971).

Lemma 6 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then, for every de-

cision  ∈ P∗(), there exists a mapping  : P()→ R++ such that, for all
 ∈ P(),  %  iff () ≥ () and, for all disjoint  ∈ P(),

( ∪ ) = () + (). Furthermore,  is unique up to a linear trans-

formation.

Given any decision , the ordering % and its additive numerical represen-

tation  enables the comparison of any two decisions that are indifferent to

 as per the ordering %. We now need to establish how the binary relation %

compares - in terms of plausibility - decisions that are not indifferent to each

other in terms of the ordering %. A preliminary step for doing so consists in

showing the possibility of constructing, starting from , an additively separa-

ble function which, for any decision , indicates whether any other decision is

weakly preferred to , or weakly worse than . We do that in the following
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lemma, that is very similar in its statement and proof as Lemma 10 in Ahn

(2008).

Lemma 7 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. If  ∈ P∗(),
there exists a mapping  : P() → R such that (i)  ∩  = ∅ implies

( ∪) = () + () and (ii) () ≥ 0 iff  %  and () ≤ 0 iff
 - .

The function  constructed in the proof of Lemma 7 is a somewhat complex

- but yet additively separable - extension of the function  of Lemma 6. An

important thing to notice about the numerical function  is that, while defined

only with respect to a decision  ∈ P∗(), it is in fact a function that maps
every decision  ∈ P() into the set of real number. Hence, the domain of 
includes sets that belong to () or ().

The additively separable function  of Lemma 7 enables one to identify

whether some decision is better or worse than the benchmark decision . In

order to obtain a numerical representation of the whole preference% over all sets,
it is important to connect together the information conveyed by the functions

 for all benchmark decisions . A first step in establishing this connection

is the following lemma, which says that the functions , defined with respect

to some reference decision , can actually be used to numerically represent

the plausibility ordering %defined on the set P() of all decisions that are

equivalent - as per the ordering % - to a decision  that is not itself equivalent

to . Put differently, the function  numerically represents the plausibility

ordering %defined on P() no matter what is the reference set . The

formal statement of this result is as follows.

Lemma 8 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then, for any two

sets  ∈ P∗() the function  numerically represents the plausibility or-

dering %on P() in the sense that, for any two decisions  and  ∈ P()

 %  ⇐⇒ () ≥ ( ).

We now establish, with the help of this result, that the set of all functions

 obtained for all reference decisions  ∈ P∗()) is a "two-dimensional space"
in the sense that any such function can be obtained as a linear combination of

any two other linearly independent functions. A somewhat analogous result was

proved as Lemma A12 in Ahn (2008).

Lemma 9 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then the family

{ :  ∈ P∗()} is spanned by any two of its members  and  provided

that  and  are linearly independent). That is, for any two functions 

and  for which there are is no real number  such that
()

()
=  for all

decisions  ∈ P(), one can write any function  as  = + for

some real numbers  and .
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The next lemma establishes a somewhat stronger result concerning the set

of functions { :  ∈ P∗()} defined in Lemma 7. Namely, that this set is a
positive cone.

Lemma 10 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Let ,  and  be

three sets in P∗(). Then, there does not exist a strictly positive real number 
and a  ∈ [0 1] such that −() = () + (1− )() holds for all set

 ∈ P().

Using these results on the (vector-like) structure of the set of functions { :
 ∈ P∗()} defined in Lemma 7, we now use these functions to construct

a disjoint-set additive function  that will play a key role in the numerical

representation of the form (1) that we are aiming at. Roughly speaking, the

function  will define the "denominator" of the numerical expression (1).

Lemma 11 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then there exists a

disjoint-additive mapping  : P()→ R such that ()  0 for all  ∈ P∗()
and such that .

The next lemma establishes that the set function  : P∗()→ R defined,
for any reference set , by:

() =
()

()
(4)

provides a numerical representation of the ordering % on the set P∗().

Lemma 12 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Choose any  ∈
P∗(). Then, for all sets  and  ∈ P∗(), ()() ≥ ()() iff

 % .

In the next lemma, we show that each of the two disjoint set-additive func-

tions  - for any set  ∈ P∗() - and  serves as an index of the equivalence

class associated to the intersection of the symmetric factors of the two order-

ings % and %. That is, any two sets of consequences that are considered both

equally desirable - from the view point of % - and equally "plausible" - as per

%- will be assigned the same value by either the function  or the function .

Lemma 13 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then, for any  ∈
P∗(), and any two decisions  and  ∈ P∗(),  ∼  and  ∼  implies

() = () and () = ().

We now establish the existence, in the universe , of consequences that

have "arbitrarily small" level of plausibility. More precisely, we show that the
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function  that defines the denominator of the numerical expression (1) can take

values arbitrarily close to zero if the set of consequences to which it applies is

suitably chosen. Notice that this implies that the UEU criteria characterized

in Gravel, Marchant, and Sen (2012) are not members of the family of CEU

criteria that are represented as per (1) for some functions  and  (with 

strictly positive). Indeed, if a UEU criterion was a CEU criterion, the function

 of expression (1) would be a constant (say () =  for some strictly positive

number  for all consequences ). In this case, there would be no consequences in

 with "arbitrarily small" level of plausibility. The contribution of the richness

condition to this fact that 0 is the greatest lower bound of the the function  is

very important.

Lemma 14 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Then, for any set

 ∈ P∗() and any strictly positive real number , one can find a decision 

such that  ∼  and ()  .

The results obtained so far have been dealing with decisions that are not

maximal or minimal - for the ordering% - in the set P(). We must now progress
in showing that the functions  and  (for any given  ∈ P∗()) defined for
those non-minimal or maximal decisions can also be extended to minimal or

maximal decisions (if any). The first step in this direction is accomplished in

the next lemma, that extends the function  of Lemma 11 - that was taking

strictly positive value on all sets in P∗() - to a closely related function +
which takes strictly positive value on every set in P() (including therefore
maximal and/or minimal sets in P(), if any).
Lemma 15 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. There exist then

a disjoint-additive mapping + : P() → R such that +()  0 for all

 ∈ P(). Moreover the function + belongs to the family { :  ∈ P∗()}
spanned by any two of its linearly independent members  and .

Endowed with this function, we need now to prove an analogue of Lemma 12,

but using + rather than . We do this in the following lemma.

Lemma 16 Assume that % is a non-trivial ordering on P() satisfying Rich-
ness, Balancedness, Averaging and the Archimedean axiom. Choose any  ∈
P∗(). Then, for all sets  and  ∈ P(), ()+() ≥ ()+() iff

 % . Choose any  ∈ P∗() and define  =  . Then, for all  ∈ P∗(),
()+() ≥ ()+() iff  % .

We have now gather all the auxiliary results that are required to prove our

main theorem, that is as follows.

Theorem 1 Assume that % is an ordering of P() that satisfies Richness.
Then % satisfies Balancedness, Averaging and the Archimedean axiom if and

only if there are two functions  :  → R and  :  → R++ such that (1) holds.
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4 Interpretation of the results

4.1 Independence of the axioms

In the next three examples, we show that the axioms used in the characterization

of the CEU family of orderings are independent when applied to an ordering

satisfying richness. The first example exhibits an ordering of P() that does
not belong to the CEU family but that satisfies averaging, balancedness and

richness (but not the Archimedean axiom).

Example 1 Let  = R2++ ×R2. For every  ∈ P(), define

1() =

P
∈ 13P
∈ 1

and

2() =

P
∈ 23P
∈ 2



Define % on P() by.

 ∼  ⇐⇒ 1() = 1() and 2() = 2();

 Â  ⇐⇒
⎧⎨⎩ 1()  1()

or

1() = 1() and 2()  2()

We first show that this ranking violates the Archimedean axiom. Let  =

{(1 2 0−1)},  = {(1 1 0−1)},  = {(1 2 0 )},  = {(1 1 0 )},  =

{(1 1 0 0)} and  = {(2 1 0 0)}. We clearly have  ∼  ∼  ∼  ∼  ∼ 

for all  ∈ N. Let  = {(0 0−1 0)}. We have  Â  ,  ∪  Â  ∪  ,

 ∪  ∼  ∪  and  ∪  ∼  ∪  for all  ∈ N. Yet,contrary to what the
Archimedean axiom requires,  ∪  S

=0 ≺  ∪  S
=0 for all  ∈ N.

We next show that % satisfies Averaging. Suppose first that  Â . Using the

definition of %, this is either equivalent to:

1()  1()

⇐⇒
1()  1( ∪)  1()

⇐⇒
 Â  ∪ Â 

or to:
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1() = 1() and 2()  2()

⇐⇒
1() = 1( ∪) = 1() and 2()  2( ∪)  2()

⇐⇒
 Â  ∪ Â 

A similar reasoning holds when  ∼ . To show that % satisfies Richness,

consider  ∈ P() such that  Â  Â . We will show that there exists

a set  = { } such that  ∩ ( ∪ ) = ∅,  ∼  and  ∪  ∼ . So, we

must have
13 + 13

1 + 1
= 1() (5)

23 + 23

2 + 2
= 2() (6)

13 + 13 +
P

∈ 13

1 + 1 +
P

∈ 1
= 1() (7)

23 + 23 +
P

∈ 23

2 + 2 +
P

∈ 2
= 2() (8)

Set 3 = max(1() 2())+1 and 3 = min(1() 2())−1. There clearly
exist 1 1 ∈ R++ such that (5) holds. Notice that 1 1 are not unique; they
can be scaled by any positive constant and we can choose this constant so that

(7) holds. Similarly, there clearly exist 2 2 ∈ R++ such that (6) holds. They
are unique up to a multiplication by a positive constant, that we can choose

independently of the scaling constant for 1 1. So, we can choose it so that (8)

holds. In order to guarantee that  ∩ ( ∪) = ∅, we can freely manipulate 4
and 4. Hence Richness holds. Finally, to show that % satisfies Balancedness,

consider finite and non-empty subsets  of  such that  ∼  Â 

and ( ∪) ∩ ( ∪) = ∅. We have  ∪ %  ∪  if and only if either:

1( ∪ )  1( ∪ ) iff 1( ∪)  1( ∪) iff  ∪ %  ∪ or

[1( ∪ ) = 1( ∪ ) and 2( ∪ ) ≥ 2( ∪ )] iff [1( ∪ ) =

1( ∪) and 2( ∪) ≥ 2( ∪)] iff  ∪ %  ∪.

The next example, provides a non-CEU ordering that satisfies balancedness,

richness and the Archimedean axiom but violates averaging.

Example 2 Let  = R++ ×R2, () = 1, () = 2,

() =

P
∈ ()()¡P
∈ ()

¢2
and  %  iff () ≥ ().

The ranking % clearly satisfies Richness and the Archimedean axiom. It violates
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Averaging because  = {(34 2 0)} ∼  = {(34 2 1)} Â  ∪.
Let us prove that % satisfies Balancedness.  ∼  implies:

X
∈

()()

ÃX
∈

()

!2
=

ÃX
∈

()

!2X
∈

()() (9)

while  ∪  %  ∪ implies:ÃX
∈

()() +
X
∈

()()

! ⎛⎝ÃX
∈

()

!2
+

ÃX
∈

()

!2⎞⎠

≥
ÃX
∈

()() +
X
∈

()()

! ⎛⎝ÃX
∈

()

!2
+

ÃX
∈

()

!2⎞⎠
or, after distributing:

X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2


≥
X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2
Substituting (9) into this equation yields:

X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2

≥
X
∈

()()

ÃX
∈

()

!2
+
X
∈

()()

ÃX
∈

()

!2
or:

X
∈

()()

⎛⎝ÃX
∈

()

!2
−
ÃX
∈

()

!2⎞⎠ ≥ ÃX
∈

()()−
X
∈

()()

!ÃX
∈

()

!2


Since
¡P

∈ ()
¢2

 0, one obtains:P
∈ ()()¡P
∈ ()

¢2 ≥ P∈ ()()−P∈ ()()¡P
∈ ()

¢2 − ¡P∈ ()
¢2 =

P
∈ ()()¡P
∈ ()

¢2 (10)

if
¡P

∈ ()
¢2 − ¡P∈ ()

¢2
 0 orP

∈ ()()¡P
∈ ()

¢2 ≤ P∈ ()()−P∈ ()()¡P
∈ ()

¢2 − ¡P∈ ()
¢2 =

P
∈ ()()¡P
∈ ()

¢2 (11)
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if
¡P

∈ ()
¢2−¡P∈ ()

¢2
 0. Inequality (10) is not possible because  Â

. We therefore conclude that Inequality (11) holds and that
¡P

∈ ()
¢2 −¡P

∈ ()
¢2 ≤ 0.

We also know that  ≺ . This implies:P
∈ ()()¡P
∈ ()

¢2 ≤ P∈ ()()−P∈ ()()¡P
∈ ()

¢2 − ¡P∈ ()
¢2 =

P
∈ ()()¡P
∈ ()

¢2 
Hence:X
∈

()()[(
X
∈

())2−(
X
∈

())2] ≥ [
X
∈

()()−
X
∈

()()](
X
∈

())2

and X
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2

≥
X
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2

If we add (9) to this inequality, we obtainX
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2

≥
X
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2 +
X
∈

()()(
X
∈

())2

Let us now add
P

∈ ()()
¡P

∈ ()
¢2
on both sides and factorize. We

obtain

[
X
∈

()() +
X
∈

()()] [(
X
∈

())2 + (
X
∈

())]2

≥ [
X
∈

()() +
X
∈

()() ][(
X
∈

())2 + (
X
∈

())2]

which implies  ∪  %  ∪ . This concludes the proof that % satisfies Bal-

ancedness.

Finally, the next example shows a non-CEU ordering that satisfies richness,

the Archimedean axiom and averaging but that violates Balancedness.

Example 3 Consider % defined on P(R2+) by:

 %  ⇐⇒

X
(12)∈

1(2 +
22X

(12)∈
2

)

X
(12)∈

(2 +
22X

(12)∈
2

)
≥

X
(12)∈

1(2 +
22X

(12)∈
2

)

X
(12)∈

(2 +
22X

(12)∈
2

)
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and let, for any finite  ⊂ R2+,  () be defined by:

 () =

X
(12)∈

1(2 +
22X

(12)∈
2

)

X
(12)∈

(2 +
22X

(12)∈
2

)

It is easy to see that this ordering satisfies the Archimedean axiom. Let us

show that it satisfies Richness. For this sake, consider four sets  ∈
P(R2+)with  ≺  ≺  ∼ . Define  = {( )}, with  =  (). We

have lim→0  ( ∪ ) =  () and lim→∞  ( ∪ ) =  (). Since  is

(Hausdorff) continuous and  ()   ()   (), there exists  ∈ R+ such
that  ( ∪ ) =  (). If ( ) ∈  ∪  ∪ , then we have found the set

 as in the statement of Richness. If ( ) ∈  ∪  ∪ , then consider  =

{( ) ()}, with  =  =  (). We have lim→0  ( ∪ ) =  () and

lim→∞  ( ∪ ) =  (). Since  is Hausdorff continuous and  () 

 ()   (), there exist necessarily infinitely many pairs ( ) ∈ R2+ such

that  ( ∪) =  (). Since  ∪ ∪ is finite, at least one of these pairs is

such that ∩ (∪∪) = ∅. Hence Richness holds. Let us now show that this
ordering satisfies averaging. Let  and  be two disjoint sets such that  % .

One has therefore:

 () ≥  ()

⇐⇒ X
(12)∈

(2 +
22X

(12)∈
2

) ()

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)

≥

X
(12)∈

(2 +
22X

(12)∈
2

) ()

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)

=

X
(12)∈

1(2 +
22X

(12)∈
2

)

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)
(12)
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and (trivially):

 () ≥  ()

⇐⇒

X
(12)∈

(2 +
22X

(12)∈
2

) ()

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)

≥

X
(12)∈

(2 +
22X

(12)∈
2

) ()

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)

=

X
(12)∈

1(2 +
22X

(12)∈
2

)

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)
(13)

Summing inequalities (12) and (13) yields:

 () ≥

X
(12)∈

1(2 +
22X

(12)∈
2

) +
X

(12)∈
1(2 +

22X
(12)∈

2

)

X
(12)∈

(2 +
22X

(12)∈
2

) +
X

(12)∈
(2 +

22X
(12)∈

2

)

=  ( ∪)

as required by the first part of Averaging. The other part of the axiom can be

obtained by an analogous reasoning. Let us now show that the ordering % violates
balancedness. Indeed, consider the sets  = {(505 16)}  = {(10 10) (1000 10)}
 = {(504 1) } and  = {(1 10)} one has:

 () =

X
(12)∈

1(2+
22X

(12)∈
2

)

X
(12)∈

(2+
2
2X

(12)∈
2

)

= 505 =
10×(10+ 100

10+10
)+1000×(10+ 100

10+10
)

(10+ 100
10+10

)+(10+ 100
10+10

)
=

 ()   () =
504×(1+ 1

1
)

1+ 1
1

= 504   () =
1×(10+ 100

10
)

10+ 100
10

= 1

One has also:

21



 ( ∪ ) = 505×(16+ 256
17
)+504×(1+ 1

17
)

(16+ 256
17
)+(1+ 1

17
)

= 45 952
91

' 50497

 ( ∪ ) =
10× (10 + 100

10+10+1
) + 1000× (10 + 100

10+10+1
) + 504× (1 + 1

10+10+1
)

(10 + 100
10+10+1

) + (10 + 100
10+10+1

) + (1 + 1
10+10+1

)

=
10× (10 + 100

21
) + 1000× (10 + 100

21
) + 504× (1 + 1

21
)

21 + 201
21

' 504 97

However, contrary to what balancedness requires:

 ( ∪) =
505× (16 + 256

26
) + 1× (1 + 1

26
)

(16 + 256
26
) + (1 + 1

26
)

' 48553

  ( ∪)

=
10× (10 + 100

10+10+10
) + 1000× (10 + 100

10+10+10
) + 1× (1 + 1

10+10+10
)

(10 + 100
10+10+10

) + (10 + 100
10+10+10

) + (1 + 1
10+10+10

)

' 48620

4.2 Some unpleasant implications of our richness condi-

tion

The richness condition used in our characterization is strong. Among other

things, it seems to restrict unduly the functions  and  that appear in the

representation of a CEU criterion. For the moment, we can not analytically

identify what these additional restrictions - beyond that of being functions from

 to the real (and for the  function, to have strictly positive range). We can

not either provide a topological interpretation of our characterization result in

a similar spirit than the one obtained in Gravel, Marchant, and Sen (2012). An

example of the implication of our richness condition is provided in the following

proposition, where we show that if  = R (for instance the consequences of

a decision under ignorance are amounts of money), then it is impossible with

our richness condition to have both the functions  and the function  to be

monotonic if the function  is continuous.

Proposition 1 Suppose that  = R. Then if % is a CEU ranking satisfying

richness, then, if the function  in expression (1) is continuous, it can not be

monotonic if  is monotonic.

In the next proposition, we establish that if  is a topological space (for

instance a separable one of the kind considered in Gravel, Marchant, and Sen

(2012)), then no Uniform Expected Utility criterion in which  is a continuous

utility function satisfies the richness condition. This shows that the character-

ization of the CEU family of criteria that we provide in this paper does not
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contain all members of that family because it excludes, at least in topological

environments, the UEU subclass of that family that is obtained by considering

only constant functions  and continuous functions 

Proposition 2 Let  be a topological space, and let % is a non-trivial UEU

ranking with  continuous. Then % violates the Richness condition.

5 Conclusion

This paper characterizes the family of CEU rankings of decisions under igno-

rance or objective ambiguity with finitely many consequences, under the as-

sumption that the rankings are defined in a "rich" environment. With the

exception perhaps of the Archimedean axiom, the two main axioms used in

the characterization, averaging and balancedness, that also appear in the char-

acterization of a similar family obtained by Ahn (2008), are easy to interpret

and to test in an experimental context. As we argued above, the fact that we

limit our attention to decision with finitely many consequences (or probability

distributions) makes our framework much more applicable that the atomless

environment considered by Ahn (2008) and the literature that derives from the

Bolker-Jeffrey tradition (e.g. Bolker (1966), Bolker (1967), Jeffrey (1965) and

Broome (1990)). We emphasize also that the discrete framework makes the

proof and the characterization very different from the one obtained in this later

tradition. Moreover, we have shown that the three axioms that we use are

independent.

Yet, the analysis conducted in this paper suffers from two limitations, of

varying importance. First, as suggested in the preceding section, it rides on

a richness assumption that is, probably, unduly strong. We use the qualifier

"probably" because we do not have, at the moment, an alternative. We are

therefore incapable to assess the strength of the assumption. But, as shown in

Proposition 2, the richness condition is sufficiently strong for excluding from

the family of CEU rankings all UEU ones of the kind characterized in Gravel,

Marchant, and Sen (2012) when the later are defined on a topological space

and are continuous on that space. Another limitation of the analysis is that

it is conducted in an algebraic framework rather than a topological one (us-

ing Wakker (1988)’s terminology). Contrary to what was achieved in Gravel,

Marchant, and Sen (2012), we did not succeed indeed in providing a topolog-

ical version of our theorem in which richness and the Archimedean condition

could be replaced by an appropriate - and necessary - continuity condition. We

do not view this second limitation as being as important as the first however.

Indeed, as very convincingly argued - at least in our view - by Wakker (1988),

the algebraic framework is more general than the topological one. Yet, it is fair

to say that topological environments, and the continuity properties that they

enable to define, are more familiar to decision theorists and economists than

richness and Archimedean conditions. For this reason, it would be nice to have

a topological version of our main theorem.
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The analysis of this paper needs also to be completed in several directions.

One of them is an analysis of comparative attitudes toward radical uncertainty

or toward ambiguity in the class of CEU rankings. Another one is a proper

understanding of the uniqueness properties of the functions  and  used in

the characterization. As shown in Proposition 1, the two functions may not

be totally independent from each others in specific environment. It would be

nice to have a complete identification of the uniqueness properties of these func-

tions. Finally, we believe that CEU models of decision making under radical

uncertainty and/or ambiguity should be put to work, notably in public policies,

to generate consistent rankings of radically uncertain decisions. While environ-

mental policy discussed in Introduction is an obvious fields for such applications,

there are many others. We plan to develop such applications in our future work.

6 Appendix: Proofs

6.1 Lemma 1

Let the sets  and  ∈ P() be such that  %  %  for all sets  ∈ P()
and assume by contradiction that there exists some consequence  ∈  ∩. Since %
is not trivial, one must have  Â . Since % is an ordering, either {} %  Â 

or  Â {}. In the first case, it follows from Averaging that  Â \{}, which
contradicts the definition of the sets  and  ∈ P() to be such that  %  % 

for all sets  ∈ P(). In the second case, it follows from Averaging again that

\{} Â  which is also a contradiction of the definition of the sets  and  ∈ P()
to be such that  %  %  for all sets  ∈ P().

6.2 Lemma 2.

Since % is non-trivial, there is a set  such that  ≺  or  ≺ . We treat the

case  ≺  (the other case is handled symmetrically). We first prove that there are

at least two equivalence classes better than the one containing , so that it will be

possible to apply Richness. We consider two cases :

(1)  ∩ = ∅. Then Averaging yields  ≺  ∩ ≺  (and we are done).

(2)  ∩ 6= ∅. We then consider three subcases :
(a)  ∩ ∼ . Then, by Averaging,  \ ∼  and  \ ≺  ∪ ≺ .

(b) ∩ ≺ . If this is the case, one can not have  ⊂ . Indeed, if one had  ⊂ ,

this would imply that ∩ =  ≺ , which contradicts the initial assumption that

 ≺ . Hence the set \ 6= ∅. Averaging then implies that  ≺  \.
(c) ∩ Â . If ∩ 6∼ , then we are done. Otherwise, by Averaging, \ ∼ 

and  ≺  ∪ ( \) ≺  \.
We now apply richness to the three equivalence classes. A first application of Rich-

ness yields a set 1 such that 1 ∼  and 1 ∩  = ∅. If 1 ∩  = ∅, then the
proof is done. If 1 ∩  6= ∅, then use Richness again to find a set 2 such that
2 ∼ ∪1 and 2∩(∪1) = ∅. By Averaging, ∪1 ∼  and, by transitivity,

2 ∼ . We are now sure that 2 does not contain any of the elements of 1 ∩. If
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2 ∩ = ∅, then the proof is done. If 2 ∩ 6= ∅, then use Richness again to find
a set 3 such that 3 ∼ ∪1 ∪2 and 3 ∩ (∪1 ∪2) = ∅. By Averaging,
∪1∪2 ∼  and, by transitivity, 3 ∼ . Notice that (1∪2)∩ ) 1∩
. We are now sure that 3 does not contain any of the elements of (1 ∪2)∩. If
3∩ = ∅, then the proof is done. If 3∩ 6= ∅, we iterate this construction and we
find sets like 4 5    At each iteration, (1∪  ∪)∩ ) (1∪  ∪−1)∩
. Since  is finite, we are sure to reach some  satisfying the same conditions as 

in the statement of the lemma.

6.3 Lemma 3

If % is not trivial, then there are decisions  and  ∈ P() such that  ≺ . By

Lemma 2, there is a set  ∈ P() such that  ∼  and  ∩ ( ∪ ) = ∅. By
Averaging and Transitivity,  ≺  ∪  ≺ . Hence, the ordering % has at least

three equivalence classes and, hence, P∗() is not empty. Let  be a decision in

P∗() (we have just proved that it exists). We will prove that there is  ∈ P∗()
such that  ≺  (the proof that there is  ∈ P∗() such that  ≺  is similar).

If () is empty, then the proof is immediate. So, we consider that () is not

empty. Let  be a decision in (). By Lemma 2, there is a set  ∈  () such

that  ∼  and ∩(∪) = ∅. By Averaging and Transitivity,  ≺ ∪ ≺ .

6.4 Lemma 4

Let , , and  be three sets in P() such that  %  and  % . By defini-

tion of %, this implies the existence of sets  and 0 ∈ P∗() respectively disjoint
from ∪ and ∪ such that  Â 0, ∪ % ∪ and ∪0 % ∪0.
Thanks to Lemma 2, we can find a set 00 ∈ P∗() disjoint from  ∪  ∪ , with
 ∼ 00. By Balancedness, ∪00 % ∪00 and ∪00 % ∪00. By transitivity,
 ∪00 %  ∪00 and, hence,  % . This proves the transitivity of %. As for

completeness, let  and  be two sets in () such that  6% . By definition of

%, either:

(i) there is no set  disjoint from  ∪ such that  Â  or :

(ii) there are such sets but for none of them it is true that  ∪ %  ∪ .
Case (i) can be ruled out by Lemma 3. If case (ii) holds, then, since % is complete,

we must have  ∪ ≺  ∪ for all sets  disjoint from  ∪ such that  Â .

It follows that  %  and the relation % is therefore complete.

6.5 Lemma 5

For the "only if" part of the first part of the lemma, we know that, since % is complete,

 Â  implies  6% . Hence, either there is no  disjoint from ∪ with  ≺ 

or  ∪ ≺ ∪ for all sets  ≺ . The first of these two possibilities is ruled out

by Lemma 3. The second one implies, as a particular case, that ∪ Â  ∪. For
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the "if" part of the first part of the lemma, suppose  ∪  Â  ∪ . This implies
 %  (by definition of %). Suppose by contradiction that  Â  does not hold.

Since % is complete,  %  must hold so that, by definition of %, there exists a set

 such that  ∪ % ∪, and  ≺ . But this contradicts balancedness. Hence

 Â  must hold.

For the "only if part of the second part of the lemma, one knows that  ∼ 
implies the existence of sets  and 0 (both strictly dominated by  as per %) such
that (∪0)∩(∪) = ∅, ∪ % ∪ and ∪0 % ∪0. By balancedness,
∪ %  ∪ and  ∪ % ∪ and, so, ∪ ∼  ∪. The proof of the "if"
part of the second part of the lemma is obvious.

6.6 Lemma 6

Define the binary operation ◦ on P() as follows. If ∩ = ∅, then  ◦  =

 ∪ . Otherwise set  ◦  = 0 ∪ 0 for some 0 0 ∈ P() such that

0 ∩ 0 = ∅, 0 ∪  ∼  ∪  and 0 ∪  ∼  ∪  for some  ≺  such

that ( ∪ 0) ∩  = ∅ and ( ∪ 0) ∩ = ∅. The existence of such sets 0 0

does not pose any difficulty, thanks to Richness. Indeed, by Lemma 3 and Averaging,

there exists a set  ∈ P() such that  ≺  ∼ . By Averaging,  ≺  ∪ ≺ 

and, using Richness, there exists a set 0 such that 0 ∪  ∼  ∪ , 0 ∼  and

0 ∩ ( ∪) = ∅. Using an analogous reasoning, one can establish the existence of
a set 0 such that 0 ∪  ∼  ∪ , 0 ∼  and 0 ∩ ( ∪ ∪0) = ∅.

Hence ◦ is defined for every pair  ∈ P(), and the choice of the sets

0 and 0 can be made by any rule whatsoever if there are several such sets for a
given pair  and . Finally we note that ◦ is closed in the set P() thanks to

Averaging.

For any  ∈ P(), we now show that the structure formed by the set P(),

the binary relation % and the binary operation ◦ is what Krantz, Luce, Suppes,

and Tversky (1971) (p. 73, definition 1) call a closed extensive measurement structure.

That is to say, we establish that :

1. % is a weak order: see Lemma 4;

2. ◦ is weakly associative so that  ◦ ( ◦ ) ∼ ( ◦ ) ◦  for every

,  and  ∈ P(). The proof of this is obvious if  are mutually

disjoint. Consider now the case where ∩∩ 6= ∅. Let 0 0  0 ∈ P()
be mutually disjoint sets such that 0 ∪ ∼  ∪ , 0 ∪  ∼  ∪  ,

0∪ ∼  ∪ for some  ≺  with (∪0)∩ = (∪0)∩ =

( ∪  0) ∩ = ∅. They exist thanks to Richness (the argument is similar to
that employed in the definition of the binary operation ◦). We have  ◦ =
0 ∪ 0 and  ◦ ( ◦ ) = 0 ∪0 ∪ 0. We also have  ◦  = 0 ∪0

and ( ◦ ) ◦  = 0 ∪0 ∪ 0, so that  ◦ ( ◦ ) = ( ◦ ) ◦ .

The reasoning is similar when some but not all pairwise intersections between

 are not empty.
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3. monotonicity holds (that is:  %  iff  ◦  %  ◦  iff  ◦  %

 ◦ ). Since ◦ is obviously commutative, we just need to prove  %  iff

◦ % ◦. Choose0 and 0 in P() such that 0∩ = ∅ = 0∩,
0 ∪  ∼  ∪  and 0 ∪  ∼  ∪  for some  ≺  and disjoint from

. Thanks to Richness, this is always possible. Notice that  ∪  ≺  by

averaging. We have  %  iff ∪ % ∪ (by definition) iff0∪ % 0∪
(by construction) iff 0 ∪ ∪ % 0 ∪ ∪ (by Balancedness and because

 ∪ ≺  thanks to Averaging) iff  ◦  %  ◦ ;

4. The Archimedean axiom: if  Â , then, for any  ∈ P(), there exists

a positive integer  such that  ◦  %  ◦ , where  is defined

inductively as: 1 = , (+ 1) =  ◦ . It is immediate to see that

this condition is implied by the Archimedean axiom.

By Theorem 1 of Krantz, Luce, Suppes, and Tversky (1971) (p.74), for any  ∈
P∗(), there exists a mapping  : P()→ R such that, for all  ∈ P(),

 %  iff () ≥ () and ( ◦ ) = () + (). Furthermore, 

is unique up to a linear transformation.

We now show that ()  0 for all  ∈ P(). For any  ∈ P(), we can

find a set  ∈ P() such that∩ = ∅ (using Lemma 2). By definition of P∗(),
there is 0 ≺ . By Lemma 2, there is  ∼ 0 ≺  such that  ∩ ( ∪) = ∅.
By Averaging,  ≺ ∪ ≺  ∼ . By Averaging again, ∪ ≺ ∪∪ ≺ .

By definition of %,  ≺  ∪ . This implies ()  ( ∪ ) and, since 
and  are disjoint, ()  () + () or, equivalently, ()  0.

6.7 Lemma 7

For a fixed  ∈ P∗(), let L = { ∈  : {} ≺ } and U = { ∈  : {} Â }.
These sets are not empty (this is an almost immediate consequence of Lemma 3).

Define  as an arbitrary set such that  ≺ .

We first define  on P(L). Fix some  ∈ L. By Richness, there is  ∈ P(U)
such that  ∼ and  ∪  ∼ . Set () = − (). By construction, ()
does not depend on the choice of  . Indeed, suppose there are several such  , say 

and  0. Notice that  ∼ ∼  0,  ∪ ∼  and  0∪ ∼ . So,  ∪ ∼  0∪.
Hence  ∼  0 and  () =  ( 0).

Select 1 2 ∈ L, with 1 ∩ 2 = ∅. By Averaging, 1 ∪ 2 ∈ L. Using
Richness as above, we find two disjoint sets 1 2 ∈ P(U) such that 1 ∼ 2 ∼ ,

1∪1 ∼  and 2∪2 ∼ . By Averaging, 1∪2∪1∪2 ∼ , 1∪2 ∼

and 2 ∪ 2 ∼ . So,

(1 ∪ 2) = − (1 ∪ 2)
= − (1)−  (2)

= (1) + (2)

This proves that  is disjoint-additive over L.
We now define  on P(U). Take any  ∈ P(U). By Richness used in a similar

(but this time "downward") way as above, there is  ∈ P(L) such that  ∪  ∼ .
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Set () = −(). The mapping  on P(U). does not depend on the choice
of . Indeed, suppose there are several such , say 1 and 2 inP(L). We must
prove that (1) = (2). Suppose first 1 ∩ 2 = ∅. Let 1 2 ∈ P(U)
be such that 1 ∩  = ∅ = 2 ∩  , 1 ∼  ∼ 2, 1 ∪ 1 ∼  ∼ 2 ∪ 2.

By Richness, such sets exist. We also have  ∪ 1 ∼  ∼  ∪ 2. By Averaging,
1∪1∪∪2 ∼  ∼ 2∪2∪∪1. Hence, 1 ∼ 2,  (1) =  (2) and

(1) = (2). Suppose now 1 ∩2 6= ∅. By Richness used in the same way as
above, there is 3 ∈ P(L) such that 3∩(1∪2) = ∅ and ∪3 ∼ . Define 3 by

3 ∼ and 3 ∪3 ∼ . By richness, 3 can be chosen disjoint from both 1 and

2. Since 1∪1 ∼ ∪3 ∼  ∼ 3∪3 ∼ ∪1 and  , 1 and 3 are disjoint as
are 1 and 2, it follows from Averaging that 1∪1∪∪3 ∼  ∼ 3∪3∪∪1.
Hence, 1 ∼ 3 and, therefore,  (1) =  (3). A similar reasoning can be

performed for 2 and 3. We therefore have 
 (1) =  (2) =  (3) and, as

a result, (1) = (3) = (2).

The mapping  on P(U) is additive. Indeed, consider two sets 1 2 ∈ P(U),
with 1 ∩ 2 = ∅. Let us find two sets 1 2 ∈ P(L) such that 1 ∪ 1 ∼  ∼
2 ∪2. Since the choice of 1 and 2 is not important, we can choose them disjoint

(using Richness). By Averaging, 1 ∪ 2 ∪ 1 ∪ 2 ∼ . So, (1 ∪ 2) =

−(1 ∪ 2) = −(1)− (2) = (1) + (2).

We define then  on the whole set  (). Take any  ∈  (). If {} ∼ 

for all  ∈ , set () = 0. Otherwise, we can express  as  =  ∪  ∪  with

 =  ∩L,  =  ∩ U and  =  \ (L∪ U). By Averaging,  %  iff ∪ % .

Set () = () + (). Disjoint-additivity is inherited from  on P(U) and
 on P(L).

We must finally check whether  satisfies (ii). Suppose  Â . Then ( ∩L)∪
( ∩ U) Â . Using richness and averaging, one can find a superset 0 of  ∩ L
belonging to P(L) such that 0 ∪ ( ∩ U) ∼ . As shown above, −(0( ∩ U).
Since  ∩ L ⊂ 0 ⊆ L, and , for every  ∈ P(L), () = − ()  0 for some

set  ∈ P(U) we have that 0  ( ∩ L)  (0) by disjoint-additivity. Now,
by construction, () = ( ∩ L) + ( ∩ U) = ( ∩ L)− (0)  0.

Suppose now  ≺ . Then ( ∩ L) ∪ ( ∩ U) ≺ . Using Averaging and

Richness again, there is a superset  0 of  ∩ U belonging to P(U) such that  0 ∪
( ∩ L) ∼ . By definition of the mapping  , one has that ( 0( ∩ L)  0.

Moreover, since  ∩ U ⊂  0 ⊆ U and ()  0 for every  ∈ P(U), one has
( 0)   (∩U)  0 by disjoint-additivity. We have, by construction, () =
( ∩ L) + ( ∩ U) = ( ∩ U)− ( 0)  0.

Suppose finally  ∼ . Then ( ∩ L) ∪ ( ∩ U) ∼  so that ( ∩ L) =
−( ∩ U). We have, by construction, () = ( ∩ L) + ( ∩ U) =
( ∩ U)− ( ∩ U) = 0.

6.8 Lemma 8

Take any  ∈ P∗(). The result is immediate if  ∼ . We provide the

proof for the case where  Â  (the argument for the case where  Â  being

symmetric. We must establish that, for any two sets  and  ∈ P() one has

 %  ⇐⇒ () ≥ ( ). By definition of the ordering % this amounts to
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showing that establish that

() ≥ ( ) ⇐⇒  ∪  %  ∪  (14)

holds for every  and  such that  ∼  ∼  and every  ≺ . Consider indeed

such sets  and  with  ∼  ∼  . By Lemma 7, () = 0 = ( ). By

construction, ()  0. By richness and the fact that  and  ∈ P∗(), one can
find a set 1 such that 1 ∩ ( ∪  ) = ∅ and  ∪ 1 ∼ . By Averaging 1 ≺ .

By Lemma 7, ()+(1) = (∪1) = 0. Suppose ( ) ≥ (). Then,

( ∪ 1) = ( ) + (1) ≥ 0. By Lemma 7,  ∪ 1 %  ∼  ∪ 1. By
Balancedness, ∪ % ∪ for any  :  ≺ ∩(∪ ) = ∅. A similar argument
shows that ( )  ()⇒  ∪ Â ∪ for any  :  ≺  ∩ (∪ ) = ∅.

Conversely, suppose  ∪  %  ∪  for some  :  ≺  ∩ ( ∪  ) = ∅. By
Richness, there is 2 such that 2∩(∪ ) = ∅, ∪2 ∼ . By Averaging, 2 ≺ .

By Balancedness,  ∪2 %  ∪2 ∼ . By Lemma 7, () + (2) ≥ 0. Since
( ) + (2) = 0, we obtain () ≥ ( ). The same argument holds if we

suppose  ∪  Â  ∪  , and this establishes (14) and, therefore, the proof of the

lemma..

6.9 Lemma 9

Consider any two sets  and  such that  Â  and choose some sets   ∈ ()

and  ≺  in such a way that  ∩ ( ∪  ) = ∅. By Richness, this choice is
possible. Suppose without loss of generality that  ∪  -  ∪ . By iterative

application of Richness, there exist sets 1 2  such that, for every  6=  ∈  ,

∩(S∈N ) = ∅ = ∩ = ∩,  ∼  and () = (). Similarly, there

exist 1 2  such that, for every  6=  ∈  , ∩(S∈N ) = ∅ = ∩ = ∩,
 ∼  and ( ) = ().

For every positive integer , there is a largest integer () such that
S()
=1  ∪

 -
S
=1  ∪  because (

S
=1 ) = () (remember that 

 is addi-

tive) and is therefore unbounded when  increases. Notice that () ≥  because

() ≤ ( ). We thus have
S()
=1  ∪  -

S
=1  ∪  ≺

S()+1
=1  ∪ ,

for every positive integer . Since the sets
S()
=1 ,

S
=1  and

S()+1
=1  are all

equivalent to  (by Averaging) and thanks to Lemma 8, we have (
S()
=1 ) ≤

(
S
=1 )  (

S()+1
=1 ). The mapping  being additive, we may write

()() ≤ ( )  (() + 1)() and

()


() ≤ ( ) 

() + 1


() ∀ ∈ N0

so that ( ) = lim→∞
()


(). Following the same reasoning with any

 ∈ ∗() with  ≺  instead of  yields ( ) = lim→∞
()


(). So,

( )() = ( )(). Since this holds for any   ∼ , this proves that

() = () for some positive constant  and for all  such that () = 0.

Define () = (
() () ()) for all  ∈  ()}. Then { ∈ 3 :

1 = 0}∩( ()) is contained in the ray {(0  ) :  ≥ 0}. Since  ∈ ∗(),
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there is  such that  Â  or  ≺ , whence the set { ∈ ( ()) : 1 6= 0} is
not empty. We can therefore select vectors 0 1 ∈ ( ()) such that 

0
1 = 0

and 11 6= 0. Let 0 and 1 be such that (0) = 0 and (
1) = 1.

We show that these two vectors, together, span ( ()). Let  ∈ ( ()),

with () = . We proceed by cases, assuming 11  0 (the case 11  0 being

symmetric).

1. Suppose 1 = 0. Since { ∈ 3 : 1 = 0} ∩ ( ()) is contained in the
ray {(0  ) :  ≥ 0}, we have  = 0.

2. Suppose 1  0. By Richness, there is  :  ∪ 1 ∼ 0. Hence, ( ) =

−(1). By Richness, there is  :  ∪  ∼ 0  ∼ . Hence, () =

(1). Since  ∼  Â , we know that () = () and

() = () for some  ∈ . For the same reason, () = ()

and () = () for some  ∈ . So, ()() = ()()

and ()() = ()(). In other words, () and ()

are in the same ray and () = () for some  ∈ .

Since  ∪ 1 ∼ 0, we know that ( ∪ 1) is in the same ray as 0.

So, ( ∪ 1) = ( ) + 1 = 0 for some   0. Similarly,

since  ∪  ∼ 0, we know that ( ∪ ) is in the same ray as 0. So,
( ∪ ) = ( ) + () = 0 − 1 + () = 00 for
some 0  0. Whence () = 00 − 0 + 1. We can therefore write

() = (00 − 0 + 1). This proves that  is spanned by 0 and 1.

3. Suppose 1  0. By Richness, there is  : ∪ ∼ 0 and, hence, (∪)
is in the same ray as 0. So, ( ∪ ) = ( ) +  = 0 for some

  0. So,  = 0 − ( ). In other words,  is spanned by 0 and

( ). We have seen in case 2 that ( ) is spanned by 
0 and 1. So,

actually,  is spanned by 0 and 1.

So, there are two real numbers   such that, for any  ∈ P(),

() = (
0) + (

1) (15)

In particular, () = (0) + (1) = (1) because (0) = 0.

So,  = ()(1). From (15), we also derive () = (0) + (1)

which yields  = (()−(1))(0). From (15), we finally derive () =

(0) + (1). Substituting  and  in this equation yields:

() =
()− (()(1))(1)

(0)
(0) + ()(1)(1)

showing that  is a linear combination of  and  .

Hence, for every  ∈ ∗(), such that none of them are indifferent, there

are two real numbers   such that  =  +  . Consider now   and

 such that  6∼ . Using richness, we select  and 0 not indifferent to any of
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,  or  and such that  6∼ 0. We can express each of     as a linear

combination of  and 
0
. For instance,

 = 
 + 

0
 (16)

 = 
 + 

0
(17)

 = 
 + 

0
 (18)

From (17) and (18), we derive

 =
 − 
 − 

and

0 =
 − 

 − 


We substitute  and 
0
in (16) and we obtain that  is a linear combination of

 and  . This suffices to show the entire space { :  ∈ ∗()} can be spanned
by any two of its members    with  6∼ , since the selection of  in the

proof was arbitrary.

6.10 Lemma 10

We consider two cases.

(1) () = () for for some  ∈ R++ and all  ∈ P(). Then () =
−() for any . But this is not possible because, by Lemma 7, we know that,

for any  ≺ , we have ()  0 and ()  0. The cases  =  and

 =  are treated in the same way.

(2)  Â  Â  (the 5 other orderings are treated in the same way).

By Lemma 9,  and  span { :  ∈ P∗()}. For every  ∈ P∗(), let
() and () be the solution of  = () + () . Since  ≺ , we

must have ()  0 or ()  0 as assuming otherwise would imply, for any set 

such that  ≺  ≺ , that it is impossible to have ()  0. We must also have

()  0 because () must be positive. Hence, we must have ()  0  ().

Assume by contradiction that − =  + (1 − ) for some  ∈ R++ and

 ∈]0 1[. This implies that

 =


 − 1
 +



 − 1


with ( − 1)  0, a contradiction of the fact that 0  ().

6.11 Lemma 11

Consider two sets  and  ∈ P∗() such that  ≺ . Since  and  are

linearly independent, they span by Lemma 9, the set { :  ∈ P∗()}. For every
 ∈ P∗(), let () and () be the solution of  = () + () . If
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 ≺ , then we must have ()  0 or ()  0. Indeed, assuming otherwise

would imply, for any set  such that  ≺  ≺ , that it is impossible to have

()  0. Simultaneously, we must also have ()  0 because () must be

positive. So, we must have ()  0  (). Define the function  : P() −→ R
by () = −()() for any set . We have ()  0 for all  ∈ P∗() such
that  ≺ .

We now show that, for all 0 ∈ P∗() such that 0 ≺  ≺ , one has

(0)  () so that the function  numerically represent the ranking of deci-

sions that are worse than . Suppose to the contrary that (0) ≥ (). Since

() = ()() + ()() = 0, we have:

−()
()

= () =
()

()
≤ −(

0)
(0)

= (0)

Hence ()(0()(0) and 
0
() = ()(0()(0) ≤ 0, which

implies  ≺ 0. A contradiction. Notice that the converse is also true. Hence, for all
0 ∈ P∗() satisfying 0 ≺ , 0 - ⇐⇒ (0) ≤ ().

Similarly, it is easy to prove that, for all sets  and 0 ∈ P∗() such that 
0 Â , it is the case that ()  0 and 0 - ⇐⇒ (0) ≤ ().

Define now the set  = {() :  ∈ P∗()  ≺ }. This set has a greatest
lower bound ∗ ≥ 0 (because ()  0 for all set  ∈ P() such that  ≺ ). We

can actually show that ∗  0. Indeed, assume by contradiction that ∗ = 0. Since
 ∈ P∗(), there exists a set  ∈ P∗() such that  Â . Because ∗ = 0, there
is also a set  ∈ P∗() with ( ) sufficiently close to zero and such that   and
 are as the functions   and  of Lemma 10, which is not possible. Hence

we must conclude that ∗  0.
Furthermore ∗ ∈  because the set { ∈ P∗() :  ≺ } has no minimal

element. Let  be any of the element in the ray {(− + ∗) :   0}. To be
specific, define  by:  = − + ∗ . By construction,  belongs to the elements
spanned by ( ), as per Lemma 9.

We now prove that ()  0 for all  ∈ P∗(). Suppose to the contrary that
() ≤ 0 for some  ∈ P∗(). By definition of P∗(), there are decisions  and

 such that  ≺  ≺ . We know that () = −() + ∗() ≤ 0. Hence,
it follows that ∗() ≤ () and ∗ ≥ ()() because ()  0.

Since () = ()() + ()() = 0, we have ∗ ≥ −()(), which
is impossible because ∗ ∈ . Hence ()  0 for all  ∈ P∗().

Finally, we notice that the function  is additive for disjoint sets because it is the

linear combination of two functions that are themselves additives on disjoint sets.

6.12 Lemma 12

Pick any set  ∈ P∗() and, for every set  ∈ P∗(), let () and () be the
solution of  = () + (). These () and () exist because  and 

are linearly independent and, by 9, can span the whole set { :  ∈ P∗()}.
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By construction, () = 0 = ()()+()() or, equivalently,
()

()
=

−()
()

. Hence, in order to show that  is a numerical representation of % on

P∗(), it suffices to show that − represents % on P∗(). Notice first that −
is well-defined because −()() = ()() and ()  0 for all  ∈
P∗(). Pick any two decisions  and  ∈ P∗() such that  % . By construc-

tion, () ≥ 0. Hence, we must have ()() + ()() ≥ 0 and () ≥
−()()(). We also have ()() + ()() = 0 or, equivalently,

() = −()()(). Hence, −()()() ≥ −()()() or,
after simplification, −()() ≥ −()(). We have therefore proved that
 %  implies −()() ≥ −()(). Proving the converse is easily done
by just reverting the argument.

6.13 Lemma 13

Consider any set  ∈ P∗(). For any sets  and  ∈ P∗(),  ∼  implies, by

Lemma 5, that  ∪  ∼  ∪  for some  ≺  such that  ∩ ( ∪ ) = ∅.
Since, thanks to Lemma 16,  numerically represents the ordering % on P∗(),
one has:

( ∪)
( ∪) =

( ∪)
( ∪) 

or, using the disjoint-additivity of  and :

() + ()

() + ()
=

() + ()

() + ()
 (19)

Moreover, since the statement  ∼  is constructed from the statement that  ∼
 ∼  for some set , it follows from the fact that  numerically represents the

ordering % that:

()

()
=

()

()


or, equivalently:

() =
()()

()
 (20)

Substituting equality (20) into equality (19) yields:

()()() + ()

() + ()
=

() + ()

() + ()

or, after some simplifications and rearranging:

(()()− ()()][()− ()] = 0

If () − () 6= 0, then ()() = ()() and  ∼ , which is

incompatible with the definition of . We therefore conclude that ()− () = 0

and, hence, () = () and () = ().
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6.14 Lemma 14

Take any reference set  ∈ P∗() and consider any set  ∈ P∗(). By richness,
there are sets  and  ∈ P∗() such that  Â  Â . By Lemma 2, there is a set

0 such that 0 ∼  and 0∩ = ∅. By Averaging,  Â 0∪ Â . By Richness,

there are sets 1 2    such that, for  ∈ {1 2   },  ∼ ,  ∩ (
S−1
=1) =

∅ and  ∪  ∼ 0 ∪ . By Lemma 13, () = () and () = () for

 ∈ {1 2   }. Some of the sets 1 2    may intersect with , but the number

of such intersecting sets is necessarily finite (as these sets are pairwise disjoint). So,

if we drop them, we can still end up with an infinite collection of sets 1 2   

that are all disjoint from . We therefore assume hereafter that  ∩  = ∅ for

 ∈ {1 2   }. By Averaging,  Â 
S
=1 Â , for any  ∈ {1 2   }. By

Richness, for any  ∈ {1 2   }, there is a set  such that ∩ (∪) = ∅,  ∼ 

and  ∪ ∼ 
S
=1 . By Lemma 12, 

()() = ()() and, for all

 ∈ {1 2   }, one has ()() = ()() and

( ∪)
( ∪) =

(
S
=1)

(
S
=1)



Using the disjoint-additivity of  and , one can write, for any :

() + ()

() + ()
=

() +
P

=1 
()

() +
P

=1 ()
=

() + ()

() + ()


which can be equivalently written as:

(() + ()) (() + ()) = (() + ()) (() + ())

If one substitutes ()()() for () in this expression and performs sim-

ilar manipulation as in the proof of Lemma 13) one obtains:

[()()− ()()][(()− ())] = 0

One can not have [()() − ()()] = 0 because assuming this would

amount to assume that ()() = ()() and, since the function 

numerically represents the ordering %, that  ∼ , which is not the case. We

therefore conclude that () − () = 0 and, hence, () = (). For any

  0, we can therefore guarantee that ()   by choosing a suitably large .

6.15 Lemma 15

If the function  of Lemma 11 is such that ()  0 for all set  ∈ P(), we define
+ =  and the proof is done.

Otherwise, we first prove that () ≥ 0 for all  ∈ (). Assume by contra-

diction that ()  0 for some  ∈ () and choose (using richness) sets  and

 ∈ P∗() satisfying  ∩  = ∅, ( )  0 and ( ) sufficiently small (thanks
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to Lemma 14). Consider the set  =  ∪  and its numerical representation by the

function :

( ) + ()

( ) + ()


The numerator of this expression is negative because  ∈ () and ()  0 if

( )  0 by definition of the function  provided in Lemma 7. For a sufficiently

small ( ) one can also make the denominator of the expression negative. Hence

()()  0 and, since the function  numerically represents the ordering

% on P∗(), one concludes that  Â  . Yet this contradicts the Averaging axiom

according to which  Â  =  ∪  (because  ∈ ()).

Using an analogous argument, we can prove that () ≥ 0 for all set  ∈().

We now claim that it is impossible to have () = 0 = ( ) for some  ∈ ()

and some  ∈(). Assume indeed that () = 0 = ( ) for some  ∈ () and

 ∈(). Remember from Lemma 1 that ∩ = ∅. By Averaging ∪ ∈ P∗()
and, as a result, one has (∪ )  0 by Lemma 9. Yet, using the disjoint-additivity
of , we find that ( ∪  ) = 0 although  ∪  ∈ P∗(). This contradiction

shows the impossibility of having () = 0 = ( ) for some  ∈ () and some

 ∈().

Suppose now that () = 0 for some  ∈ (). This implies ( )  0 for

all  ∈ P∗() ∪ (). We know from Lemma 11 that  = − + ∗ for

some sets  and  ∈ P∗(). If we choose a number +  ∗ and we define
+ = − + +

 , we are sure that ()  0. If, in addition, we choose the

number + to be as close as necessary to ∗, we can guarantee that ( )  0 for

all  ∈ P∗(). The mapping + is clearly disjoint-additive and can be spanned by

two (linearly independent) element of the family { :  ∈ P∗()}. We still have
to prove that +( )  0 for all  ∈ (). If  6=  and ( )  0, then the

proof is obvious because we have chosen + to be very close to ∗. If  6=  and

( ) = 0, one must remember that ( ) = −( ) + ∗( ), where ( )  0
and ( )  0. Hence if we choose +  ∗, then +( ) = −( ) + +

( )

is necessarily larger that ( ) and, hence, positive.

The case where () = 0 for some  ∈() can be handled in a similar fashion

6.16 Lemma 16

For every set  ∈ P∗(), let () and () be the solution of the equation  =

()+()+. As in the proof of Lemma 12, the existence of these real numbers

() and () is secured by the fact that  and + are linearly independent and,

thanks to Lemma 9, can span the whole set { :  ∈ P∗()}. By construction,
() = 0 = ()() + ()+() or, equivalently,

()

+()
=
−()
()

. As in

the proof of Lemma 12 again, the proof that + is a numerical representation of

% on P∗() amounts to showing that − represents % on P∗(). Notice first
that − is well-defined because −()() = ()+() and +()  0

for all  ∈ P∗(). Consider any two sets  and  ∈ P∗() with  % . From

Lemma 7, () ≥ 0. Hence one has ()()+()+() ≥ 0 and () ≥
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−()+()(). One also has ()() + ()+() = 0 or, equivalently,

() = −()+()(). Hence −()+()() ≥ −()+()()
or, after simplification, −()() ≥ −()(). We have therefore proved that
 %  implies −()() ≥ −()(). The converse implication is obtained
by reversing the argument.

6.17 Theorem 1

If the ordering % is trivial, then the numerical representation provided by (1) trivially

holds with  constant. We therefore assume in the rest of the proof that % is not

trivial.

Take any reference set  in P+(). Just as in equation (4) preceding Lemma 12,
define the function + : P()→ R by + () =

()

+()
for every  ∈ P(). Since

 and + are both set disjoint-additive, one can write:

+ () =

P
∈ ({})P
∈ +({})

=

P
∈ + ({})+({})P

∈ +({})


Define the two functions  :  → R and  :  → R++ by () = ({}) and
() = +({}). One has:

+ () =

P
∈ ()()P

∈ ()


We already know from Lemma 16) that  %  ⇐⇒ + () ≥ + () for all decisions

 and  ∈ P∗(). We only need to prove that the equivalence must hold also for
decisions  and  ∈ P() that can be maximal or minimal in that set. We consider
several cases.

1.  ∈ () and  ∈ P∗(). By Lemma 2, there is 0 ∈ P() such that
0 ∩ = ∅ and 0 ∼ . By Lemma 16, ()+() = (0)+(

0).
By Averaging,  Â  ∪ 0 Â 0 and, hence,  ∪ 0 ∈ P∗(). We therefore
have:

( ∪0)
+( ∪0)

=
() + (0)
+() + +(

0)


(0)
+(

0)
=

()

+()


Since + is always strictly positive, this yields

()

+()


()

+()


a statement that is in line with the fact that  Â .

2.  ∈ () and  ∈ P∗(). Similar to the previous case.
3.  ∈ (). Choose a decision ∈ P∗() in such a way that ∩(∪) =
∅. By Averaging,  ∪  Â  and, by transitivity,  ∪  Â . Using the
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result of the proof of case 2, ( ∪)+( ∪)  ()+() and

() + ()

() + ()


()

()
 (21)

By Lemma 14, we can choose  in a given equivalence class of %, with +()
as close to zero as required. Since all sets in a given equivalence class have the

same ratio , we can actually choose  in such a way that both +()

and () are arbitrarily close to zero. Assume now by contradiction that

+ ()  + () ⇐⇒ ()+()  ()+().Then ,if we choose

the set  as described above, we clearly have

()

+()


() + ()

+() + +()


which contradicts (21).

4.  ∈(). Similar to the previous case.

5.  ∈() and  ∈ (). We know from Lemma 1 that  ∩ = ∅. Then
 Â ∪ Â  by averaging and, hence, ∪ ∈ P∗(). From  Â ∪
and case 1, we derive + ()  + ( ∪). From  ∪ Â  and case 2, we

derive + (∪)  + () and the required conclusion ()  () follows

from transitivity.

6.18 Proposition 1

Suppose that ,  and  are three finite and non-empty subsets of R such that

 Â  Â  or  ≺  ≺ . Richness implies the existence of a set  disjoint from

 and  such that  ∼  and ∪ ∼ . For any set  ∈ P(), define () by

() =

P
∈ ()()P

∈ ()


Then:

() =

P
∈ ()()P

∈ ()
= () (22)

and:

( ∪) =
P

∈ ()() +
P

∈ ()()P
∈ () +

P
∈ ()

= ()

This last equation can be rewritten asX
∈

()() +
X
∈

()() = ()

ÃX
∈

() +
X
∈

()

!
 (23)

From (22), we obtain
P

∈ ()() = ()
P

∈ (). By definition of  ,

we also have
P

∈ ()() = ()
P

∈ (). If we replace in (23), we find:

()
X
∈

() + ()
X
∈

() = ()

ÃX
∈

() +
X
∈

()

!

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or:

(()− ())

ÃX
∈

()

!
= (()− ())

ÃX
∈

()

!
which amounts to:

()− ()

()− ()
=

P
∈ ()P
∈ ()

 (24)

Since this holds for any sets ,  and , it holds in particular for  = {}. Thanks
to the continuity of , we can choose  so that () = () is between () and

() and is as close as we want to () or (). We can therefore make the ratio

in the left-hand side of (24) as close to 0 or ∞ as we wish. Hence, for given  and

, Richness implies the existence of a set  with
P

∈ () arbitrary close to 0 or

to ∞.
Suppose  is non-decreasing. If we want to make

P
∈ () arbitrary close to 0,

then max∈ () must be arbitrary close to 0. This implies that lim→inf () =

0 and, hence, max∈  must be arbitrary close to inf.

• If  is non-decreasing, then ()  () (if we have chosen  Â ). This

contradicts (22) and proves that  continuous and non-decreasing is not com-

patible with  non-decreasing.

• If  is non-increasing, then ()  () (if we have chosen  ≺ ). This

contradicts (22) and proves that  continuous and non-increasing is not com-

patible with  non-decreasing.

Suppose  is non-increasing. If we want to make
P

∈ () arbitrary close to∞,
then min∈ () must be arbitrary large. This implies that lim→sup () = ∞
and, therefore, min∈  must be arbitrary close to sup.

• If  is non-decreasing, then ()  () (if we have chosen  ≺ ). This

contradicts (22) and proves that  continuous and non-decreasing is not com-

patible with  non-increasing.

• If  is non-increasing, then ()  () (if we have chosen  Â ). This

contradicts (22) and proves that  continuous and non-increasing is not com-

patible with  non-increasing.

6.19 Proposition 2

Assume that % is a continuous UEU ordering so that the  function of expression (1)

is a constant function. Hence, for any two sets  and 0 ∈ P(), one has:

 % 0 ⇐⇒
X
∈

()

#
≥
X
0∈0

()

#0

For some continuous function . For any set , let () =
X
∈

()

#
. Since % is

not trivial there are consequences  and  ∈  such that ()  (). Let  be a set
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such that  ∼ {}. The set  can be a singleton ( = {} with () = ()) or a

set with several elements. If  is a singleton, then (∪) = (()+())2.

If  is not a singleton, then ( ∪ )  (() + ())2. Hence, for all sets

 ∼ , ( ∪ ) ≥ (() + ())2. The continuity of  implies that, for

any real number  between () and (), there exists some  = {} ∈ P()
such that () = . If  is chosen to be strictly smaller than (() + ())2, then

( ∪ )  () and  ∪  Â , for any  with  ∼ . Hence, Richness does not

hold.
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