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Computation of Activation Probabilities in the Independent Cascade
Model

Wenjing Yang1, Leonardo Brenner2 and Alessandro Giua3

Abstract— Based on the concepts of word-of-mouth effect
and viral marketing, the diffusion of an innovation may be
triggered starting from a set of initial users. Estimating the
influence spread is a preliminary step to determine a suitable
or even optimal set of initial users to reach a given goal. In this
paper, we focus on a stochastic model called the Independent
Cascade model, and compare a few approaches to compute
activation probabilities of nodes in a social network, i.e., the
probability that a user adopts the innovation. In the paper, first
we propose the Path Method which computes the exact value of
the activation probabilities but it has high complexity. Second
an approximated method, called SSS-Noself, is obtained by
modification of the existing SteadyStateSpread algorithm, based
on fixed-point computation, to achieve a better accuracy. Finally
an efficient approach, also based on fixed-point computation,
is proposed to compute the probability that a node is activated
though a path of minimal length from the seed set. This
algorithm, called SSS-Bound-t algorithm, can provide a lower-
bound for the computation of activation probabilities.

I. INTRODUCTION

In recent years, a large number of social network sites have
appeared to connect people and groups together. Networks
have been proved to be a good tool to obtain information and
communicate ideas. Besides, they are becoming an effective
marketing platform, through which it is possible to spread
information or products to a large scale with a high speed.

Consider the following marketing example: a company
designs a new APP for online users and aims to market
it through the social network. It can only choose a small
number of users to try the APP initially (because usually a
company has limited budget and manpower on a product).
Then the company encourages these users to recommend the
APP to their friends. And their friends would use it and
recommend to their friends and so on. Whether users adopt
an innovation is strongly influenced by their acquaintances.
That is called the “word-of-mouth” effect [9] and this type of
marketing is called the viral marketing [9] since it is similar
to the spread of an epidemic.

The studies on the diffusion of innovations in social
networks began in the middle of the 20th century [10], [12].
Motivated by the application of viral marketing, Domingos
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versité de Toulon, LIS UMR 7020, France and also with Univer-
sity of Cagliari, DIEE, Italy. alessandro.giua@lis-lab.fr,
giua@diee.unica.it

and Richardson [9] proposed a general framework for the
application of data mining and modeled the social network
as a Markov random field. Kempe et al. [2] proposed two
diffusion models, namely the Independent Cascade model
and the Linear Threshold model, to model the propagation
of innovations. Besides, they also formulated the issue of
choosing influential sets of individuals as a discrete op-
timization problem. It aims to identify a small subset of
initial adopters in a social network to maximize the influ-
ence propagation under a given diffusion model. They also
proved this influence maximization problem is NP-hard and
gave a greedy approximation algorithm which guarantees,
under certain conditions, that the influence spread is within
(1 − 1/e) of the optimal influence spread. However, this
approach requires long time to run the simulation, thus later
much effort was devoted to derive more efficient algorithms
(e.g., [13], [11], [4]).

A preliminary step to determine a suitable or even op-
timal set of initial users is to compute the final adoption
of an innovation from the set of initial users. When the
Independent Cascade model is considered, the measure of
the influence spread is given by the activation probability of
an individual, i.e., the probability that the individual adopts
the innovation. Monte Carlo simulation proposed by Kempe
et al. [2] is a simple and easy way to compute the activation
probabilities but it is also quite time-consuming. Aggarwal
et al. [6] gave a more efficient approximate algorithm called
SteadyStateSpread. However, the computed solution may be
far from the exact one, depending on the network structure,
and there are no guaranteed bounds.

In this paper, focusing on the Independent Cascade model,
we analyse the approaches for computing the activation
probabilities of individuals. Our main contributions can be
summarised as following:

1) To compute the exact solution in small networks, we
propose a method that explores all possible evolutions
of a model: we call this approach the Path Method.
We point out that, due to its complexity, this method
is only viable for small networks but it is useful to test
the correctness of different approaches.

2) We point out two factors leading to the gap between
the result of SteadyStateSpread and the exact solution:
the dependent relation of individuals and the existence
of circuits in the net structure. To partially overcome
the error caused by circuits, we further propose a
new SSS-Noself algorithm which updates the activation
probability of one node assuming that it has not been
activated at all before.



3) We propose an efficient way to compute the activation
probabilities along paths of bounded length and pro-
vide a lower-bound for the activation probabilities by
SSS-Bound-t.

The rest of the paper is organized as follows. Section
2 reviews the Independent Cascade model and formally
defines the activation probability. Section 3 proposes the Path
Method. Section 4 analyses SteadyStateSpread, further pro-
poses the SSS-Noself and SSS-Bound-t algorithms. Section
5 presents a series of experimental results. We conclude the
paper in Section 6.

II. BACKGROUND

In this paper, we use the Independent Cascade model
to describe the propagation of innovations through social
networks. For convenience, the variables used extensively
throughout the paper are listed in Table I.

TABLE I
VARIABLE EXPLANATION

Variable Description
G = (V, E) a network with node set V and edge set E

GIC = (V, E, p) an Independent Cascade model
G[q]
IC = (V, E [q], p[q]) an Independent Cascade model without node q’s influence

N number of nodes in G
N in

j set of nodes with direct influence on node j
N out

j set of nodes on which node j has direct influence
φ0 seed set
|φ0| number of nodes in the seed set
πj activation probability of node j
πp
j activation probability of node j computed by the Path Method
πs
j activation probability of node j computed by SteadyStateSpread
πn
j activation probability of node j computed by SSS-Noself

π
[q]
j activation probability of node j without node q’s influence
πt
j activation probability of node j computed by SSS-Bound-t

A. Network Structure

As in most literatures, the social network is represented
by a directed graph G = (V, E), in which V is a set of
nodes involved in the network and in this paper we use the
terms individual or node interchangeably. An edge (i, j) ∈ E
denotes that node i influences node j directly [2].

To denote all individuals with direct influence on node j,
we represent the in-neighbors of node j as N in

j = {i ∈
V|(i, j) ∈ E}. The out-neighbors of node j denoted as
N out
j = {i ∈ V|(j, i) ∈ E} represent the individuals on

which node j has direct influence.

B. Independent Cascade Model

The Independent Cascade model [17] is a type of epidemic
models, which is based on the assumption that a node may
adopt an innovation when one of its in-neighbors has adopted
the innovation. In the Independent Cascade model, we add
to every edge (i, j) ∈ E a propagation probability p : (V ×
V)→ (0, 1], where pi,j represents the probability that node
j is influenced by node i through the edge (i, j) at step k
when node i is activated at step k − 1. Thus, we denote an
Independent Cascade model by a triple GIC = (V, E , p).

Let us define φ0 as the seed set, i.e., the set of nodes
which have adopted the innovation at step k = 0. Then the
innovation propagates from the seed set. Each node can be
either active or inactive. When it adopts the innovation (is
activated), it becomes active, otherwise is said to be inactive.
We also assume that nodes can switch from being inactive
to being active, but can not switch in the other direction. It
means that the adoption of an innovation is permanent and
for this reason the model is called progressive [1].

Note that every active node has only one chance to
influence each of its out-neighbors. If it fails, it can not try
again to activate the same out-neighbor. If there are many in-
neighbors of inactive node j that are activated at step k− 1,
the order in which they attempt to activate node j at step
k does not affect the probability of node j being activated.
This is called order-independence.

C. Activation Probability

We focus on the evaluation of influence propagation
through a network. Based on the Independent Cascade
model, we analyze different approaches to compute the
activation probabilities of nodes.

Definition 1 (Activation Probability): Given an Indepen-
dent Cascade model GIC = (V, E , p) and a seed set φ0, the
probability that a node j ∈ V is activated during the dynamic
evolution is defined as the activation probability of node j,
denoted as πj .

III. EXACT COMPUTATION OF ACTIVATION
PROBABILITIES

In this section, we propose an algorithm to compute
the exact solution to the influence propagation called the
Path Method. The method was suggested to us by prof.
Chtistoforos Hadjicostis.

The Path Method takes into account all evolutions of a
model, so that it can offer precise result of the final influence
propagation. Firstly, it creates an evolution graph for a model,
which is composed of cells shown in Figure 1. Each cell
Ck consists of three elements: past active nodes is a set
Apk which contains all the nodes activated before the current
step; current active nodes is a set Ack which contains the
nodes activated in the current step; cell probability Pk is the
probability that the evolution described by Apk and Ack occurs.
The cell whose current active nodes is null is denoted as
terminal cell. Then adding together all the cell probabilities
of terminal cells whose past active nodes contains node j,
the exact activation probability of node j can be computed.
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Fig. 1. Cell of evolution graph

For example, the evolution graph for the model in Fig. 2
with seed set φ0 = {5} is shown in Fig. 3. We briefly
explain how to construct the evolution graph of this model.



In C1, only seed node 5 is activated, thus Ap1 = ∅ and
Ac1 = {5}. Apparently, the state that only the seed node
is activated appears in all evolutions, thus P1 = 1. Since
the out-neighbors of node 5 only contains node 3, only C2

and C3 can be obtained from C1: C2 corresponds to an
evolution that does not activate node 3, while C3 corresponds
to an evolution that activates node 3. C2 is a terminal cell
since Ac2 = ∅. Moreover, p5,3 = 0.4 and P1 = 1, thus
P3 = 0.4. Then four cells can be reached from C3 according
to which subset of out-neighbor of node 3 will be activated.
Based on this procedure, the evolution graph corresponding
to the network can be obtained. The cell probability of every
terminal cell represents the probability of the corresponding
evolution. For example, C10 corresponds to the evolution
where nodes {1, 3, 5} are influenced by the order 5→ 3→
1, and no other node is activated. Thus the terminal cells
which contain node j as a past active node describe all final
evolutions in which node j can be activated. The sum of
the cell probabilities of these terminal cells is the activation
probability of node j. For the network in Fig. 2, the activation
probabilities obtained from the evolution graph in Fig. 3 are
shown in the second row of Table II.
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Fig. 2. An Independent Cascade model with 5 nodes
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Fig. 3. Evolution representation of the network in Fig. 2

There are three possible states for each node j ∈ V in a
cell of the evolution graph: belonging to past active nodes,

belonging to current active nodes or in neither of these two
sets. Thus the maximal number of cells in an evolution graph
is 3N . We need one pass of j ∈ V for each cell to obtain
πpj . Hence the time complexity of this method is O(N ·3N ).
Due to its exponential complexity, this method is only viable
for small networks.

IV. APPROXIMATE COMPUTATION OF ACTIVATION
PROBABILITIES BY FIXED-POINT APPROACHES

Aggarwal et al. [6] proposed the SteadyStateSpread algo-
rithm to evaluate the steady state assimilation probabilities
of all nodes, i.e., the activation probabilities of nodes in this
paper. This iterative method computes an approximated value
of the node activation probability by solving a non-linear
system of equations.

A. Basic Fixed-Point Approach

In this part, we discuss the SteadyStateSpread algorithm
based on fixed-point theory.

Definition 2 ([14]): Given a real function of a real vari-
able f : R to R, a real number x is a fixed point of f if it
satisfies

x = f(x)

Given a point x0 in the domain of f , the fixed-point iteration
is

xs+1 = f(xs), s = 0, 1, 2, . . .

which generates the sequence x0, x1, x2, . . . If the sequence
converges to a point x and f is continuous, then one can
prove that x is a fixed point of f .

To apply this theory for iterative activation probability
computation, it is necessary to construct a function for
computing πsj . According to [6], node j can be activated
by either of its in-neighbors. Equivalently, in order for node
j to not be activated, it must not be activated by any of its in-
neighbors. Assuming that the activation of the in-neighbors
are independent events and that they do not depend on the
activation of node j, the probability of that can be written
as

∏
i∈N in

j
(1−πsi ·pi,j). Thus the computation function can

be constructed as following:

πsj (k + 1) =


1 if j ∈ φ0

1−
∏

i∈N in
j

(1− πsi (k) · pi,j) if j 6∈ φ0

(1)
As an example, applying SteadyStateSpread to the network

in Fig. 2, we can compute the activation probabilities shown
in the third row of Table II.

B. Improving the Fixed-Point Approach

SteadyStateSpread is generally not correct because Equa-
tion 1 holds only assuming that the activation events of node
j’s in-neighbors are independent events and that these events
do not depend on the activation of node j itself. Thus it
can not provide exact solution for every structure of net-
works, especially subgraphs containing bidirectional nodes
or dependent sub-structures. Yang et al. [7] discussed the



scenario of structural defect, corresponding to this situation:
nodes i, j /∈ φ0 and every path from φ0 to j has to pass i,
nevertheless according to a certain computation algorithm,
πi depends on πj . However, they did not involve the whole
cases.

Comparing the results computed by the Path Method and
SteadyStateSpread shown in Table II, we find πs2 > πp2 and
πs4 > πp4 (which are in bold in Table II). As mentioned in [7],
one reason is: in Equation 1, πs2 depends on πs4, i.e., node
4 increases πs2. However, node 4 can be activated only after
node 2’s activation. Another reason is that the dependent
relation between node 2’s in-neighbors (node 1 and node 3)
increases the final result of node 2. Ignoring the influence of
node 4, the equation to compute the activation probability of
node 2 by SteadyStateSpread is

πs2 = 1− (1− πs3p3,2) · (1− πs1p1,2)
= πs3p3,2 + πs1p1,2 − πs1πs3p3,2p1,2

(2)

Nevertheless, the exact equation to compute the activation
probability of node 2 should be

π2 = π3 · (p3,2 + (1− p3,2) · p3,1p1,2)
= π3p3,2 + π1p1,2 − π3p3,2p1,2p3,1

(3)

Moreover, not only the circuit between two nodes such
like the one between node 2 and node 4 in Fig. 2, circuits
among more than two nodes also contribute to the error in
the solution computed by SteadyStateSpread.

Overall, circuits and dependent relations among nodes lead
to computing activation probabilities by SteadyStateSpread
that are equal to or greater than the exact solution.

In order to narrow the gap with exact results, Yang et
al. [7] proposed the SSSbyStep algorithm which incorpo-
rates SteadyStateSpread with MIP heuristic [3] to limit the
iteration time. For partly solving the inaccuracy caused by
circuits, we propose in the following an improved algorithm
to assure that the iteration process to compute activation
probability of node j is not influenced by itself. The new
algorithm, that we call SSS-Noself, updates activation proba-
bilities of a node by Equation 1 without the influence of the
node itself.

Given an Independent Cascade model GIC = (V, E , p), a
new network G[q] = (V, E [q], p[q]) is obtained from G by
removing the input and output arcs of node q. The total
number of these new nets is N ′, where N ′ = N − |φ0|,
|φ0| is the number of nodes in the seed set. For node j ∈ V
one can proceed to compute at each step k the activation
probability of j assuming that q has not been activated
π
[q]
j (k). Finally, when updating the activation probability of

node j by Equation 1, the used value of every j’s in-neighbor
i is π[j]

i obtained by iteration. Let us define the activation
probability vector of network G[q] p[q] as:

p
[q]
i,j =

{
0 if q = i or q = j

pi,j otherwise
(4)

Algorithm 1 is a modified version of SteadyStateSpread
where the activation probability of node j is computed

Algorithm 1 SSS-Noself
Input: An independent cascade network GIC = (V, E , p); a

set of initial nodes φ0 ⊂ V; tolerance ε∗

Output: Activation probability πnj for all nodes j ∈ V
1: k = 0
2: ε = ε∗ + 1
3: for q ∈ V \ φ0 do
4: π

[q]
j (0) = 1, ∀j ∈ φ0

5: π
[q]
j (0) = 0, ∀j ∈ V \ φ0

6: end for
7: while ε ≥ ε∗ do
8: for q ∈ V \ φ0 do
9: for j ∈ V do

10: if j ∈ φ0 then
11: π

[q]
j (k + 1) = 1

12: πj(k + 1) = 1
13: else
14: π

[q]
j (k+1) = 1−

∏
i∈N in

j
(1−p[q]i,j ·π

[q]
i (k))

15: πj(k+1) = 1−
∏
i∈N in

j
(1−pi,j ·π[j]

i (k))

16: end if
17: end for
18: end for
19: ε1 =

∑
j /∈φ0
|πj(k + 1)− πj(k)|

20: ε2 =
∑
j /∈φ0
|π[q]
j (k + 1)− π[q]

j (k)| (q ∈ V \ φ0)
21: ε = max(ε1, ε2)
22: k = k + 1
23: end while
24: return πnj = πj(k − 1)

disregarding the influence of itself. The computation result
for the network in Fig. 2 by Algorithm 1 is shown in the
fourth row of Table II. The results of node 2 and node 4 are
in bold in Table II to highlight that they are different from
their results by the Path Method and SteadyStateSpread. It is
obviously that the result of SSS-noself is closer to the result
of the Path Method than SteadyStateSpread, i.e., SSS-noself
is more precise than SteadyStateSpread. In fact, SSS-Noself
always gives a result between the result of the Path Method
and the result of SteadyStateSpread.

Different from SteadyStateSpread, for all nodes j ∈ V ,
SSS-Noself not only computes the activation probability of
node j at step k, but also the activation probability of node
j at step k assuming that node q ∈ V \ φ0 remains inactive.
Thus the time complexity of SSS-Noself is O(N2), while
that of SteadyStateSpread is O(N).

C. Fixed-Point Computation of Activation Probabilities
Along Paths of Bounded Length

In this part, we propose an efficient algorithm, called SSS-
Bound-t, to compute activation probabilities along paths of
bounded length by applying Equation 1.

Let us firstly define the length of the shortest path from
seed set to a node j ∈ V \ φ0 as spj and assume each
node j ∈ V \ φ0 is reachable from the seed set. Kimura
et al. [18] proposed SPM and SP1M, where node j can



be activated only at step k = spj in SPM, or only at step
k = spj as well as step k = spj +1 in SP1M. Nevertheless,
they did not discuss how to compute these probabilities
without previously determining the corresponding paths, a
procedure that may be computationally expensive. Maximum
influence paths are computed by the Dijkstra algorithm
in [3] and [7], which has high complexity. We propose an
approach based on fixed-point computation that does not
require preliminarily computing the shortest path. In our
procedure we record spj as step k when πtj firstly changes
from zero to non-zero. Besides, we set the path bound t to
compute πtj involving not only the shortest paths but also the
paths whose length is no greater than spj+ t. The procedure
of SSS-Bound-t is shown in Algorithm 2. The computation
result for the network in Fig. 2 by SSS-Bound-0 is shown in
the fifth row of Table II.

Algorithm 2 SSS-Bound-t
Input: An independent cascade network GIC = (V, E , p); a

set of initial nodes φ0 ⊂ V; path bound t
Output: Activation probability πtj for all nodes j ∈ V

1: Initialize πtj(0) = 1, j ∈ φ0; πtj(0) = 0, j ∈ V \ φ0;
k = 0; stepj = inf , j ∈ V \ φ0

2: stop = 0
3: while stop = 0 do
4: stop = 1
5: for j ∈ V do
6: πtj(k + 1) = πtj(k)
7: if j /∈ φ0 and k ≤ stepj then
8: πtj(k + 1) = 1−

∏
i∈N in

j
(1− pi,j · πti(k))

9: stop = 0
10: end if
11: if πtj(k + 1) 6= 0 and πtj(k) = 0 then
12: step = k + 1 + t
13: end if
14: end for
15: k = k + 1
16: end while
17: return πtj = πtj(k − 1)

The SSS-Bound-t algorithm generalizes SPM and
SP1M [18], exploiting the efficient fixed-point computation
of SteadyStateSpread. It cannot always give a well
approximate result since it depends on the seed set as
well as the value of t. However, the result of SSS-
Bound-0 can be regarded as a lower-bound for the exact
activation probability. Same with SteadyStateSpread, the
time complexity of SSS-Bound-t is O(N). However, in most
cases SSS-Bound-0 stops the iteration before it converges,
thus SSS-Bound-0 is usually less time-consuming than
SteadyStateSpread.

D. Comparison of Different Fixed-Point Approaches

In fact, the computing activation probabilities by the
algorithms above have a fixed relationship.

TABLE II
COMPARISON OF ACTIVATION PROBABILITIES FOR THE NETWORK IN

FIG. 2

Node 1 2 3 4 5
Path Method 0.08 0.0616 0.4 0.0123 1

SteadyStateSpread 0.08 0.0678 0.4 0.0132 1
SSS-Noself 0.08 0.0630 0.4 0.0126 1

SSS-Bound-0 0.08 0.0400 0.4 0.0080 1

Proposition 1: The activation probabilities of node j com-
puted by the Path Method (πpj ), by SteadyStateSpread (πsj ),
by SSS-Bound-0 (πt=0

j ) and by SSS-Noself (πnj ) satisfy:
πt=0
j ≤ πpj ≤ πnj ≤ πsj

The proof of this proposition is omitted for the sake of
space.

V. EXPERIMENT

We study different networks to compare the results of
Monte Carlo simulation, the Path Method, SteadyState-
Spread, SSS Noself and SSS-Bound-t.

A. Data Sets

There are two datasets for our experiments.
For the first dataset, we construct a series of bidirectional

grid graphs with a parameter m such that the mth grid graph
contains m2 nodes. As shown in Fig. 4, initially we construct
a circuit of 4 nodes when m = 2, then a grid graph of m2

nodes is generated as m increases. It contains the grid graph
of (m− 1)2 nodes as a subgraph and its nodes interact with
each other. For each edge (i, j), we uniformly at random
select pi,j from the set {0.1, 0.2, 0.5}. We represent this
dataset as Series-Grid.
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Fig. 4. Series of grid graphs

For the second part, we use a real-world dataset—
airportsinUS1. It is a weighted network of the 500 airports
with the largest amount of traffic from publicly available data
in the United States. Nodes represent US airports and edges
represent air travel connections among them. There are 5960
edges in total. Based on the weights wi,j of edges, we obtain
pi,j by wi,j \

∑
i wi,j .

All approaches are implemented in MATLAB. All experi-
ments are run on a PC with 2.40GHz Intel Core i5 Processor
and 8GB memory.

1https://sites.google.com/site/cxnets/usairtransportationnetwork



B. Experiment Results

Firstly, we present the computation of activation proba-
bilities on Series-Grid using Monte-Carlo simulation, Path
Method, SteadyStateSpread and SSS-Noself. We randomly
select one node as seed node for the grid graphs with
m = {2, 3} and two nodes for the grid graphs with m =
{4, 5, 6, 7}. The result of Monte Carlo simulation is the
average of 10,000 times of simulations. We set ε∗ = 10−8

for the iterations of SteadyStateSpread algorithm and SSS-
Noself algorithm. The sum of activation probabilities of
nodes in Series-Grid with m = {2, 3, 4, 5, 6, 7} using the
four methods above is shown in Table III. The value for m =
{4, 5, 6, 7} by the Path Method is not given since the running
time is more than 8 hours, i.e., out of time (o.o.t). As a
particular case, we list activation probability of each node for
the grid graph with m = 3 in Table IV to show the difference
of every node by these four methods. We can observe that the
result by SSS-Noself is always between the exact result by
the Path Method and the result by SteadyStateSpread for both
activation probability of each node and sum of activation
probabilities of all node. It verifies the relationship among
these three methods in Proposition 1. Moreover, it shows that
our SSS-Noself algorithm provides more precise results than
SteadyStateSpread algorithm.

TABLE III
SUM OF ACTIVATION PROBABILITIES BY MONTE CARLO SIMULATION,

Path Method, SteadyStateSpread, AND SSS-noself ON SERIES-GRID WITH

m = {2, 3, 4, 5, 6, 7}

Method m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
Monte Carlo simulation 1.4343 1.9055 3.2171 4.5072 4.5527 5.1308

Path Method 1.4428 1.9098 o.o.t o.o.t o.o.t o.o.t
SteadyStateSpread 1.4467 2.0936 5.2166 5.8790 7.0053 13.1089

SSS-Noself 1.4428 1.9502 4.0661 5.0710 5.7296 9.1891

TABLE IV
ACTIVATION PROBABILITIES BY MONTE CARLO SIMULATION, Path

Method, SteadyStateSpread, AND SSS-Noself ON SERIES-GRID WITH

m = 3

Node 1 2 3 4 5 6 7 8 9
Monte Carlo simulation 1 0.5076 0.0962 0.1099 0.1048 0.0302 0.0151 0.0168 0.0249

Path Method 1 0.5032 0.1009 0.1136 0.1049 0.0302 0.0161 0.0169 0.0238
SteadyStateSpread 1 0.5392 0.1349 0.1475 0.1317 0.0535 0.0292 0.0255 0.0320

SSS-Noself 1 0.5049 0.1119 0.1182 0.1093 0.0345 0.0206 0.0227 0.0280

Secondly, we compare the running time of these four
methods for the activation probability computation, shown
in Table V. The Path Method takes exponential time to
give exact results as the size of network increases. SSS-
Noself provides better results than SteadyStateSpread with an
acceptable increase of computation time for the considered
small networks.

The second part of our experiment is performed on air-
portsinUS network data. We evaluate the sum of activation
probabilities for all nodes by SteadyStateSpread, SSS-Noself
and SSS-Bound-t given different sizes of seed sets, shown
in Fig. 5. The seven seed sets are randomly generate with

TABLE V
RUNNING TIME FOR ACTIVATION PROBABILITY COMPUTATION IN

SERIES-GRID WITH m = {2, 3, 4, 5, 6, 7}

Running time (s) m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
Monte Carlo simulation 0.48 1.25 0.95 1.40 1.82 1.58

Path Method 0.11 0.31 o.o.t o.o.t o.o.t o.o.t
SteadyStateSpread 0.01 0.02 0.10 0.09 0.34 0.55

SSS-Noself 0.01 0.06 0.66 1.42 4.80 11.41

the size |φ0| = {1, 5, 10, 15, 20, 25, 30}. The tolerance is
fixed as ε∗ = 0.01 for SteadyStateSpread and SSS-Noself.
The path bound t is chosen from {0, 1, 5, 10, 15, 20, 25, 30}
for SSS-Bound-t. We can observe that the sum of activation
probabilities by SteadyStateSpread are no less than that
by SSS-Noself. Since we have pointed πpj ≤ πnj ≤ πsj ,
j ∈ V in Proposition 1, although the results of Path Method
are difficult to obtain for big networks, we can figure out
that SSS-Noself is more precise than SteadyStateSpread.
Moreover, we can discover that the results of SSS-Bound-t
increase as the path bound t’s increase. As a lower-bound of
the exact solution, the results of SSS-Bound-0 is the smallest
among all algorithms.
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Fig. 5. Sum of activation probabilities by SteadyStateSpread, SSS-Noself,
SSS-Bound-0 and SSS-Bound-5 on airportsinUS network data

However, as shown in Table VI, the running time of SSS-
Noself is much longer than SteadyStateSpread when the size
of the network is large since SSS-Noself needs one more pass
of all nodes in a network than SteadyStateSpread. For this
reason we think that it may be necessary to further improve
the efficiency of SSS-Noself. Compared with the running time
of SSS-Bound-t in Table VII, SSS-Bound-t is obviously faster
than SteadyStateSpread when t = {0, 1, 5, 10, 15, 20}. As t
increases, the running time of these two approaches will be
similar.

TABLE VI
RUNNING TIME FOR ACTIVATION PROBABILITY COMPUTATION BY

SteadyStateSpread AND SSS-Noself ON AIRPORTSINUS NETWORK DATA

GIVEN DIFFERENT SIZES OF SEED SETS |φ0|

Running time (s) |φ0| = 1 |φ0| = 5 |φ0| = 10 |φ0| = 15 |φ0| = 20 |φ0| = 25 |φ0| = 30
SteadyStateSpread 5.05 3.20 1.35 1.18 1.10 0.94 0.82

SSS-Noself 1143.62 892.77 719.44 467.74 512.77 383.86 350.49

Fig. 6 shows the error between SSS-Bound-t and SSS-
Noself which is measured by |

∑
j∈V\φ0

πtj−
∑
j∈V\φ0

πnj |\



TABLE VII
RUNNING TIME FOR ACTIVATION PROBABILITY COMPUTATION BY

SSS-BOUND-T ON AIRPORTSINUS NETWORK DATA GIVEN DIFFERENT

SIZES OF SEED SETS |φ0| WITH PATH BOUND

t = {0, 1, 5, 10, 15, 20, 25, 30}

Running time (s) |φ0| = 1 |φ0| = 5 |φ0| = 10 |φ0| = 15 |φ0| = 20 |φ0| = 25 |φ0| = 30
t = 0 0.12 0.12 0.11 0.14 0.12 0.11 0.12
t = 1 0.16 0.22 0.16 0.18 0.16 0.15 0.16
t = 5 0.26 0.28 0.28 0.30 0.27 0.27 0.28
t = 10 0.36 0.38 0.38 0.40 0.38 0.37 0.37
t = 15 0.61 0.57 0.56 0.58 0.56 0.56 0.57
t = 20 0.57 0.64 0.63 0.65 0.64 0.63 0.62
t = 25 0.87 0.87 0.86 0.88 0.86 0.86 0.86
t = 30 0.90 0.90 0.91 0.91 0.89 0.88 0.89

∑
j∈V\φ0

πnj . We do not present the curve for |φ0| = 30
due to the limit of space, but point out that it is similar to
the curves for |φ0| = {15, 20, 25}. We can find that in the
beginning the error decreases as the path bound t’s increases.
At certain path bound the error is the smallest and then
increases a bit. It shows that the path bound corresponding
to the smallest error varies with different seed set size.
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(c) |φ0| = 10
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Fig. 6. Error between SSS-Bound-t and SSS-Noself on airportsinUS
network data given different sizes of seed sets |φ0| with path bound
t = {0, 1, 5, 10, 15, 20, 25, 30}

VI. CONCLUSIONS

In this paper, we focus on analyzing different approaches
for the influence spread computation through a network. We
initially propose an approach which can compute the influ-
ence spread exactly called the Path Method. We consider the
elements resulting in the inaccuracy of SteadyStateSpread:
the dependent relation between nodes and the existence of
circuits. Furthermore, we show how to compute a lower
approximation of activation probabilities by SSS-Bound-t
and propose an improved algorithm called SSS-noself which
partially decreases the error caused by circuits.

Aware of the factors which cause the inaccuracy of
SteadyStateSpread, proposing new algorithms to improve
the effectiveness will be the objective of our future work.
Besides, since that the SSS-noself run for much time in large-
scale networks, another interesting line of research could
be to improve the efficiency of the SSS-noself. We believe
that these computational approaches to determine influence
diffusion can also be used to solve problems of influence

maximization and minimization: our future research will
explore these issues.
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