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Abstract

We consider tests of the hypothesis that the tail of size distributions decays faster than any

power function. These are based on a single parameter that emerges from the Fisher–Tippett limit

theorem, and discriminate between leading laws considered in the literature without requiring fully

parametric models/specifications. We study the proposed tests taking into account the higher order

regular variation of the size distribution that can lead to catastrophic distortions. The theoretical

bias corrections re-align successfully nominal and empirical test behavior, and inform a sensitivity

analysis for practical work. The methods are used in an examination of the size distribution of cities

and firms.
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1. INTRODUCTION

The distribution of object sizes (the “size distribution” for short) continues to be the subject of much

controversy and debate ever since the classic papers of Gibrat (1931) and Zipf (1949). This debate,

which extends across many fields in economics and the natural sciences (as discussed below), is

important since observable sizes (of e.g. cities/firms/disasters/returns or of e.g. proteins/solar flares)

are used to make inferences about the (in)validity of an underlying unobserved generative growth

process. At the opposite ends of the spectrum are two classic views. The classic Gibrat “law” holds

that sizes grow without constraints proportionately and independently of size, which, by a central

limit theorem argument, implies that sizes are asymptotically lognormally distributed.1 By contrast,

one can discern three nested versions of Zipf’s “law” in the literature: The Zipf law in its weakest

form considers only the largest sizes and holds that the tail of the size distribution decays like a

power function, while stronger forms of the law hypothesize that the exponent be unity or that

the entire size distribution be exactly Pareto with unity exponent. Still other models (e.g. modified

Simon models) suggest that the tail of the size distribution decays exponentially fast. However, the

existing literature offers sharply conflicting views and alternative interpretations of the empirical

evidence. We reconsider this debate by isolating its common denominator, namely the question as

to whether the tail of the size distribution decays faster than any power function. We show that

answering this question is challenging because of distortions induced by the higher order regular

1As defined in e.g. Sutton (1997), who, in reviewing Gibrat’s legacy, also discusses how “
‘Gibrat’s Law’ [has been combined] with a range of ancillary assumptions.” The limit distribution
changes if additional assumptions are imposed on the i.i.d. growth process. More recently, different
researchers use the label “Gibrat’s law” differently. There “Gibrat’s law” refers simply to the i.i.d.-
ness of the increments. Weaker versions of the “law” only impose constant mean and variances for
the increments.
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variation properties of the size distribution. Yet, these are invariably ignored by applied researchers,

and confound the size distribution debate. This enables us to make three principal contributions.

Our first methodological contribution consists in recasting the key questions about the tail behavior

of the size distribution within a unifying statistical framework using concepts from extreme value

theory (see e.g. Embrechts et al., 1997, for a textbook treatment). The application of this general

framework to the study of the tail of the size distribution is new. In particular, a single estimable

parameter γ , the so-called extreme value index, enables us via the classic Fisher–Tippett limit

theorem to juxtapose and clearly discriminate between power function-like behavior (γ > 0) and

faster tail decay (γ = 0). Using the allied concepts of maximum domain of attraction (MDA), the

situation γ > 0 corresponds to the size distribution F being in the maximum domain of attraction of

the Fréchet distribution (denoted by F ∈ MDA(Gγ>0)), whereas γ = 0 corresponds to F being in

the MDA of the Gumbel distribution (F ∈ MDA(G0)). We interpret thus the question as to whether

the tail of the size distribution decays faster than any power function as requiring a test of the null

hypothesis F ∈ MDA(G0) versus the alternative F ∈ MDA(Gγ>0). To the extent that extreme value

theory has been used before in the applied literature, researchers in urban and industrial economics

usually impose γ > 0, and ignore the empirical challenges caused by subexponentiality and higher

order regular variation discussed below.

We then study three complementary tests that have been proposed in the statistical literature that do

not impose any parametrizations other than the assumption that the Fisher–Tippett theorem holds.

Our test framework subsumes not only the classic “laws” discussed above but also situations in
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which the tail decays exponentially fast, or in which power function behavior is generated by

functions other than exact Pareto distributions. We do not test one fully parametric distribution

against another (e.g. exact lognormal v. exact Pareto), the usual approach taken in the size

distribution literature. It also turns out that the conditions for such tests are not met by our data.

As there is widespread skepticism among researchers about the merit of testing whether one

fully specified distribution fits exactly the data (Gabaix and Ioannides, 2004), we believe that our

hypotheses impose very informative restrictions on the data of object sizes.

Our second methodological contribution focuses on diagnosing and overcoming the complications

for inference that arise when the nuisance part of the size distribution function F decays only

slowly. The empirical literature on the size distribution has to date – wrongly as it will turn out

– ignored such higher order regular variation. We reveal that the three tests under consideration

can exhibit catastrophic test size distortions. These theoretical biases are then studied under an

assumption about second order regular variation. The subexponential lognormal case is considered

in detail (while other distributions are considered in the Online Appendix). Knowledge of the

theoretical biases is shown to re-align successfully the theoretical and empirical test sizes. The

biases are also ranked for several distributions pertaining to our null hypothesis. In situations in

which the theoretical bias cannot be estimated, we discuss the merits of a sensitivity analysis for

the test statistics. We show that the parameter σ of the lognormal distribution can be interpreted as

a sensitivity parameter. If the bias correction does not reverse the test conclusion for a “reasonable”

range of sensitivity parameters, the test result can be considered as robust.
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In our empirical applications we reconsider the size distribution for cities in the US and Germany,

and for firm sizes in France. These examples constitute our third contribution as they demonstrate

the relevance of our general hypotheses and the proposed test procedures: the empirical size

distributions are neither exactly Pareto nor exactly lognormal, thus rendering some prominent tests

from the literature (discussed below) inapplicable for our data. Our test results yield robust evidence

in favor of Zipf’s weak law for the upper tail of the city size distribution, i.e. power function-like tail

decay while stronger forms of the law (a unity exponent, exact Pareto behavior, exact Pareto with

unity exponent) are clearly rejected. These findings imply that some leading theoretical approaches

to generative laws of invariant city size distributions are empirically flawed.

The size distribution debate extends across many fields in economics, and beyond into the natural

sciences. This is not surprising since size data are informative about theoretical generative growth

processes. Gabaix (2009) provides a survey of these, see also Schluter and Trede (2016). For

instance, Kesten (1973) has shown that a stationary solution to a stochastic recurrence equation

satisfies a regular variation condition (see also Goldie, 1991). In particular, adding a lower reflecting

barrier to Gibrat’s classic model of i.i.d. proportional growth yields a Pareto size distribution with

unity exponent (Gabaix, 1999a, so that “Gibrat plus frictions” yields Zipf strongest law, which

is sometimes abbreviated as “Gibrat’s law causes Zipf’s law”). By contrast, Reed (2002) shows

that a subordinated geometric Brownian motion, specifically assuming that random lifetimes are

exponentially distributed, yields a size distribution whose lower and upper tails are power functions.

Reed and Hughes (2002) argue that such “killed” processes are widely applicable in the social and

natural sciences. Cabral and Mata (2003) in turn argue that firm size distributions are less shaped by
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survival/selection, and more by constraints on firm sizes that diminish as firms age. They conclude

that the firm size distribution evolves over time towards a lognormal distribution. Sutton (1997)

presents a modified Simon model that yields a size distribution with exponentially fast tail decay.

Recent examples in economics are the size distributions of macroeconomic disasters (Barro and Jin,

2011), of firms (e.g. Sutton, 1997, Cabral and Mata, 2003 or Luttmer, 2007) or of sales (Eaton et al.,

2011), income distributions (see e.g. Schluter and Trede, 2002), the returns distribution in finance

(see e.g. Schluter and Trede, 2008). In the literature on exchange rates, finance, insurance and risk

management (where often 1/γ ∈ (2, 4)), Ibragimov et al. (2013, 2015) emphasize that heavy

tails may lead to sub-optimal diversification in the value-at-risk framework, non-robustness of

several economic and financial models, while finiteness of variances is crucial for the applicability

of classical econometric approaches. Gabaix et al. (2006) propose a model that generates power

tails for financial returns if the size distribution of market participants follows Zipf’s law. The

place of the size distribution debate in other sciences is surveyed in e.g. Mitzenmacher (2003).

An illustration of the current debate taking place in urban economics are the opposing views of

Eeckhout (2004) on one side, and Gabaix (1999b), Córdoba (2008), and Levy (2009) on the other

side. Similar debates concern the firm size distribution.2

2To illustrate, Eeckhout (2004) claims that “cities grow proportionately (...) and this gives rise
to a lognormal distribution of cities”, and “it is shown that the size distribution of the entire
sample is lognormal and not Pareto”, whereas Córdoba (2008) states that “the city size distribution
in many countries is remarkably well described by a Pareto distribution.” Gabaix and Ioannides
(2004) survey the city size distribution literature. Cabral and Mata (2003) summarize the firm size
distribution (FSD) literature thus: “Conventional wisdom received from these studies has held that
expected firm growth rates are independent of size (Gibrat’s Law), and that the FSD is stable and
approximately lognormal.”

7
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The outline of the paper is as follows. In Section 2 we review various definitions of “tail behavior

laws” that appear in the literature. We embed all approaches into a unifying framework based

on extreme value theory. Section 3 presents the formal statistical tests of the Gumbel-Gibrat

hypothesis, derives the biases under second order regular variation and suggests an adjustment

to remedy them. A simulation study demonstrates that the adjustment works well in practical

applications. In Section 4 we apply the tests to data on city and firm sizes. All proofs are collected

in the Online Appendix, which also provides further supplementary material.

2. TAIL BEHAVIOR OF THE SIZE DISTRIBUTION

Does the tail of a size distribution decay faster than any power function? The literature on size

distributions often refers to some prominent “laws”, although different researchers sometimes offer

implicitly or explicitly different flavors or definitions. We first provide a nuanced discussion and

some extended definitions of our own before embedding these in a unifying statistical framework

based on maximum domain of attractions.

Zipf’s (1949) classic exposition of the rank size rule pertains to the largest sizes. Thus this is a

statement about the tail behavior of the size distribution, and the weakest form of a Zipf law can

be formulated as the hypothesis that the size distribution has a heavy, regularly varying, right tail

which decays like a power function: the distribution function F of sizes is of the form

F(x) = 1 − LF(x)x
− 1

γ , for large sizes x (1)
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with γ > 0 and LF being a slowly varying function. Recall that a function g is called regularly

varying at x0 with index θ if limx→x0
g(tx)/g(x) = tθ with t > 0 (if not stated otherwise, x0 is

infinity). If θ = 0, the function is said to be slowly varying. Hence, in (1) the right tail of the size

distribution is eventually of the Pareto form. For instance, we will consider below distributions that

are members of the Hall (1982) class given by

F(x) = 1 − ax−1/γ [1 + bxβ + o(xβ)], for large sizes x (2)

with γ , a > 0, b ∈ R, β < 0. As β ↑ 0, the nuisance part in the tail decays more slowly, which,

we show below, will induce power distortions in tests.

Stronger flavors of Zipf’s law are the hypothesis that γ be unity, or that this power function behavior

not only applies to large sizes but extends over the entire domain so that LF is a constant and the

entire size distribution exactly Pareto with exponent 1,

F(x) = 1 − cx−1/γ , for all x ≥ c (3)

with γ = 1. We refer to the latter two as Zipf’s stronger and strongest law. These nuanced

definitions, summarized in Table 1, differ from the language used by some researchers, who, when

invoking “Zipf’s law”, refer to versions (b) or even (c) (e.g. Gabaix, 1999a). The nesting of the

hypotheses is obvious. Note that the pth moment of the size distribution is finite only if p < 1/γ ,

so the mean is infinite if the stronger or strongest Zipf’s laws hold.

9
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Table 1: “Laws” and Labels.

Law F Hypothesis

(a) Zipf’s weak law equation (1) F ∈ MDA(Gγ>0)

(b) Zipf’s stronger law equation (1) with γ = 1 F ∈ MDA(G1)

(c) Zipf’s strongest law equation (3) with γ = 1 Exact Pareto with exponent 1

(d) classic Gibrat’s law equation (4) with δ = 2 Exact lognormal

(e) Gumbel-Gibrat F ∈ MDA(G0)

By contrast, a lognormal size distribution is induced by Gibrat’s law in its classic form (i.e.

unconstrained proportional i.i.d. growth of one mature cohort). For large x, the tail of this

distribution can be written more generally as 1 − F(x) ∼ cxαe−λ log2 x with α ∈ R and λ > 0.

(Two functions, say b(t) and c(t), are defined to be of the same order, b(t) ∼ c(t), if b(t)/c(t) → 1

as t → ∞.) More generally still, lognormal-like tails can be written as

1 − F(x) ∼ cxαe−λ logδ x (4)

with δ > 1. We denote this class LN(δ). Although the speed of tail decay of the lognormal

distribution is faster than that of class (1), it is sufficiently slow to generate a tail that is commonly

considered as “heavy”, i.e. for both distributional classes we have eβx(1 − F(x)) = ∞ for all

β > 0 as x → ∞. Such tail decay is labelled subexponential. In the lognormal case, the speed

of decay is faster than any power function, but also slower than exponential. This slow speed is

partly at the origin of the confusing situation in the applied literature where the same data are

given diametrically opposite interpretations. For our statistical theory, this will necessitate the use

of asymptotic refinements.
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We are not interested in testing for lognormality. More generally, we ask whether the decay speed

is faster than any power function. For reasons that will become clear next, we will refer to this

situation as Gumbel–Gibrat.

2.1. Maximum domains of attraction

The behavior of extreme quantiles and the associated distributional tail is the subject of extreme

value theory, which arises from the classic Fisher–Tippett theorem (Fisher and Tippett, 1928) about

the limit distribution of the maximum of i.i.d. data: If, for suitably chosen norming constants cn and

dn, c−1
n (max(X1, . . . , Xn)− dn) converges in distribution to a non-degenerate distribution function,

then this limit belongs to one of only three distribution functions, namely the Fréchet, Weibull, or

Gumbel. Embedding these three possible outcomes in the Generalized Extreme Value distribution

Gγ , the Fisher–Tippett theorem asserts the weak convergence of scaled maxima to

Gγ (x) = exp

(

−
[

1 + γ

(

x − µ

σ

)− 1
γ

+

])

.

with γ > 0 being the Fréchet case and γ → 0 the Gumbel case. As we consider x → ∞, the

negative Weibull case with γ < 0 is irrelevant. Which limit case applies is thus given by the sign

of γ , usually referred to as the extreme value index (and 1/γ as the tail index).

Extensions of the Fisher–Tippett theorem consider maximum domains of attraction (MDA): F ∈

MDA(Gγ ) if there exist norming constants such that the Fisher–Tippett theorem holds for extreme

value distribution Gγ (the MDAs are characterized in e.g. Embrechts et al., 1997, Theorems 3.3.7

and 3.3.26); the hypothesis of their existence is usually labelled the extreme value condition. It
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is well known that the subexponential lognormal distribution belongs to the MDA of the Gumbel

distribution, as are distributions that decay exponentially fast (e.g. the Normal or the Gamma). By

contrast distributions that are regularly varying, i.e. being of the form (1), are in the MDA of the

Fréchet distribution. These include, e.g. the Hall model (2) or the Burr distribution. Zipf’s weak

law as formalized by (1) thus characterizes one entire MDA of the limit law.

We therefore label the hypothesis that the tail of the size distribution decays faster than power

functions the Gumbel–Gibrat hypothesis. In particular, we seek to test

H0 : F ∈ MDA(G0) v. F ∈ MDA(Gγ>0) (5)

We are not testing one parametric distribution (e.g. lognormal) against another (e.g. Pareto). If

a researcher is willing to impose fully parametric assumptions, tailored tests are available in the

literature (e.g. Malevergne et al., 2011). Other approaches seek to fit fully specified parametric

models to the entire size data, notably subordinated i.i.d. growth processes yielding so-called

double Pareto lognormal distributions (Reed, 2002), or switching models in which Pareto tails

are pasted to lognormal bodies (Ioannides and Skouras, 2013). However, as regards our empirical

applications, their framework cannot be used here: Neither the entire size distributions are exactly

Pareto (i.e. they are not described by (3) for all sizes); nor, in terms of equation (1), is the nuisance

function LF a constant, nor is the lognormal quantile plot linear for large sizes. The generality

of our hypotheses to be tested is attractive since it avoids misspecification errors induced by

fully parametric approaches when the maintained hypotheses are rejected by the data. The test

procedures we consider below do not impose any parametrizations other than the assumption that
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the Fisher–Tippett theorem holds, so are semi-parametric in this sense. In order to address the

challenges that arise from the slow decay in the nuisance part of the distribution function, we

invoke a second order regular variation assumption.

3. TESTS OF THE GUMBEL–GIBRAT HYPOTHESIS

We study two complimentary approaches that have been proposed in the statistical literature for

testing the Gumbel hypothesis: First, a direct test of the Gumbel–Gibrat hypothesis F ∈ MDA(G0),

and then tests based on the estimated γ . The complimentary approaches are considered since it

will turn out that none dominates the others in all circumstances considered below. Nor is it our

intention to provide a comprehensive survey of all feasible estimators that have been proposed in

the statistical literature.

Define the upper order statistics X(1) ≥ X(2) ≥ . . . ≥ X(k) ≥ . . . ≥ X(n) where X1, . . . , Xn is a

sample of i.i.d. data. We consider only excesses over the random threshold X(k); k is an intermediate

sequence k = k(n) that is assumed to satisfy standard asymptotic monotonicity conditions: k(n) →

∞ and k(n)/n → 0 as n → ∞. A classic criterion for choosing k in applications is the minimisation

of the MSE (see e.g. Hall, 1982, and Dekkers and de Haan, 1993). Rather than picking one particular

value of k, we consider below a sequence of k. For our empirical applications, we discuss the choice

of k in Section 4 below.
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For the direct test approach, define the Greenwood-type statistic Gn(k) = M
(2)
k,n/(M

(1)
k,n)2 with

M
(i)
k,n = (1/k)

∑k
j=1(X(j) − X(k+1))

i. The Hasofer–Wang test statistic (Hasofer and Wang, 1992;

Neves and Fraga Alves, 2007) is a transformation, given by

Wn(k) = 1

k

(

1 − Gn(k) − 2

1 + (Gn(k) − 2)

)

(6)

and equals the reciprocal of the empirical squared coefficient of variation. Gn(k) is a sample

analogue of the moment expression E((X − t)2|X > t)/(E(X − t|X > t))2, which equals 2 as

t → ∞ when γ = 0. Under the alternative hypothesis γ > 0, Lemma 2 below requires γ < 1/4

for convergence in distribution, otherwise
√

k/4(kWn(k)−1) diverges. We therefore should expect

the test to be powerful for sufficiently large values of γ .

We also consider the problem of estimating γ directly before proceeding to the test. The well-

known moment estimator due to Dekkers et al. (1989) is given by

γ̂M(k) = 1 + H
(1)
k,n − 1

2

(

1 −
(H

(1)
k,n )2

H
(2)
k,n

)−1

(7)

with H
(i)
k,n = (1/k)

∑k
j=1(log X(j) − log X(k+1))

i. Similar to the Greenwood-type statistic Gn(k),

H
(2)
k,n/(H

(1)
k,n )2 is a sample analogue of E((log X − log t)2|X > t)/(E(log X − log t|X > t))2(= 2 as

t → ∞ and γ > 0). The log transform takes random variables in the domain Gγ>0 into the domain

G0, ensuring that their means do not diverge.

14
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Since the moment estimator is not invariant to shifts in the data, we consider also the estimator

proposed in Matthys and Beirlant (2003). Considering the scaled log-ratio of spacings Yj =

j log[(X(j) − X(k))/(X(j−1) − X(k))], and exploiting Rényi’s representation of standard exponential

order statistics, they propose

γ̂MLE(k) = arg max

k−1
∑

i=1

(Yjλγ ,i,k − log (λγ ,i,k)) (8)

with λγ ,i,k = 1−(i/(k+1))γ . They label this estimator a “maximum likelihood estimator” although

it has this interpretation only asymptotically as no distributional assumptions are required apart

from the distribution’s belonging to an MDA.

The estimators γ̂M and γ̂MLE can be utilized to test the Gumbel–Gibrat hypothesis (5) in a

straightforward way. The test statistic is T = γ̂ /SE(γ̂ ) where γ̂ is either the moment estimator

(7) or the maximum likelihood estimator (8).

3.1. Distribution theory under second order regular variation

The distributional theory for Wn(k), γ̂M(k), and γ̂MLE(k) is stated next, accounting for the

potentially slow convergence speed in the Fisher–Tippett theorem (equivalently the slow speed

of tail decay) that turns out to induce important biases. These will be quantified below in Figure 1.

In the following, we provide second order refinements based on a second order regular variation

condition. While the asymptotic theory for the estimators is known, we recast it here in a unifying

way.
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Define the tail quantile function U(t) = F−1(1 − 1/t). The content of the Fisher–Tippett theorem

can be expressed equivalently in terms of first order regular variation and the tail quantile function

(e.g. Dekkers et al., 1989): for γ ≥ 0 and if limt→∞ U(t) > 0,

lim
t→∞

log U(tx) − log U(t)

a(t)/U(t)
= log x (9)

where a is a positive norming function with the property a(t)/U(t) → γ . To account for the

potentially slow convergence speed in the Fisher–Tippett theorem, we follow the extreme value

literature and assume that the tail quantile function obeys the second order extended regular

variation condition

lim
t→∞

log U(tx)−log U(t)

a(t)/U(t)
− log x

A(t)
= Hγ ,ρ(x) (10)

where Hγ ,ρ(x) = 1
ρ

(

xρ+γ−−1
ρ+γ−

− xγ−−1
γ−

)

with γ− = min{0, γ }, and H0,0(x) = 0.5 log2 x =

Hγ>0,0(x). The parameter ρ ≤ 0 is the so-called second order parameter of regular variation, and

A(t) is a rate function that is regularly varying with index ρ, with A(t) → 0 as t → ∞. If ρ → 0,

the speed of decay in the nuisance part of the tail quantile function U is slow. The exposition below

is simplified by using the equivalent representation (Dekkers et al., 1989, p. 1840),

lim
t→∞

log U(tx) − log U(t) − b2(t) log x

b(t)
= Hγ ,ρ(x) (11)

where b2(t) ∼ a(t)/U(t), so the new rate function satisfies b(t) ∼ −A(t)a(t)/U(t).
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Theorem 1. Let γ = 0 = ρ, and let k = k(n) → ∞ and k(n)/n → 0 as n → ∞. Assume that

(11) holds, and that
√

k bias(n, k) → λ 6= 0 as n → ∞, where

bias(n, k) =











b2(n/k) − b(n/k)

b2(n/k)
when considering γ̂M, γ̂MLE

Â(n/k) when considering Wn(k)

with

Â(t) =















A(t) = b(t)/b2(t) if b2(t)
2/b(t) → 0

a(t)/U(t) = b2(t) if b2(t)
2/b(t) → ±∞

A(t)(1 + c) if b2(t)
2/b(t) → c 6= 0, ±∞.

Then

√
k(γ̂M) →d N (λ, 1)

√
k(γ̂MLE) →d N (λ, 1)

√

k/4(kWn(k) − 1) →d N (λ, 1) .

3.1.1. Biases and the speed of tail decay

Next, we turn to bias functions. The following lemma states the bias functions for the key lognormal

case. These results are new.
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Lemma 1. Consider the lognormal distribution LN(2). We have γ = 0 = ρ. As t → ∞, to second

order, the tail quantile function and rate functions are

U(t) = exp

(

σ

[

(2 log t)1/2 − log log t + log 4π

2(2 log t)1/2

])

a(t)/U(t) = σ(2 log t)−1/2

[

1 + 1

2
(log(4π) + log(log t) − 2)(2 log t)−1

]

A(t) = −(2 log t)−1
[

1 + (2 log t)−1(log(4π) + log(log(t)) − 3)
]

The bias functions are Â(t) = b2(t) = a(t)/U(t) and b2(t) − b(t)/b2(t) = a(t)/U(t) + A(t).

The distributional theory holds for all distributions that are in the MDA of the Gumbel distribution

and which satisfy condition (10). In Online Appendix B we consider other distributions with γ =

0 = ρ, and obtain the following ranking of the biases:

Corollary 1. The biases in the lognormal case exceed those induced by the Gumbel, Gamma

and Normal distributions. The biases for the normal distribution exceed those of the Gumbel and

Gamma distribution. The magnitude of the bias function |b2 − b/b2| in the Weibull case exceeds

those of the Gamma and the Gumbel distribution, and that of the normal distribution if δ < 1/3;

in the Weibull case |Â(t)| is larger than for the Gumbel and Gamma cases if δ < 1/2 and larger

than for the normal case if δ < 1/3.

It is in this sense that the lognormal case constitutes a “worst case” scenario for the tests of F ∈

MDA(G0) under H0. This corollary suggests a sensitivity analysis, as considered in Section 3.2.1
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below. Moreover, in the lognormal case, the slow speed of decay of the bias is compounded by

large values of σ (as encountered in our empirical applications).

Corollary 2. The biases in the lognormal case LN(2) and hence the test size distortions of the

uncorrected test statistics are increasing in σ .

3.1.2. Power considerations

We briefly consider the power of the tests and in particular, the role played by ρ driving the higher

order biases which lead to power distortions.

Lemma 2. Let γ > 0. Let k = k(n) → ∞ and k(n)/n → 0 as n → ∞. Assume that (11) holds,

and that
√

k bias(n, k) → λ 6= 0 as n → ∞, where

bias(n, k) =















γ + ρ(1 − γ )

ρ(1 − ρ)2
A(n/k) when considering γ̂M, γ̂MLE with ρ < 0

1 − γ

(1 − γ − ρ)(1 − 2γρ)
A(n/k) when considering Wn(k)

Then

√
k (γ̂M − γ )

d→ N(λ, 1 + γ 2)

√
k (γ̂MLE − γ )

d→ N(λ, 1 + γ 2)

Also, for γ < 1/4,

−
√

k

4
(kWn(k) − 2γ )

d→ N(λ, 1 + γ 2).

19



A
cc
ep
te
d
M
an
us
cr
ip
t

The asymptotic power function is given, for a one-sided test of size α, by

π(k, γ , λ) = 1 − 8

(

8−1(1 − α) − k1/2γ

(1 + γ 2)1/2
− λ

)

,

where 8 denotes the normal cdf. As the bias λ increases, the power is distorted upwards.

In particular, in the Hall class (2), U(x) = cγ (1 + dxρ + o(xρ)) with ρ = γβ < 0, and A(t) =

(ρ2/γ )dtρ . Second order regular variation leads to power distortions. As ρ ↑ 0, the nuisance

part of F decays more slowly, and the biases tend to increase; the resulting overestimation leads

to an overstatement of the power since ∂π/∂λ > 0. Simulation evidence is presented in Online

Appendix A.1.

3.2. Simulation evidence

Theorem 1 suggests that higher order regular variation properties of distributions can give rise to

biases, which, if ignored, lie at the heart of the test size distortion. If the functions A and a were

known, the theorem suggests a bias correction that should re-align nominal and empirical test size

behavior. We examine these implications for the focal lognormal case (and in Online Appendix B

for Weibull, Gumbel, Gamma, and Normal distributions).

The simulation design involves drawing samples of size N = 10,000, and repeating the experiments

R = 1,000 times. The performance of the three test procedures is assessed using the coverage error

rate of their confidence intervals for the Gumbel–Gibrat null γ = 0, for a nominal 5% rate.
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Figure 1 depicts the results. Consider first the test-statistics, depicted in Panels A–C. In each

case considered, the uncorrected test statistic exhibits a considerable bias (solid lines), while its

variability is stable (weak dashed line) and close to the theoretical value of unity. The analytical

bias functions (bold dashed lines) capture the empirical biases very well. The differences between

empirical bias and the value of the bias function of Lemma 1 decrease in k, and are negligible for

k > 50.

In Panels D–F of Figure 1 we consider the implications of the distortions and the proposed

corrections for the empirical test sizes for the nominal rate of 5%. First, we plot the empirical

test sizes using the uncorrected test statistics (solid lines). As the biases have been shown to be

very substantial, it is not surprising that the empirical test sizes using the uncorrected test statistics

quickly diverge to 100%. By contrast, using the appropriate bias corrections (bold dashed lines)

successfully re-aligns nominal and empirical test sizes.3 Figure 1 illustrates thus a key result of this

paper.

3.2.1. Sensitivity analysis

In practice, (a, A, ρ) are not known and difficult to estimate. We therefore suggest a sensitivity

analysis that is informed by the preceding theory. The overall concern is that the distortions could

be sufficiently large as to invalidate the conclusion of the test of the null hypothesis γ = 0, as

3As regards the “maximum likelihood estimator” γ̂MLE in Panel F, the empirical rate exceeds the
nominal rate but is stable. Panel C reveals an elevated variability of the estimator (which exceeds
the theoretical value of 1). Including the appropriate scale correction now lets actual and nominal
coverage error rates coincide (dotted line in Panel F).
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demonstrated by the preceding simulation study. Under the null hypothesis the biases are such that

the uncorrected Hasofer–Wang test statistic constitutes a lower bound, and the γ estimates and their

lower confidence limits an upper bound (illustrated in Figure 1 for the lognormal case). Correcting

the distortions therefore increases the former and reduces the latter. Corollary 1 shows that the

lognormal distribution constitutes the “worst case” situation, Lemma 1 defines the theoretical biases

in this case, while Corollary 2 reveals that the distortions are increasing in σ . We therefore interpret

σ more generally as a sensitivity parameter that controls a very conservative upper bound. The

proposal for the sensitivity analysis is then to set an arbitrary yet “reasonable” value for σ to

establish whether the rejection of the null hypothesis is overturned, or to find the critical value

of σ above which rejection of the null hypothesis is overturned. If, for “reasonable” values of

σ , the test conclusions cannot be overturned, it follows by Corollary 1 that the tail of the size

distribution decays faster than lognormal as the resulting distortions are then smaller. It is, of

course, conceivable that the correction is excessive and the test conclusion wrongly overturned.

We would consider any situation in which the conclusion based on the uncorrected test statistic

is overturned as yielding an inconclusive result. Fortunately, this situation does not arise in our

empirical examples below, as both uncorrected test and our sensitivity analysis point to the same,

and hence robust, conclusion.

4. EMPIRICAL APPLICATIONS

We apply the discussed methods to investigate the size distributions of cities in Germany and the

US, and the size distribution of firms in France. In all three cases, we test the Gumbel–Gibrat
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null hypothesis for the upper tail of the distributions.4 As discussed in the Introduction, applied

researchers generally ignore the potentially catastrophic distortions that we have studied above.

Here we provide robust evidence for power function behavior.

4.1. City size distribution in Germany

Our first empirical application concerns the size distribution of cities. We use first an administrative

dataset for Germany for the year 2000, provided by the German Federal Statistical Office. These

administrative data are highly accurate due to the legal obligation of citizens to register with the

authorities. The unit of analysis is the “city”, or more precisely the municipality or settlement

(“Gemeinden”). Population sizes are as of December 31st, and the year 2000 size distribution

comprises 13,854 cities.

We present first some descriptive graphs. Figure 2 Panel A depicts the kernel density estimate of

the entire German log city size distribution. As the density is clearly not exponential, it follows

that the entire size distribution is not Pareto. Hence clearly rejected already are the exact Pareto

law (3) for the entire size distribution and thus Zipf’s strongest law (as given by (3) with γ = 1).

In order to describe the upper tail behavior, we present in Panel B a Pareto quantile plot; i.e. we

plot log(X(j)) on (− log(j/(n + 1)) for j = 1, . . . , k with k = 300. If the distribution were exactly

Pareto, the plot would be linear; if only the tail were (exactly) Pareto so that LF(x) = c in (1), most

4In Online Appendix C.1 we consider in detail the lower tails, which are of interest since some
data generating processes imply a Pareto-type tail at the lower end of the distribution (e.g. Reed,
2002; Malevergne et al., 2013). There we show that Pareto-type behavior at the lower tails of the
city size distributions cannot be confirmed.
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points on the right part of the graph would be on a line. Since the graph is not exactly linear, we

refrain from assuming exact Pareto behavior in the tails of the size distribution. Finally we present

in Panel C also the normal quantile plot for large log sizes, having rescaled log(X(j))j=1,...,300 using

the maximum likelihood estimates of the mean and variance of the assumed lognormal distribution

(with µ̂ = 7.3 and σ̂ = 1.5). Again, the graph is not linear (nor is it on the diagonal), so we decide

not to presuppose exact lognormality for the upper tail. In view of Panels B and C, our data suggest

not to conduct tests such as proposed in Malevergne et al. (2011), who consider testing a Pareto

null hypothesis against a lognormal alternative for large sizes.

We proceed therefore to the application of our test procedure, and we consider first the uncorrected

test statistics, which are depicted in Figure 3. Panel A depicts the uncorrected Hasofer–Wang test

statistics (solid line), and suggests a rejection of the null hypothesis for values of k as low as 50. The

test procedures based on the uncorrected estimates of γ , suggest a similarly clear conclusion.5 In

Panels B and C we depict γ̂M and γ̂MLE (solid lines). After some initial fluctuations for very low k,

both estimators agree and stabilise around a value of .72 which also implies an infinite variance but

finite mean of the size distribution). The uncorrected confidence band (not depicted) is sufficiently

tight to suggest a clear rejection of the Gumbel–Gibrat null hypothesis γ = 0. Interestingly it also

excludes the Zipf value of 1 for k > 50, which means that Zipf’s stronger law (i.e. (1) with γ = 1)

5If γ > 0, alternative estimators of γ become available. In Online Appendix C.2 we compare our
estimates to the Hill and rank-1/2 (log-log rank-size regression) estimates. These suggest the same
qualitative conclusions across our city and firm size data.
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is also rejected. Similar qualitative and quantitative conclusions apply to the test based on γ̂MLE,

depicted in Panel C (solid line).

Although the uncorrected test statistics suggest a clear rejection of the Gumbel–Gibrat null

hypothesis γ = 0, we have seen that higher order regular variation properties can lead to

catastrophic test size distortions. We therefore conduct a sensitivity analysis, as discussed in

Section 3.2.1 above. Specifically, we consider what would happen in the “worst case” distribution

(under the null hypothesis), i.e. we consider the bounds on our test statistic or our lower confidence

limits that would arise from subexponential lognormal distributions. We treat σ as a sensitivity

parameter, and set it arbitrarily but “reasonably” to 1.5 (equal to the maximum likelihood estimate

reported above).

We consider first the Hasofer–Wang test statistic. The uncorrected test statistic constitutes a lower

bound. The conservative upper bound thus obtained is depicted in Figure 3 Panel A (dashed line).

The Gumbel–Gibrat hypothesis can then only be rejected at the 5% level for roughly k > 300. As

regards the γ̂ -based procedures depicted in panels B and C, the uncorrected estimates constitute

upper bounds, and the bias adjustments reduce the γ estimates (dashed lines) considerably. But

the reduction is not sufficient to overturn the conclusion that the null hypothesis be rejected: The

shifted lower 95%-confidence limits (dotted lines) still exclude the value 0 for k > 70 in both cases.

Our sensitivity analysis has suggested that, relative to the bounds established by the uncorrected test

statistics, the number of upper order statistics to be taken into account should modestly increase.
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The null hypothesis for the Hasofer–Wang test is robustly rejected for k > 300, and for k > 70 for

the γ -estimator based methods.

Should a researcher wish to pick a particular k, specifically to pin down a point estimate for γ ,

established methods tend to suggest values of k for our data that are not in contradiction with the

suggestions above, i.e. they yield sufficiently large values of k. For instance, one visual method of

choosing k is to consider an extended area of the γ̂ (k) plot in which the estimate is rather stable.

For the moment estimator depicted in Figure 3b, this happens around k ∈ [100, 250]. Given this

extended stability, it is not surprising that alternative methods yield similar values. For instance,

consider minimizing the mean squared error (mse) based on Lemma 2, which requires knowledge

of the theoretical bias function. Assuming a Burr distribution with ρ = −.3 and replacing γ by its

estimate, yields a mse-minimizing value of k = 135. Increasing the magnitude of the second order

parameter ρ increases k.

4.2. City size distribution in the US

For our examination of the US city size distribution, we use the US census 2000 data of city sizes

used and extensively described in Eeckhout (2004). The number of observations is n = 25,358. The

density of the US size distribution is similar to the German, and therefore not displayed. The results

are displayed depicted in Figure 4. The uncorrected point estimators of γ for the upper tail (solid

lines in Panels B and C) quickly stabilize around a value of .68 > 0 suggesting that the Gumbel–

Gibrat hypothesis should be rejected for the upper tail (and also implies an infinite variance but

finite mean of the size distribution). The same is true for the uncorrected Hasofer–Wang test.
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Turning to our sensitivity analysis, fitting a lognormal density results in estimated σ of 1.75.

The bias adjusted moment estimates (Panel B, dashed line) are considerably smaller than the

uncorrected estimates. The lower 95% confidence bounds (dotted line) crosses the abscissa at

k = 100. Hence, the Gumbel–Gibrat hypothesis is robustly rejected for k > 100. The same results

holds for the MLE (Panel C). As to the bias adjusted Hasofer–Wang test (Panel A), the Gumbel–

Gibrat hypothesis is rejected for k > 250. In any case, we also clearly reject the stronger forms of

Zipf’s law (equation (1) with unity exponent).

4.3. Firm size distribution in France

As a second empirical application we consider the firm size distribution in France. As in the

literature on the city size distribution, the literature on the firm size distribution contains conflicting

views. Some studies postulate an exponential or lognormal distribution, see e.g. the review in Sutton

(1997). Others assume a Pareto upper tail; this strand of the literature goes back at least to Simon

and Bonini (1958). Empirical evidence in support of the Pareto law is presented e.g. in Axtell

(2001). By contrast, using data for Portugal, Cabral and Mata (2003) argue that the lognormal

distribution provides a good fit only for mature firms: As firms age, constraints on the firm size

diminish, and the size distribution evolves over time to a lognormal distribution.

The data are extracted from the “Amadeus” dataset provided by Bureau van Dijk. Firm size is

measured by the number of employees in 2015, and n = 17,757 observations. The distribution is

highly skewed with mean 125 employees but a median of only 14.
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Figure 5 Panel A shows the density plot of the logarithm of the number of employees. As in the

case of city sizes, the strongest form of Zipf’s law (i.e. exact Pareto behavior) does obviously not

hold. Estimating the parameter σ of a lognormal distribution by maximum likelihood, we obtain

an estimate of 1.2. Panels C and D of Figure 5 depict the moment estimator and the maximum

likelihood estimators of γ . Both methods yield estimates exceeding 1 even for moderate values

of k. The dashed lines show the bias adjusted estimators. The dotted lines are the corresponding

lower 95% confidence limits. Even for small values of k (say, k = 30) we can reject the Gumbel–

Gibrat hypothesis as γ̂M and γ̂MLE are significantly larger than 0. For k between about 50 and 120

both confidence intervals enclose the value of 1 supporting Zipf’s strong law (and an infinite mean

of the size distribution); for larger k, this result continues to hold for the moment estimator but

the estimates increase above 1 in the maximum likelihood case. The Hasofer–Wang test statistic,

plotted as a solid line in Panel B, indicates that the Gumbel–Gibrat null of γ = 0 can be rejected

for k as small as about 30. Taking the bias adjustment into account, the dashed line shows that the

null can be rejected for k > 80.6

4.4. Asymptotic distortions when γ > 0

Our methods have provided robust empirical evidence for power tail behavior of city and firm size

distributions. If the researcher seeks to obtain a particular point estimate of γ , Lemma 2 suggests

that care needs to be exercised. Although A(t) → 0 as t → ∞, this decay might be slow, inducing

6Cabral and Mata (2003) suggest that the size distribution depends on firms’ age, in particular
that the lognormal distribution tends to provide a better fit for older firms. Looking only at firms
incorporated before 1999 (roughly half of the firms), the estimation results hardly change and are
therefore not shown. Hence, the Gumbel–Gibrat hypothesis is also robustly rejected for older firms.
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a higher order bias. An asymptotic bias arises if k increases too quickly relative to the tail decay so

that λ 6= 0. In Online Appendix C.3 we investigate the potential size of the distortion in Hall-type

models, for which the sign of the distortion is given by sgn(γ + ρ(1 − γ )). Hence the estimators

suffer a positive distortion if ρ is sufficiently small in magnitude, or if γ > 1. Quantitatively, we

show that the distortions are small for |ρ| > .5. For smaller magnitudes, the distortions are bigger,

but this situation is less likely in our data. However, in view of the positive sign of the distortion

our inference that γ < 1 is strengthened. Finally, note that alternative estimators of γ are likely to

suffer similar higher order biases, yet practitioners usually tend to ignore such potential pitfalls.

5. CONCLUSION

We have recast key issues of the size distribution debate in a unifying statistical framework based

on extreme value theory, that has led us to a test of whether the tail of the size distribution decays

faster than any power function. Traditionally, the size distribution literature has focused on the

juxtaposition of two fully specified parametric models (such as exact lognormal and Pareto); yet, the

conditions for the ensuing tests are not met by our data. By contrast, our tests consider restrictions

on the speed of tail decay that are less restrictive, while nesting the leading “laws” of the literature.

Our test framework is therefore not only of theoretical interest but has also empirical necessity. We

have addressed the practical complications arising from the higher order regular variation properties

of the size distribution, which, if ignored, could lead to catastrophic distortions. If the theoretical

bias functions are known, nominal and theoretical test sizes can be re-aligned successfully. If the

theoretical functions are not known, our results inform a sensitivity analysis.
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In our substantive empirical illustrations, we consider the size distribution of cities (in the US and

Germany) and firms (in France) and conclusively demonstrate that the upper tails decay like power

functions. While a unity exponent of the power function cannot be rejected for firm sizes, the tests

unambiguously reject this stronger forms of Zipf’s law for city sizes. These are important findings

since the rejection of the classic Gibrat’s law implies that some leading approaches to generative

laws of invariant size distributions are empirically compromised. At the same time, the class of

generative laws to be considered should be extended, since power law behavior of the upper tail is

in fact one of the outcomes of the Fisher–Tippett theorem for the largest sizes.

Finally, we recall that our formal analysis is based on the hypothesis that the size data are i.i.d. (as is

standard in the empirical literature). Results in Hsing (1991) suggest that the current theory might

be a reasonable guide if the dependence is sufficiently weak so that approximations to a normal

law still hold (see also Resnick and Starica, 1998). In Online Appendix D this conjecture is verified

for dependent data generating processes considered in Gabaix and Ibragimov (2011). For a recent

theoretical analysis of tail index estimation for dependent data see e.g. Hill (2010). Extensions of

the current framework to dependent data will be the subject of future work.
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Figure 1: Bias and test size distortions in the lognormal case LN(2).

The top row depicts the mean (solid line) and standard deviation (dotted line) of the Hasofer–

Wang test statistic (A), the moment estimator (B), and the MLE estimator (C); the long dashed

lines show the theoretical biases. The bottom row shows the empirical sizes (solid lines) of the

three approaches at significance level 5% along with the bias adjusted sizes (dashes).
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Figure 2: German city size distribution descriptives: Body and upper tail.

Panel A depicts the kernel density estimate of the log city size in Germany (with bandwidth 0.2).

Panel B shows the Pareto QQ plot, Panel C shows the lognormal QQ plot.
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Figure 3: City size distribution in Germany: Tests of the Gumbel–Gibrat hypothesis.

Panel A shows the uncorrected (solid line) and the bias adjusted (dashes) Hasofer–Wang test

statistics as a function of k along with the critical level (short dashes). Panels B and C show the

uncorrected (solid lines) and bias adjusted (dashes) moment estimate (Panel B) and maximum

likelihood estimate (Panel C) for varying k, the dotted line is the lower 95% confidence level.
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Figure 4: City size distribution in the U.S.: Tests of the Gumbel–Gibrat hypothesis.

Notes as per Figure 3.
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Figure 5: Firm size distribution in France.

Panel A depicts the kernel density estimate of the log firm size in France (with bandwidth 0.2).

Panels B-D: Notes as per Figure 3.
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