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Computation of Activation Probabilities in the Independent Cascade Model

Based on the concepts of word-of-mouth effect and viral marketing, the diffusion of an innovation may be triggered starting from a set of initial users. Estimating the influence spread is a preliminary step to determine a suitable or even optimal set of initial users to reach a given goal. In this paper, we focus on a stochastic model called the Independent Cascade model, and compare a few approaches to compute activation probabilities of nodes in a social network, i.e., the probability that a user adopts the innovation. In the paper, first we propose the Path Method which computes the exact value of the activation probabilities but it has high complexity. Second an approximated method, called SSS-Noself, is obtained by modification of the existing SteadyStateSpread algorithm, based on fixed-point computation, to achieve a better accuracy. Finally an efficient approach, also based on fixed-point computation, is proposed to compute the probability that a node is activated though a path of minimal length from the seed set. This algorithm, called SSS-Bound-t algorithm, can provide a lowerbound for the computation of activation probabilities.

I. INTRODUCTION

In recent years, a large number of social network sites have appeared to connect people and groups together. Networks have been proved to be a good tool to obtain information and communicate ideas. Besides, they are becoming an effective marketing platform, through which it is possible to spread information or products to a large scale with a high speed. Consider the following marketing example: a company designs a new APP for online users and aims to market it through the social network. It can only choose a small number of users to try the APP initially (because usually a company has limited budget and manpower on a product). Then the company encourages these users to recommend the APP to their friends. And their friends would use it and recommend to their friends and so on. Whether users adopt an innovation is strongly influenced by their acquaintances. That is called the "word-of-mouth" effect [START_REF] Domingos | Mining the network value of customers[END_REF] and this type of marketing is called the viral marketing [START_REF] Domingos | Mining the network value of customers[END_REF] since it is similar to the spread of an epidemic.

The studies on the diffusion of innovations in social networks began in the middle of the 20th century [START_REF] Ryan | The diffusion of hybrid seed corn in two lowa communities[END_REF], [START_REF] Coleman | Medical innovation: A diffusion study[END_REF]. Motivated by the application of viral marketing, Domingos and Richardson [START_REF] Domingos | Mining the network value of customers[END_REF] proposed a general framework for the application of data mining and modeled the social network as a Markov random field. Kempe et al. [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF] proposed two diffusion models, namely the Independent Cascade model and the Linear Threshold model, to model the propagation of innovations. Besides, they also formulated the issue of choosing influential sets of individuals as a discrete optimization problem. It aims to identify a small subset of initial adopters in a social network to maximize the influence propagation under a given diffusion model. They also proved this influence maximization problem is NP-hard and gave a greedy approximation algorithm which guarantees, under certain conditions, that the influence spread is within (1 -1/e) of the optimal influence spread. However, this approach requires long time to run the simulation, thus later much effort was devoted to derive more efficient algorithms (e.g., [START_REF] Leskovec | Cost-effective outbreak detection in networks[END_REF], [START_REF] Chen | Efficient influence maximization in social networks[END_REF], [START_REF] Zhou | Ublf: An upper bound based approach to discover influential nodes in social networks[END_REF]).

A preliminary step to determine a suitable or even optimal set of initial users is to compute the final adoption of an innovation from the set of initial users. When the Independent Cascade model is considered, the measure of the influence spread is given by the activation probability of an individual, i.e., the probability that the individual adopts the innovation. Monte Carlo simulation proposed by Kempe et al. [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF] is a simple and easy way to compute the activation probabilities but it is also quite time-consuming. Aggarwal et al. [START_REF] Aggarwal | On flow authority discovery in social networks[END_REF] gave a more efficient approximate algorithm called SteadyStateSpread. However, the computed solution may be far from the exact one, depending on the network structure, and there are no guaranteed bounds.

In this paper, focusing on the Independent Cascade model, we analyse the approaches for computing the activation probabilities of individuals. Our main contributions can be summarised as following:

1) To compute the exact solution in small networks, we propose a method that explores all possible evolutions of a model: we call this approach the Path Method.

We point out that, due to its complexity, this method is only viable for small networks but it is useful to test the correctness of different approaches. 2) We point out two factors leading to the gap between the result of SteadyStateSpread and the exact solution: the dependent relation of individuals and the existence of circuits in the net structure. To partially overcome the error caused by circuits, we further propose a new SSS-Noself algorithm which updates the activation probability of one node assuming that it has not been activated at all before.

3) We propose an efficient way to compute the activation probabilities along paths of bounded length and provide a lower-bound for the activation probabilities by SSS-Bound-t. The rest of the paper is organized as follows. Section 2 reviews the Independent Cascade model and formally defines the activation probability. Section 3 proposes the Path Method. Section 4 analyses SteadyStateSpread, further proposes the SSS-Noself and SSS-Bound-t algorithms. Section 5 presents a series of experimental results. We conclude the paper in Section 6.

II. BACKGROUND

In this paper, we use the Independent Cascade model to describe the propagation of innovations through social networks. For convenience, the variables used extensively throughout the paper are listed in Table I. 

G IC = (V, E, p)
an Independent Cascade model G

[q]

IC = (V, E [q] , p [q] ) an Independent Cascade model without node q's influence N number of nodes in G N in j set of nodes with direct influence on node j N out j set of nodes on which node j has direct influence φ0 seed set |φ0| number of nodes in the seed set πj activation probability of node j π p j activation probability of node j computed by the Path Method π s j activation probability of node j computed by SteadyStateSpread π n j activation probability of node j computed by SSS-Noself π [q] j activation probability of node j without node q's influence π t j activation probability of node j computed by SSS-Bound-t

A. Network Structure

As in most literatures, the social network is represented by a directed graph G = (V, E), in which V is a set of nodes involved in the network and in this paper we use the terms individual or node interchangeably. An edge (i, j) ∈ E denotes that node i influences node j directly [START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF].

To denote all individuals with direct influence on node j, we represent the in-neighbors of node j as N in j = {i ∈ V|(i, j) ∈ E}. The out-neighbors of node j denoted as N out j = {i ∈ V|(j, i) ∈ E} represent the individuals on which node j has direct influence.

B. Independent Cascade Model

The Independent Cascade model [START_REF] Goldenberg | Talk of the network: A complex systems look at the underlying process of word-of-mouth[END_REF] is a type of epidemic models, which is based on the assumption that a node may adopt an innovation when one of its in-neighbors has adopted the innovation. In the Independent Cascade model, we add to every edge (i, j) ∈ E a propagation probability p : (V × V) → (0, 1], where p i,j represents the probability that node j is influenced by node i through the edge (i, j) at step k when node i is activated at step k -1. Thus, we denote an Independent Cascade model by a triple G IC = (V, E, p).

Let us define φ 0 as the seed set, i.e., the set of nodes which have adopted the innovation at step k = 0. Then the innovation propagates from the seed set. Each node can be either active or inactive. When it adopts the innovation (is activated), it becomes active, otherwise is said to be inactive. We also assume that nodes can switch from being inactive to being active, but can not switch in the other direction. It means that the adoption of an innovation is permanent and for this reason the model is called progressive [START_REF] Rosa | On the spread of innovation in social networks[END_REF].

Note that every active node has only one chance to influence each of its out-neighbors. If it fails, it can not try again to activate the same out-neighbor. If there are many inneighbors of inactive node j that are activated at step k -1, the order in which they attempt to activate node j at step k does not affect the probability of node j being activated. This is called order-independence.

C. Activation Probability

We focus on the evaluation of influence propagation through a network. Based on the Independent Cascade model, we analyze different approaches to compute the activation probabilities of nodes.

Definition 1 (Activation Probability): Given an Independent Cascade model G IC = (V, E, p) and a seed set φ 0 , the probability that a node j ∈ V is activated during the dynamic evolution is defined as the activation probability of node j, denoted as π j .

III. EXACT COMPUTATION OF ACTIVATION PROBABILITIES

In this section, we propose an algorithm to compute the exact solution to the influence propagation called the Path Method. The method was suggested to us by prof. Chtistoforos Hadjicostis.

The Path Method takes into account all evolutions of a model, so that it can offer precise result of the final influence propagation. Firstly, it creates an evolution graph for a model, which is composed of cells shown in Figure 1. Each cell C k consists of three elements: past active nodes is a set A p k which contains all the nodes activated before the current step; current active nodes is a set A c k which contains the nodes activated in the current step; cell probability P k is the probability that the evolution described by A p k and A c k occurs. The cell whose current active nodes is null is denoted as terminal cell. Then adding together all the cell probabilities of terminal cells whose past active nodes contains node j, the exact activation probability of node j can be computed. For example, the evolution graph for the model in Fig. 2 with seed set φ 0 = {5} is shown in Fig. 3. We briefly explain how to construct the evolution graph of this model.

In C 1 , only seed node 5 is activated, thus A p 1 = ∅ and A c 1 = {5}. Apparently, the state that only the seed node is activated appears in all evolutions, thus P 1 = 1. Since the out-neighbors of node 5 only contains node 3, only C 2 and C 3 can be obtained from C 1 : C 2 corresponds to an evolution that does not activate node 3, while C 3 corresponds to an evolution that activates node 3. C 2 is a terminal cell since A c 2 = ∅. Moreover, p 5,3 = 0.4 and P 1 = 1, thus P 3 = 0.4. Then four cells can be reached from C 3 according to which subset of out-neighbor of node 3 will be activated. Based on this procedure, the evolution graph corresponding to the network can be obtained. The cell probability of every terminal cell represents the probability of the corresponding evolution. For example, C 10 corresponds to the evolution where nodes {1, 3, 5} are influenced by the order 5 → 3 → 1, and no other node is activated. Thus the terminal cells which contain node j as a past active node describe all final evolutions in which node j can be activated. The sum of the cell probabilities of these terminal cells is the activation probability of node j. For the network in Fig. 2, the activation probabilities obtained from the evolution graph in Fig. 3 are shown in the second row of Table II. There are three possible states for each node j ∈ V in a cell of the evolution graph: belonging to past active nodes, belonging to current active nodes or in neither of these two sets. Thus the maximal number of cells in an evolution graph is 3 N . We need one pass of j ∈ V for each cell to obtain π p j . Hence the time complexity of this method is O(N • 3 N ). Due to its exponential complexity, this method is only viable for small networks.

IV. APPROXIMATE COMPUTATION OF ACTIVATION

PROBABILITIES BY FIXED-POINT APPROACHES Aggarwal et al. [START_REF] Aggarwal | On flow authority discovery in social networks[END_REF] proposed the SteadyStateSpread algorithm to evaluate the steady state assimilation probabilities of all nodes, i.e., the activation probabilities of nodes in this paper. This iterative method computes an approximated value of the node activation probability by solving a non-linear system of equations.

A. Basic Fixed-Point Approach

In this part, we discuss the SteadyStateSpread algorithm based on fixed-point theory.

Definition 2 ( [START_REF] Kakutani | A generalization of brouwer's fixed point theorem[END_REF]): Given a real function of a real variable f : R to R, a real number

x is a fixed point of f if it satisfies x = f (x)
Given a point x 0 in the domain of f , the fixed-point iteration is

x s+1 = f (x s ), s = 0, 1, 2, . . .
which generates the sequence x 0 , x 1 , x 2 , . . . If the sequence converges to a point x and f is continuous, then one can prove that x is a fixed point of f . To apply this theory for iterative activation probability computation, it is necessary to construct a function for computing π s j . According to [START_REF] Aggarwal | On flow authority discovery in social networks[END_REF], node j can be activated by either of its in-neighbors. Equivalently, in order for node j to not be activated, it must not be activated by any of its inneighbors. Assuming that the activation of the in-neighbors are independent events and that they do not depend on the activation of node j, the probability of that can be written as i∈N in j (1 -π s i • p i,j ). Thus the computation function can be constructed as following:

π s j (k + 1) =        1 if j ∈ φ 0 1 - i∈N in j (1 -π s i (k) • p i,j ) if j ∈ φ 0
(1) As an example, applying SteadyStateSpread to the network in Fig. 2, we can compute the activation probabilities shown in the third row of Table II.

B. Improving the Fixed-Point Approach

SteadyStateSpread is generally not correct because Equation 1 holds only assuming that the activation events of node j's in-neighbors are independent events and that these events do not depend on the activation of node j itself. Thus it can not provide exact solution for every structure of networks, especially subgraphs containing bidirectional nodes or dependent sub-structures. Yang et al. [START_REF] Yang | On approximation of real-world influence spread[END_REF] discussed the scenario of structural defect, corresponding to this situation: nodes i, j / ∈ φ 0 and every path from φ 0 to j has to pass i, nevertheless according to a certain computation algorithm, π i depends on π j . However, they did not involve the whole cases.

Comparing the results computed by the Path Method and SteadyStateSpread shown in Table II 

π s 2 = 1 -(1 -π s 3 p 3,2 ) • (1 -π s 1 p 1,2 ) = π s 3 p 3,2 + π s 1 p 1,2 -π s 1 π s 3 p 3,2 p 1,2 (2) 
Nevertheless, the exact equation to compute the activation probability of node 2 should be

π 2 = π 3 • (p 3,2 + (1 -p 3,2 ) • p 3,1 p 1,2 ) = π 3 p 3,2 + π 1 p 1,2 -π 3 p 3,2 p 1,2 p 3,1 (3) 
Moreover, not only the circuit between two nodes such like the one between node 2 and node 4 in Fig. 2, circuits among more than two nodes also contribute to the error in the solution computed by SteadyStateSpread.

Overall, circuits and dependent relations among nodes lead to computing activation probabilities by SteadyStateSpread that are equal to or greater than the exact solution.

In order to narrow the gap with exact results, Yang et al. [START_REF] Yang | On approximation of real-world influence spread[END_REF] proposed the SSSbyStep algorithm which incorporates SteadyStateSpread with MIP heuristic [START_REF] Chen | Scalable influence maximization for prevalent viral marketing in large-scale social networks[END_REF] to limit the iteration time. For partly solving the inaccuracy caused by circuits, we propose in the following an improved algorithm to assure that the iteration process to compute activation probability of node j is not influenced by itself. The new algorithm, that we call SSS-Noself, updates activation probabilities of a node by Equation 1 without the influence of the node itself.

Given an Independent Cascade model

G IC = (V, E, p), a new network G [q] = (V, E [q]
, p [q] ) is obtained from G by removing the input and output arcs of node q. The total number of these new nets is N , where N = N -|φ 0 |, |φ 0 | is the number of nodes in the seed set. For node j ∈ V one can proceed to compute at each step k the activation probability of j assuming that q has not been activated π

[q] j (k). Finally, when updating the activation probability of node j by Equation 1, the used value of every j's in-neighbor i is π

[j] i obtained by iteration. Let us define the activation probability vector of network G [q] p [q] as:

p [q] i,j = 0 if q = i or q = j p i,j otherwise (4) 
Algorithm 1 is a modified version of SteadyStateSpread where the activation probability of node j is computed Algorithm 1 SSS-Noself Input: An independent cascade network G IC = (V, E, p); a set of initial nodes φ 0 ⊂ V; tolerance ε * Output: Activation probability π n j for all nodes j ∈ V

1: k = 0 2: ε = ε * + 1 3: for q ∈ V \ φ 0 do 4: π [q] j (0) = 1, ∀j ∈ φ 0 5: π [q] j (0) = 0, ∀j ∈ V \ φ 0 6: end for 7: while ε ≥ ε * do 8:
for q ∈ V \ φ 0 do 9:

for j ∈ V do 10: 

if j ∈ φ 0 then 11: π [q] j (k + 1) = 1 12: π j (k + 1) = 1 13: else 14: π [q] j (k+1) = 1-i∈N in j (1-p [q] i,j •π [q] i (k)) 15: π j (k +1) = 1-i∈N in j (1-p i,j •π [j] i (k))
ε 1 = j / ∈φ0 |π j (k + 1) -π j (k)| 20: ε 2 = j / ∈φ0 |π [q] j (k + 1) -π [q] j (k)| (q ∈ V \ φ 0 ) 21: ε = max(ε 1 , ε 2 ) 22: k = k + 1 23: end while 24: return π n j = π j (k -1)
disregarding the influence of itself. The computation result for the network in Fig. 2 Different from SteadyStateSpread, for all nodes j ∈ V, SSS-Noself not only computes the activation probability of node j at step k, but also the activation probability of node j at step k assuming that node q ∈ V \ φ 0 remains inactive. Thus the time complexity of SSS-Noself is O(N 2 ), while that of SteadyStateSpread is O(N ).

C. Fixed-Point Computation of Activation Probabilities Along Paths of Bounded Length

In this part, we propose an efficient algorithm, called SSS-Bound-t, to compute activation probabilities along paths of bounded length by applying Equation 1.

Let us firstly define the length of the shortest path from seed set to a node j ∈ V \ φ 0 as sp j and assume each node j ∈ V \ φ 0 is reachable from the seed set. Kimura et al. [START_REF] Kimura | Tractable models for information diffusion in social networks[END_REF] proposed SPM and SP1M, where node j can be activated only at step k = sp j in SPM, or only at step k = sp j as well as step k = sp j + 1 in SP1M. Nevertheless, they did not discuss how to compute these probabilities without previously determining the corresponding paths, a procedure that may be computationally expensive. Maximum influence paths are computed by the Dijkstra algorithm in [START_REF] Chen | Scalable influence maximization for prevalent viral marketing in large-scale social networks[END_REF] and [START_REF] Yang | On approximation of real-world influence spread[END_REF], which has high complexity. We propose an approach based on fixed-point computation that does not require preliminarily computing the shortest path. In our procedure we record sp j as step k when π t j firstly changes from zero to non-zero. Besides, we set the path bound t to compute π t j involving not only the shortest paths but also the paths whose length is no greater than sp j + t. The procedure of SSS-Bound-t is shown in Algorithm 2. The computation result for the network in Fig. 2 by SSS-Bound-0 is shown in the fifth row of Table II.

Algorithm 2 SSS-Bound-t Input: An independent cascade network G IC = (V, E, p); a set of initial nodes φ 0 ⊂ V; path bound t Output: Activation probability π t j for all nodes j ∈ V 1: Initialize π t j (0) = 1, j ∈ φ 0 ; π t j (0) = 0, j ∈ V \ φ 0 ; k = 0; step j = inf , j ∈ V \ φ 0 2: stop = 0 3: while stop = 0 do 4: stop = 1 5: for j ∈ V do 6: π t j (k + 1) = π t j (k) 7: 
if j / ∈ φ 0 and k ≤ step j then 8: if π t j (k + 1) = 0 and π t j (k) = 0 then 12:

π t j (k + 1) = 1 -i∈N in j (1 -p i,j • π t i (k))
step = k + 1 + t 13:
end if

14:

end for 15:

k = k + 1 16: end while 17: return π t j = π t j (k -1)
The SSS-Bound-t algorithm generalizes SPM and SP1M [START_REF] Kimura | Tractable models for information diffusion in social networks[END_REF], exploiting the efficient fixed-point computation of SteadyStateSpread. It cannot always give a well approximate result since it depends on the seed set as well as the value of t. However, the result of SSS-Bound-0 can be regarded as a lower-bound for the exact activation probability. Same with SteadyStateSpread, the time complexity of SSS-Bound-t is O(N ). However, in most cases SSS-Bound-0 stops the iteration before it converges, thus SSS-Bound-0 is usually less time-consuming than SteadyStateSpread.

D. Comparison of Different Fixed-Point Approaches

In fact, the computing activation probabilities by the algorithms above have a fixed relationship. Proposition 1: The activation probabilities of node j computed by the Path Method (π p j ), by SteadyStateSpread (π s j ), by SSS-Bound-0 (π t=0 j ) and by SSS-Noself (π n j ) satisfy:

π t=0 j ≤ π p j ≤ π n j ≤ π s j
The proof of this proposition is omitted for the sake of space.

V. EXPERIMENT

We study different networks to compare the results of Monte Carlo simulation, the Path Method, SteadyState-Spread, SSS Noself and SSS-Bound-t.

A. Data Sets

There are two datasets for our experiments. For the first dataset, we construct a series of bidirectional grid graphs with a parameter m such that the mth grid graph contains m 2 nodes. As shown in Fig. 4, initially we construct a circuit of 4 nodes when m = 2, then a grid graph of m 2 nodes is generated as m increases. It contains the grid graph of (m -1) 2 nodes as a subgraph and its nodes interact with each other. For each edge (i, j), we uniformly at random select p i,j from the set {0.1, 0.2, 0.5}. We represent this dataset as Series-Grid. For the second part, we use a real-world dataset-airportsinUS1 . It is a weighted network of the 500 airports with the largest amount of traffic from publicly available data in the United States. Nodes represent US airports and edges represent air travel connections among them. There are 5960 edges in total. Based on the weights w i,j of edges, we obtain p i,j by w i,j \ i w i,j .

All approaches are implemented in MATLAB. All experiments are run on a PC with 2.40GHz Intel Core i5 Processor and 8GB memory.

B. Experiment Results

Firstly, we present the computation of activation probabilities on Series-Grid using Monte-Carlo simulation, Path Method, SteadyStateSpread and SSS-Noself. We randomly select one node as seed node for the grid graphs with m = {2, 3} and two nodes for the grid graphs with m = {4, 5, 6, 7}. The result of Monte Carlo simulation is the average of 10,000 times of simulations. We set ε * = 10 -8 for the iterations of SteadyStateSpread algorithm and SSS-Noself algorithm. The sum of activation probabilities of nodes in Series-Grid with m = {2, 3, 4, 5, 6, 7} using the four methods above is shown in Table III. The value for m = {4, 5, 6, 7} by the Path Method is not given since the running time is more than 8 hours, i.e., out of time (o.o.t). As a particular case, we list activation probability of each node for the grid graph with m = 3 in Table IV to show the difference of every node by these four methods. We can observe that the result by SSS-Noself is always between the exact result by the Path Method and the result by SteadyStateSpread for both activation probability of each node and sum of activation probabilities of all node. It verifies the relationship among these three methods in Proposition 1. Moreover, it shows that our SSS-Noself algorithm provides more precise results than SteadyStateSpread algorithm. Secondly, we compare the running time of these four methods for the activation probability computation, shown in Table V. The Path Method takes exponential time to give exact results as the size of network increases. SSS-Noself provides better results than SteadyStateSpread with an acceptable increase of computation time for the considered small networks.

The second part of our experiment is performed on air-portsinUS network data. We evaluate the sum of activation probabilities for all nodes by SteadyStateSpread, SSS-Noself and SSS-Bound-t given different sizes of seed sets, shown in Fig. 5. The seven seed sets are randomly generate with Moreover, we can discover that the results of SSS-Bound-t increase as the path bound t's increase. As a lower-bound of the exact solution, the results of SSS-Bound-0 is the smallest among all algorithms. VI, the running time of SSS-Noself is much longer than SteadyStateSpread when the size of the network is large since SSS-Noself needs one more pass of all nodes in a network than SteadyStateSpread. For this reason we think that it may be necessary to further improve the efficiency of SSS-Noself. Compared with the running time of SSS-Bound-t in Table VII, SSS-Bound-t is obviously faster than SteadyStateSpread when t = {0, 1, 5, 10, 15, 20}. As t increases, the running time of these two approaches will be similar. j∈V\φ0 π n j . We do not present the curve for |φ 0 | = 30 due to the limit of space, but point out that it is similar to the curves for |φ 0 | = {15, 20, 25}. We can find that in the beginning the error decreases as the path bound t's increases. At certain path bound the error is the smallest and then increases a bit. It shows that the path bound corresponding to the smallest error varies with different seed set size.
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  , we find π s 2 > π p 2 and π s 4 > π p 4 (which are in bold in Table II). As mentioned in [7], one reason is: in Equation 1, π s 2 depends on π s 4 , i.e., node 4 increases π s 2 . However, node 4 can be activated only after node 2's activation. Another reason is that the dependent relation between node 2's in-neighbors (node 1 and node 3) increases the final result of node 2. Ignoring the influence of node 4, the equation to compute the activation probability of node 2 by SteadyStateSpread is

TABLE III SUM

 III OF ACTIVATION PROBABILITIES BY MONTE CARLO SIMULATION, Path Method, SteadyStateSpread, AND SSS-noself ON SERIES-GRID WITH m = {2, 3, 4, 5, 6, 7}

	Method	m = 2	m = 3	m = 4	m = 5	m = 6	m = 7
	Monte Carlo simulation	1.4343	1.9055	3.2171	4.5072	4.5527	5.1308
	Path Method	1.4428	1.9098	o.o.t	o.o.t	o.o.t	o.o.t
	SteadyStateSpread	1.4467	2.0936	5.2166	5.8790	7.0053	13.1089
	SSS-Noself	1.4428	1.9502	4.0661	5.0710	5.7296	9.1891

TABLE IV ACTIVATION

 IV PROBABILITIES BY MONTE CARLO SIMULATION, Path Method, SteadyStateSpread, AND SSS-Noself ON SERIES-GRID WITH m = 3

	Node	1	2	3	4	5	6	7	8	9
	Monte Carlo simulation 1	0.5076	0.0962	0.1099	0.1048	0.0302 0.0151	0.0168	0.0249
	Path Method	1	0.5032	0.1009	0.1136	0.1049	0.0302 0.0161	0.0169	0.0238
	SteadyStateSpread	1	0.5392	0.1349	0.1475	0.1317	0.0535 0.0292	0.0255	0.0320
	SSS-Noself	1	0.5049	0.1119	0.1182	0.1093	0.0345 0.0206	0.0227	0.0280

TABLE V RUNNING

 V TIME FOR ACTIVATION PROBABILITY COMPUTATION IN SERIES-GRID WITH m = {2, 3, 4, 5, 6, 7} = 0.01 for SteadyStateSpread and SSS-Noself.The path bound t is chosen from {0, 1, 5, 10, 15, 20, 25, 30} for SSS-Bound-t. We can observe that the sum of activation probabilities by SteadyStateSpread are no less than that by SSS-Noself. Since we have pointed π p j ≤ π n j ≤ π s j , j ∈ V in Proposition 1, although the results of Path Method are difficult to obtain for big networks, we can figure out that SSS-Noself is more precise than SteadyStateSpread.

	Running time (s)	m = 2	m = 3	m = 4	m = 5	m = 6	m = 7
	Monte Carlo simulation	0.48	1.25	0.95	1.40	1.82	1.58
	Path Method	0.11	0.31	o.o.t	o.o.t	o.o.t	o.o.t
	SteadyStateSpread	0.01	0.02	0.10	0.09	0.34	0.55
	SSS-Noself	0.01	0.06	0.66	1.42	4.80	11.41
	the size |φ 0 | = {1, 5, 10, 15, 20, 25, 30}. The tolerance is
	fixed as ε						

* 

TABLE VI RUNNING

 VI TIME FOR ACTIVATION PROBABILITY COMPUTATION BY SteadyStateSpread AND SSS-Noself ON AIRPORTSINUS NETWORK DATA GIVEN DIFFERENT SIZES OF SEED SETS |φ 0 |

	Running time (s)	|φ0| = 1	|φ0| = 5	|φ0| = 10	|φ0| = 15	|φ0| = 20	|φ0| = 25	|φ0| = 30
	SteadyStateSpread	5.05	3.20	1.35	1.18	1.10	0.94	0.82
	SSS-Noself	1143.62	892.77	719.44	467.74	512.77	383.86	350.49

Fig.

6

shows the error between SSS-Bound-t and SSS-Noself which is measured by | j∈V\φ0 π t j -j∈V\φ0 π n j | \

TABLE VII RUNNING

 VII TIME FOR ACTIVATION PROBABILITY COMPUTATION BY SSS-BOUND-T ON AIRPORTSINUS NETWORK DATA GIVEN DIFFERENT SIZES OF SEED SETS |φ 0 | WITH PATH BOUND t = {0, 1, 5, 10, 15, 20, 25, 30}

	Running time (s) |φ0| = 1	|φ0| = 5	|φ0| = 10	|φ0| = 15	|φ0| = 20	|φ0| = 25	|φ0| = 30
	t = 0	0.12	0.12	0.11	0.14	0.12	0.11	0.12
	t = 1	0.16	0.22	0.16	0.18	0.16	0.15	0.16
	t = 5	0.26	0.28	0.28	0.30	0.27	0.27	0.28
	t = 10	0.36	0.38	0.38	0.40	0.38	0.37	0.37
	t = 15	0.61	0.57	0.56	0.58	0.56	0.56	0.57
	t = 20	0.57	0.64	0.63	0.65	0.64	0.63	0.62
	t = 25	0.87	0.87	0.86	0.88	0.86	0.86	0.86
	t = 30	0.90	0.90	0.91	0.91	0.89	0.88	0.89

https://sites.google.com/site/cxnets/usairtransportationnetwork

*This work was supported by the China Scholarship Council (CSC)

VI. CONCLUSIONS

In this paper, we focus on analyzing different approaches for the influence spread computation through a network. We initially propose an approach which can compute the influence spread exactly called the Path Method. We consider the elements resulting in the inaccuracy of SteadyStateSpread: the dependent relation between nodes and the existence of circuits. Furthermore, we show how to compute a lower approximation of activation probabilities by SSS-Bound-t and propose an improved algorithm called SSS-noself which partially decreases the error caused by circuits.

Aware of the factors which cause the inaccuracy of SteadyStateSpread, proposing new algorithms to improve the effectiveness will be the objective of our future work. Besides, since that the SSS-noself run for much time in largescale networks, another interesting line of research could be to improve the efficiency of the SSS-noself. We believe that these computational approaches to determine influence diffusion can also be used to solve problems of influence maximization and minimization: our future research will explore these issues.