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Abstract—The propagation of innovations in social networks
has been widely studied recently. The previous work mostly
focuses on either maximizing the influence by identifying a set
of initial adopters, or minimizing the influence by link blocking
under a certain diffusion model. In our case, we address an influ-
ence maximization problem considering the link activation under
the Independent Cascade model. For this problem, we propose
an approximate solution based on a cost-degree coefficient for
searching the relatively effective links to be activated. Evaluated
on a real network, our algorithm is experimentally demonstrated
to perform well in both aspects of effectiveness and efficiency.

Index Terms—Social networks, Influence maximization, Inde-
pendent Cascade model, Link activation

I. INTRODUCTION

In recent years, a large number of social network sites have

appeared to connect people and groups together. Networks

have been proved to be a good tool to obtain information and

communicate ideas. Besides, they are becoming an effective

marketing platform, through which it is possible to spread

information or products to a large scale with a high speed.

The studies on the diffusion of innovations in social net-

works [1]–[5] began in the middle of the 20th century.

Motivated by the application of viral marketing, Domingos

and Richardson [6] proposed a general framework for the

application of data mining and modeled the social network as a

Markov random field. Kempe et al. [7] proposed two diffusion

models, namely the Independent Cascade model and the Lin-
ear Threshold model, to model the propagation of innovations.

Besides, they also formulated the issue of choosing influential

sets of individuals as a discrete optimization problem. It aims

to identify a small subset of initial adopters in a social network

to maximize the influence propagation under a given diffusion

model. They also proved this influence maximization problem

is NP-hard and gave a greedy approximation algorithm which

guarantees, under certain conditions, that the influence spread

is within (1− 1/e) of the optimal influence spread. However,

this approach requires long time to run the simulation, thus
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later much effort was devoted to derive more efficient algo-

rithms [8]–[10].

In this work we also study a problem of influence max-

imization considering in particular the Independent Cascade

model. However, unlike previous approaches, we assume that

the network is given and the set of initial adopters is randomly

selected. The decision variable that we can choose to maximize

the influence spread are the active links in the network.

Activating a link has a certain cost and we have a limited

budget for that.

We believe that the Independent Cascade model can de-

scribe quite well the decision of a company that has a given

budget for a publicity campaign. The links of the network

could represent different ways in which the influence may

propagate and the objective of the campaign is supporting the

most successful ones so as to maximize the publicity spread.

We control the links in order to maximize the influence

spread. Previously, the link control has been used only for

influence minimization.

Most of the work which aimed to solve the influence mini-

mization problem by link control applied “link blocking” [11]–

[17]. They proposed various approaches to limit the spread

of negative innovation such as injection, rumor, virus, etc.

in either preventive or reactive way. A preventive strategy

focuses on the network topology modification in order to

make the network more resistant to a negative innovation.

The algorithm proposed by Tong et al. [15] optimized the

leading eigenvalue of the network adjacency matrix to control

the influence dissemination process. Unlike the preventive

strategy, a reactive strategy takes the initially affected nodes

into account to guide the link removal operation. Kimura et

al. [13], [18] combined the bond percolation method with

the greedy algorithm to approximately solve this problem

and compared with the link-removal heuristics based on be-

tweenness and out-degree. Nandi et al. [17] proposed mixed-

integer programming formulations of four network interdiction

models for removing a set of links from a network to minimize

the negative influence spread.

To the best of our knowledge, this is the first study on

the influence maximization by means of activating links under

the Independent Cascade model. Different from other work



on the influence maximization which focused on selecting a

certain number of relatively optimal initial adopters, we aim

to activate the most effective links within a limited budget to

achieve influence maximization. Unfortunately, the heuristic

we consider cannot provide an optimal solution to this problem

but, in general, only a suboptimal one. In addition, we evaluate

our heuristic on a real network and compare its performance

with a random approach.

The rest of the paper is organized as follows. Section 2

reviews the Independent Cascade model and formulates the

problem of influence maximization with a limited budget by

activating links. Section 3 proposes a cost-degree heuristic to

find a suboptimal solution to this problem. Section 4 presents

a series of experimental results. We conclude the paper in

Section 5.

II. PROBLEM FORMULATION

In this paper, we assume that the potential links connecting

individuals in a network require a cost to be activated. On

account of a limited budget, only a certain set of links can

be activated. The goal is to maximize the final influence dis-

semination under a limited budget. We apply the Independent

Cascade model to describe the propagation of an innovation

through networks.

A. Independent Cascade Model

Consider a directed graph G = (V,E), in which V is the set

of nodes and an edge (i, j) ∈ E denotes that node i influences

node j directly [7]1. In the Independent Cascade model, every

edge (i, j) ∈ E is associated with a propagation probability
p : (V × V ) → (0, 1], where pi,j represents the probability

that node j is influenced by node i through the edge (i, j) at

step k when node i is activated at step k−1. Thus, we denote

an Independent Cascade model by a triple GIC = (V,E, p).
The in-neighbors of node j denoted as N in

j = {i ∈
V |(i, j) ∈ E} represent all individuals with direct influence

on node j. The out-neighbors of node j denoted as Nout
j =

{i ∈ V |(j, i) ∈ E} represent the individuals on which node j
has direct influence.

Let us define φ0 as the seed set, i.e., the set of nodes which

have adopted the innovation at step k = 0. Then the innovation

propagates from the seed set. We assume that nodes can switch

from being inactive to being active, but can not switch in

the other direction. Moreover, every active node has only one

chance to influence each of its out-neighbors. If there are many

in-neighbors of inactive node j that are activated at step k−1,

the order in which they attempt to activate node j at step k
does not affect the probability of node j being activated [19].

The activation process ends when no more nodes adopt the

innovation. The probability that node j ∈ V is activated during

the dynamic evolution is defined as the activation probability
of node j, denoted as πj . Assuming the set of active links is

Ea ⊆ E, the final influence propagation σ(Ea) is defined as

follow:

1In this paper we use the terms individual or node, link or edge interchange-
ably.

σ(Ea) =
∑

j∈V

πj (1)

B. Influence Maximization by Link Activation

In this part, we give a mathematical definition of the

influence maximization problem considering link activation

based on the Independent Cascade model.

In a given Independent Cascade network GIC = (V,E, p),
the edges (i, j) ∈ E are normally inactive but may activated by

an external control agent. Assume we are given a cost vector
c ∈ V × V , where activation cost ci,j denotes the cost for

activating the link between node i and node j. We activate

a set of links Ea ⊆ E to construct an active graph and the

total cost should not exceed a budget K. Then the seed set

φ0 is randomly selected from this active graph. The goal is to

maximize the final influence spread σ(Ea) by the activation

of the set of links Ea. We formalize this problem as follow:

Problem 1: Given an Independent Cascade model GIC =
(V,E, p), let c ∈ V ×V be a cost vector. The seed set φ0, i.e.,

the initial state of the network, is not given and we assume

will be randomly selected at runtime. Activate a set of edges

Ea ⊆ E, such that the final influence propagation σ(Ea) is

maximized and the total cost for activating the edges (i, j) ∈
Ea is no more than a budget K, i.e.,

max σ(Ea) (2)

s.t.
∑

(i,j)∈Ea

ci,j ≤ K (3)

Ea ⊆ E (4)

K ∈ R+ (5)

Note that the seed set φ0 is not specified in Problem 1,

but randomly selected in the active graph generated by the

set of links Ea ⊆ E. In fact, this is a stochastic optimization

problem where both the input data (the seed set φ0) and the

system’s performance index (the final influence spread) are

random variables.

III. METHODOLOGY

In this section, we propose an approach considering both

propagation probability and activation cost for solving this

problem.

Our goal is to maximize the final influence propagation on

the condition that the total cost for link activation is no more

than a given budget. Thus, the edges with big propagation

probability but small activation cost are considered to be

activated firstly. Denote Θi,j = pi,j/ci,j as the cost-degree
of link (i, j), then select the link (i, j) with the maximum

value of Θi,j to be activated in each iteration. The iteration

process stops when the total cost for link activation does not

satisfy the budget constraint. The procedure in detail is shown

in Algorithm 1.

The time complexity of Algorithm 1 is O(m) with m = |E|
(the number of edges) since the algorithm computes Θi,j for

each edge (i, j) ∈ E.



Algorithm 1 Cost-Degree Algorithm

Input: An Independent Cascade network GIC = (V,E, p); a

cost vector c; a budget K
Output: An active edge set Ea

1: Initialize Ea = ∅
2: Compute Θi,j = pi,j/ci,j for ∀(i, j) ∈ E
3: while

∑
(i,j)∈Ea

ci,j ≤ K do

4: Ea = Ea ∪ { argmax
(i,j)∈E\Ea

(Θi,j)}
5: end while
6: return Ea

IV. EXPERIMENT

Based on a real-world network, we experimentally evaluate

the performance of the proposed heuristic.

A. Data Sets

We use a real-world dataset—airportsinUS2, which is a

benchmark network widely used in social network analy-

sis [20]. It is a weighted network of the 500 airports with

the largest amount of traffic from publicly available data in

the United States. Nodes represent US airports and edges

represent air travel connections among them. There are 5960

edges in total. Based on the weights wi,j of edges, we obtain

pi,j by wi,j/
∑

i wi,j . Besides, activation cost ci,j is uniformly

selected from the interval (0, 10) at random.

B. Experiment Setup

We compare the proposed heuristic based on the cost-

degree coefficient with a random method. Different budget

values K = {1000, 5000, 10000, 15000, 20000, 25000} are

considered in our experiment. Furthermore, the seed sets in

different sizes |φ0| = {1, 5, 10, 15, 20, 25, 30} are randomly

selected in the active graphs generated by either of the two

considered algorithms under a certain budget value. The tested

algorithms are briefly described as following:

Random: Randomly select a set of edges to be activated

unless the total cost is more than the budget limit K.

Cost-degree: Our cost-degree algorithm proposed in Sec-

tion 3.

All approaches are implemented in MATLAB. All experi-

ments are run on a PC with 2.40GHz Intel Core i5 Processor

and 8GB memory.

C. Experiment Results

We evaluate the algorithms on the airportinUS network

under the Independent Cascade model in terms of the influence

spread and the running time. The influence spread is denoted

with the total activation probabilities of all nodes in the

network. After selecting the set of links to be activated by

either of these two algorithms, the influence spread is com-

puted approximately by the SteadyStateSpread algorithm [21],

[22]. The algorithm terminates when the aggregate change in

2https://sites.google.com/site/cxnets/usairtransportationnetwork

the absolute probabilities between two consecutive iterations

is less than 0.001. We simulate the process 100 times by

randomly re-selecting the seed set φ0 in a certain size from

the active graphs generated by either of the two algorithms.

Then limited by a budget K, the final influence spread σ(Ea)
with each size of seed set is computed by the average of the

results in these 100 times simulations.

The final influence spread given different sizes

of seed sets under the budget values K =
{1000, 5000, 10000, 15000, 20000, 25000} is shown in

Fig. 1. Obviously, the influence spread increases with the

budget since more links can be activated. Moreover, We can

observe that our proposed algorithm performs much better

than the random algorithm under the same budget value. It is

more clear in Fig. 2.
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Fig. 1. Influence spread of the tested algorithms given different budget values

Fig. 2 shows the error rate of influence spread after the link

activation by the two algorithms with |φ0| = {1, 5, 15, 25},

i.e., (σ(Ea)
cost−degree − σ(Ea)

random)/σ(Ea)
random with a

same seed set size and budget value. We can observe that

the cost-degree algorithm can choose a more successful set of

active links than the random approach regardless of the budget

value and the seed set size.

Secondly, we compare the running time for selecting the set

of links to be activated by the two algorithms under different
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Fig. 2. Error rate of influence spread after link activation by the tested
algorithms given different seed set sizes

budget values K, shown in Table I. Both tested algorithms take

a bit longer time when the budget K increases. Besides, our

algorithm almost takes as the same little time as the random

algorithm under a same budget value, while it can achieve a

much larger influence spread.

TABLE I
RUNNING TIME FOR SELECTING LINKS TO BE ACTIVATED UNDER

DIFFERENT BUDGET VALUES

Running time (s) K = 1000 K = 5000 K = 10000 K = 15000 K = 20000 K = 25000
Random 0.02 0.09 0.11 0.17 0.20 0.24

Cost-degree 0.04 0.09 0.16 0.22 0.24 0.29

V. CONCLUSION

Most previous work focuses on the approaches to either

influence maximization considering the initial adopters or

influence minimization based on link blocking. Differently in

this paper, we formulate an influence maximization problem

within a limited budget considering to activate the relatively

most effective links. For approximately solving this problem,

we propose a heuristic associated with a cost-degree coeffi-

cient. Moreover, experiments on a real network show that our

approach works effectively and efficiently.

There are several future directions for this work. First, the

propagation probability and cost vector for our current diffu-

sion model are fixed and unrelated. We plan to generalize our

model in terms of associating these two parameters together in

order to better describe the real-world scenarios. Second, our

cost-degree algorithm does not consider the seed set during the

identification of links to be activated. We aim to propose new

approaches which involve the whole diffusion process while

selecting the links to be activated.
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