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In the discrete event and hybrid systems theory, Batches Petri Nets (BPN) have been defined as an extension of Hybrid Petri nets for representing in a single node a linear relation between flow and density. This formalism and its extensions allow us to delay flows according to accumulation phenomena. Applied to mesoscopic modeling of traffic road networks, Triangular Batches Petri Nets (TBPN) have been defined as a triangular flow-density relation, allowing the representation of traffic congestion/decongestion phenomena. When variable speed limit (VSL) control is applied on the traffic road networks, i.e., a method that improves the traffic conditions by the reduction of congestion, Controlled Triangular Batches Petri Nets (CTBPN) can be used for analyzing such phenomena. In this paper, we present the hybrid formalism defined in CTBPN, i.e., the hybrid behavior of a batch in free, congestion or decongestion behavior. As an illustrative example, the congestion/decongestion phenomena on a road section and the impact of a VSL control are shown.

I. INTRODUCTION

Nowadays the traffic demand is often greater than traffic capacity of the roads and, when it occurs, a phenomenon of traffic congestion appears. To reduce the traffic congestion without expand or build new roads, the optimization of the traffic flow becomes an important study issues in transportation systems. The most common optimization strategies are Ramp Metering Regulation (RMR) and Variable Speed Limit (VSL) [START_REF] Papageorgiou | Review of road traffic control strategies[END_REF] [START_REF] Papamichail | Integrated Ramp Metering and Variable Speed Limit Control of Motorway Traffic Flow[END_REF]. RMR strategy controls the upstream flow reallocating the vehicles into other parts of network where the demand is lower. VSL strategy consists in the variation of the speed limits to change the maximum capacity of the road in order to remove the congestion (reducing speed) or to reduce the decongestion time (increasing speed). VSL is computed based on different factors like traffic flow, density, and speed and it must follow the traffic flow-density (also called fundamental diagram) model. The relation traffic flowdensity is studied in a macroscopic level (hydrodynamic theory) [START_REF] Cho | Analysis of traffic flow with Variable Speed Limit on highways[END_REF]. We propose in this paper to model the congestion/decongestion phenomena caused by flow-density model in a mesoscopic level (group of vehicles) using a hybrid model based on discrete events and to detail the behavior of a group of vehicles when a VSL is implied.

Among the formalisms that consists of discrete events and hybrid models, continuous and hybrid Petri nets [START_REF] David | Discrete, Continuous, And Hybrid Petri Nets[END_REF] are well adapted to the modeling and analysis of performance and control of flow systems. Batches Petri Nets (BPN) [START_REF] Demongodin | Modeling and Analysis of Transportation Networks Using Batches Petri Nets with Controllable Batch Speed: 30th[END_REF] extend the hybrid Petri nets class by defining a new type of node, Radhia Gaddouri, Leonardo Brenner and Isabel Demongodin are with Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296, France. {Radhia.Gaddouri, Leonardo.Brenner, Isabel.Demongodin}@lsis.org the batch node, and the concept of controllable batch, i.e., a group of entities (vehicles) moving through a transfer zone at its transfer speed. These Petri nets, by their hybrid dynamics formalization, allow transfer elements to be represented at a mesoscopic level with possibility of accumulation (or congestion) of entities (vehicles). In the BPN formalism, the dynamics of batches inside a batch place is governed by a flow-density relation representing a switching between free and accumulation behaviors. Gaddouri et al. [START_REF] Gaddouri | Extension of Batches Petri Nets by Bi-parts batch places[END_REF] have extended and enriched these formalisms by a more general flow-density relation, i.e., a triangular form that represents in a very detailed manner the fundamental diagram of the traffic road domain [START_REF] Daganzo | The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[END_REF], [START_REF] Canudas-De-Wit | Best-effort Highway Traffic Congestion Control via Variable Speed Limits[END_REF]. The batch place is extended to a Triangular Batch place (TB-place) defined by four continuous characteristics: a maximum speed, a maximum density, a length and a maximum flow.

More specifically, this paper extends the hybrid dynamics of batches inside a triangular batch place previously defined in [START_REF] Gaddouri | Mesoscopic event model of highway traffic by Batches Petri nets[END_REF], by defining controlled events, such as the variation of maximum speeds of TB-places or the modification of maximum flows associated to continuous/batch transitions. This new semantic can then be located within the context of the VSL strategy for controlling congestion in freeways or highways. The hybrid dynamics is also presented by three continuous behaviors: free, congestion and decongestion.

This paper is organized as follows. In Section 2, concepts associated with Controlled Triangular Batch Petri Nets are introduced. We propose in Section 3, new continuous-time and discrete event dynamics of controllable batches under variation of maximum speed of TB-places and according to assumptions imposed by the triangular relation of flowdensity. Section 4 presents an example illustrating the congestion/decongestion phenomena of traffic flows with VSL control. Some concluding remarks compose Section 5.

II. CONTROLLED TRIANGULAR BATCHES PETRI NETS

FORMALISM

We first recall in this section some concepts and definitions of Triangular Batches Petri Nets (TBPN)) [START_REF] Gaddouri | Extension of Batches Petri Nets by Bi-parts batch places[END_REF] used in this paper. Next, Controlled Triangular Batches Petri Nets (CTBPN) is presented as an extension of a TBPN where variations of maximum speeds and maximum flows are controlled.

A. Triangular Batches Petri Nets

A Triangular Batches Petri Net (TBPN) is an extension of a Generalized Batches Petri Net (see [START_REF] Demongodin | Generalized Batches Petri Net: Hybrid Model For High Speed Systems With Variable Delays: Discrete Event Dynamic Systems[END_REF], [START_REF] Demongodin | Modeling and Analysis of Transportation Networks Using Batches Petri Nets with Controllable Batch Speed: 30th[END_REF] and [START_REF] Demongodin | Dynamics and steady state analysis of controlled Generalized Batches Petri Nets[END_REF] for more details on this formalism), where some new characteristics related to the batch place have been added. Definition 2.1: A Triangular Batches Petri Net (TBPN) is a 6-tuple N = (P, T, P re, P ost, γ, T ime) where:

• P = P D ∪ P C ∪ P T B is a finite set of places partitioned into the three classes of discrete, continuous and triangular batch places.

• T = T D ∪ T C ∪ T B
is a finite set of transitions partitioned into the three classes of discrete, continuous and batch transitions.

• P re, P ost : (P D ×T → N)∪((P C ∪P B )×T → R ≥0 )
are, respectively, the pre-incidence and post-incidence matrices, denoting the weight of the arcs from places to transitions and from transitions to places.

• γ : P T B → R 4
≥0 is the triangular batch place function. It associates with each triangular batch place

p i ∈ P T B the quadruple γ(p i ) = (V i , d max i , S i , Φ max i
) that represents, respectively, the maximum speed, the maximum density, the length and the maximum flow.

• T ime : T → R ≥0 associates a non negative number with every transition:

if t j ∈ T D , then T ime(t j ) = d j denotes the firing delay associated with the discrete transition; if t j ∈ T C ∪T T B , then T ime(t j ) = Φ j denotes the maximal firing flow associated with the continuous or batch transition. The nodes of a TBPN [START_REF] Gaddouri | Mesoscopic event model of highway traffic by Batches Petri nets[END_REF] are represented in Fig. 1. 

(p i ) = (V i , d max i , S i , Φ max i ).
A propagation speed of congestion, denoted W i , and a critical density d cri i , are associated with p i , defined respectively by:

W i = Φ max i • V i d max i • V i -Φ max i (1)
d cri i = W i .d max i V i + W i (2) 
The flow-density relation that governs the dynamics of TBplace p i is defined as follows:

φ = d.V i if 0 ≤ d ≤ d cri i W i .(d max i -d) if d cri i < d ≤ d max i (3) 
where d denotes density and φ denotes flow. Figure 2 represents these definitions. Let us now introduced some definitions needed for the rest of this paper. Let a Triangular Batch place p i , with γ(p

i ) = (V i , d max i , S i , Φ max i
). An input flow φ in i (τ ) and an output flow φ out i (τ ) of place p i are respectively: φ in i (τ ) = P ost(p i , •) • ϕ(τ ) and φ out i (τ ) = P re(p i , •) • ϕ(τ ) where ϕ(τ ) is the instantaneous firing vector of continuous and batch transitions (see [START_REF] Demongodin | Dynamics and steady state analysis of controlled Generalized Batches Petri Nets[END_REF] for more details).

B. Controlled Triangular Batches Petri Nets

A Controlled Triangular Batches Petri Net (CTBPN) has the same syntax than TBPN. However we associate with CTBPN a different semantics, assuming that the maximal firing flow of continuous and batch transitions and, the maximal transfer speed of triangular batch places are control inputs.

Definition 2.3: A Controlled Triangular Batches Petri Net (CTBPN) is a TBPN where the maximal transfer speed of TB-place p i ∈ P T B and, the maximal firing flow associated with a continuous or batch transition t j ∈ T C ∪ T B , can varied. We denote respectively these variables:

v i (τ ), with 0 ≤ v i (τ ) ≤ V i , and φ j (τ ), with 0 ≤ φ j (τ ) ≤ Φ j .
It should be noted that the variation of the speed of TBplaces imposes a variation of the critical density and of the maximum flow of TB-place while the propagation speed of congestion, W i stays constant (see Fig. 2).

Definition 2.4:

Let TB-place p i with γ(p i ) = (V i , d max i , S i , Φ max i ) with a maximal transfer speed v i (τ ) such that 0 ≤ v i (τ ) ≤ V i . At time τ , the controlled critical density d cri i (τ )
and the controlled maximum flow φ max i (τ ) are respectively defined by:

d cri i (τ ) = W i .d max i v i (τ ) + W i , (4) 
φ max i (τ ) = v i (τ ).d cri i (τ ) (5) 
with 0 ≤ φ max i (τ ) ≤ Φ max i and Φ max i Vi ≤ d cri i (τ ) ≤ d max i . φ d d cri i Φ i max d max i V i W i φi max (τ ) d i cri (τ) v i (τ) 0 Fig. 2. Flow-density relation of a TB-place

C. Batches and markings of TB-places

A batch, i.e., a group of discrete entities characterized by continuous variables, has been defined for Batches Petri Nets. When, three continuous variables are associated with it, it is called a batch. When, four continuous variables are considered [START_REF] Demongodin | Modeling and Analysis of Transportation Networks Using Batches Petri Nets with Controllable Batch Speed: 30th[END_REF], it is called a controllable batch, which is a batch with a speed characteristic lower or equal to its maximum speed.

Definition 2.5:

A controllable batch Cβ r (τ ) at time τ , is defined by a quadruple, Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) where l r (τ ) ∈ R ≥0 is its length, d r (τ ) ∈ R ≥0 is its density, x r (τ ) ∈ R ≥0 is its head position and v r (τ ) ∈ R ≥0 is its speed. The instantaneous batch flow of Cβ r (τ ) is such that: ϕ r (τ ) = v r (τ ) • d r (τ ).
Each batch place contains a series of controllable batches ordered by their head positions.

Definition 2.6: The marking of a TB-place at time τ is a series of controllable batches. If

p i ∈ P T B then m i = {Cβ h , • • • , Cβ r }. Definition 2.7: A controllable batch Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) of TB-place p i with γ(p i ) = (V i , d max i , S i , Φ max i
), where its head position equals to the length of p i , i.e., x r (τ ) = S i , is called an output controllable batch, denoted OCβ r (τ ). The output density, d out i (τ ), of a TB-place is defined as follows. If at time τ , TB-place p i has an output controllable batch OCβ r (τ ), then d out i (τ ) = d r (τ ), else d out i (τ ) = 0. All controllable batches composing the marking of a TBplace must respect the triangular flow-density relation (see eq.3). This condition allows us to define states of controllable batches.

Definition 2.8:

(States of batches) Let Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) be a controllable batch of TB- place p i , with v i (τ ) variable speed and V i maximum speed of p i (v i (τ ) ≤ V i ).
• Cβ r is in a free state if its density is lower or equal to the critical density of Let us now define, at time τ , two static functions which can be applied on batches of a TB-place.

p i : d r (τ ) ≤ d cri i (v i ); • Cβ r is in a congested state if its density is greater to the critical density of p i : d r (τ ) > d cri i (v i ).
• Merge. If two batches with the same density and the same speed are in contact, they can be merged. 

Let batches Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) and Cβ h (τ ) = (l h (τ ), d h (τ ), x h (τ ), v h (τ )), such that x r (τ ) = x h (τ ) + l r (τ ), d r (τ ) = d h (τ ) and v r (τ ) = v h (τ ). In this case, batch Cβ r (τ ) becomes Cβ r (τ ) = (l r (τ ) + l h (τ ), d r (τ ), x r (τ ), v r (τ )) and batch Cβ h (τ ) is destroyed. • Split.

D. Variation of maximum speeds of TB-places

In a CTBPN, characteristics and states of batches change when the maximal speed of TB-place p i varies from v i (τ ) to v i (τ ). It has to be noted that, at time τ , the maximal speed jumps from value v i to value v i . As previously presented and according to eq. 4, when the maximal speed of place p i increases (resp. decreases), the critical density d cri i (v i ) decreases (resp. increases). Thus at time τ , two cases must be considered: the maximal speed decreases, i.e., v i (τ ) < v i (τ ), or the maximal speed increases, i.e., v i (τ ) > v i (τ ).

1) Decreasing speed v i (τ ) < v i (τ ) Three cases are possible when the maximal speed decreases (see Fig. 4):

• case 1:

Cβ 1 = (l 1 , d 1 , x 1 , v 1
) is a free controllable batch. When the speed of TB-place decreases, batch Cβ 1 reduces its speed but keeps its density. It stays a free batch,

Cβ 1 = (l 1 , d 1 , x 1 , v i ). • case 2: Cβ 2 = (l 2 , d 2 , x 2 , v 2 ) is a congested control- lable batch with a higher speed than v i (v 2 > v i ).
When the speed of TB-place decreases, batch Cβ 2 reduces its speed to v i but keeps its density. It becomes a free batch,

Cβ 2 = (l 2 , d 2 , x 2 , v i ). • case 3: Cβ 3 = (l 3 , d 3 , x 3 , v 3 ) is a congested control- lable batch with a lower speed than v i (v 3 < v i ).
When the speed of TB-place decreases, Cβ 3 keeps all its characteristics and stays a congested batch. Three cases are possible when the maximal speed increases (see Fig. 5) :

φ d cri i (vi)
φ max i (vi) d max i v'i Wi Cβ1 Cβ1 Cβ3 Cβ2 d cri i (v'i) φ max i (v'i)
φ max i (vi) d max i vi Wi Cβ1 Cβ1 Cβ3 Cβ2 v'i d cri i (v'i) φ max i (v'i
• case 1:

Cβ 1 = (l 1 , d 1 , x 1 , v 1
) is a free controllable batch and its density is lower than

d cri i (v i ).
When the TB-place speed increases to v i , batch Cβ 1 increases its speed to v i and keeps its density. It stays a free batch,

Cβ 1 = (l 1 , d 1 , x 1 , v i ). • case 2: Cβ 2 = (l 2 , d 2 , x 2 , v 2
) is a free controllable batch and its density is greater than

d cri i (v i ).
When the TB-place speed increases to v i , batch Cβ 2 keeps its density while its speed increases to speed

v 2 = (W i • (d max i -d 2 ))/d 2 , that respects v i < v 2 < v i . It becomes a congested batch, Cβ 2 = (l 2 , d 2 , x 2 , v 2 ). • case 3: Cβ 3 = (l 3 , d 3 , x 3 , v 3 ) is a congested control- lable batch.
When the speed of TB-place changes, this batch does not changed and stays a congested batch.

E. Events of a TB-place

The behavior of a TB-place is based on a discrete event approach with linear and constant evolutions between events. The invariant behavior state (IB-state) of a batches Petri net characterizes the global state between two timed events. Restricted to a TB-place, it corresponds to a period of time such that the input flow, the output flow, the output density and the transfer speed are constants. In a CTBPN, two controlled events have been added:

• a controlled speed event which is a triplet (p i , v i , τ ),
where p i is a TB-place (p i ∈ P T B ), v i ∈ [0, V i ] is the variable maximum speed of p i and τ is the date of occurrence of this event. • a controlled flow event which is a triplet (t j , φ j , τ ), where t j is a continuous or batch transition (t j ∈ T C ∪ T B ), φ j ∈ [0, Φ j ] is the variable maximum firing flow of t j and τ is the date of occurrence of this event. More generally, in a CTBPN, the events that have to be considered during the evolution are:

• Internal events i.1 -a batch becomes an output batch Cβ r = OCβ r ; i.2 -two batches meet; i.3 -a batch is destroyed Cβ r = ∅.

• External events e.1 a discrete transition is fired; e.2 a continuous place becomes empty; e.3 a discrete transition becomes enabled; e.4 a batch becomes an output batch; e.5 an output batch is destroyed.

• Controlled events c.1 -the maximum flow of a batch or a continuous transition is modified: (t j , φ j , τ ); c.2 -the maximum speed of a TB-place is modified: (p i , v i , τ ). Let us now focus on the continuous dynamics of batch places.

III. CONTINUOUS-TIME DYNAMICS OF CONTROLLABLE

BATCHES INSIDE A TB-PLACE As the dynamics of batches can be controlled through the modification of maximum flows associated with continuous and batch transitions and through the variation of the maximum transfer speeds of TB-places, a new dynamics of batches circulate inside TB-places has to be defined. This dynamics is based on the theory of shockwave and takes into account the triangular flow-density relation.

Moreover, with every TB-place p i , are associated continuous functions that represent transformation of batches: inputing, moving and exiting. These continuous functions change, by linear variations, variables of length and position, while density and speed of batches stay constant in time (i.e., these last variables only change when an event occurs, see previous section). Consequently, for any batch Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )), it holds: ḋr = vr = 0.

Let us present now the three dynamics of controllable batches.

A) Free dynamics First we recall the definition of the free behavior, previously introduced in [START_REF] Demongodin | Modeling and Analysis of Transportation Networks Using Batches Petri Nets with Controllable Batch Speed: 30th[END_REF].

Definition 3.1: (Free behavior) Controllable batch Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) of batch place p i is in a free behavior, if it moves freely at its transfer speed v r (τ ).

Three different dynamics can occur. Definition 3.2: (Input in free behavior) A created controllable batch, Cβ r (τ ) = (0, d r (τ ), 0, v r (τ )), without contact with another batch or in contact with a downstream batch Cβ h (τ ) that has a greater speed (i.e., v h (τ ) ≥ v r (τ )), freely enters in place p i according to:

ẋr = l r = v r (τ ) (6) Definition 3.3: (Move in free behavior) A controllable batch, Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ ))
, which is a free batch, freely moves inside place p i according to: ẋr = v r (τ ); l r = 0 (7) Definition 3.4: (Exit in free behavior) An output controllable batch Cβ r (τ ) = (l r (τ ), d r (τ ), S i , v r (τ )), which has its flow equals to the output flow of p i , or which is free with a lower batch flow than the output flow, freely exits from place p i according to:

ẋr = 0; l r = -v r (τ ) (8 

) B) Congestion dynamics

To adapt some definitions on GBPN to CTBPN, the accumulation behavior previously introduced in [START_REF] Demongodin | Modeling and Analysis of Transportation Networks Using Batches Petri Nets with Controllable Batch Speed: 30th[END_REF] and [START_REF] Demongodin | Dynamics and steady state analysis of controlled Generalized Batches Petri Nets[END_REF] is now called congestion behavior.

Definition 3.5: (Congestion behavior) Controllable batch Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) of batch place p i is in a congestion behavior, if it cannot move at its speed but must reduces it, i.e., it starts an accumulation. Two cases can cause this behavior:

• Cβ r (τ ) is an output batch of p i and the output flow of p i is lower than the output batch flow (φ out i < ϕ r (τ )). • Cβ r (τ ) is a batch in contact with a downstream batch Cβ h (τ ) that has a lower speed (v h (τ ) < v r (τ )). Let us now focus on the dynamics of controllable batches in congestion behavior, in compliance with the previous definition.

Definition 3.6: (Input in congestion behavior) A created controllable batch Cβ r (τ ) = (0, d r (τ ), 0, v r (τ )) in contact with a downstream batch Cβ h (τ ) = (l h (τ ), d h (τ ), x h (τ ), v h (τ )), and which is in a congestion behavior (v h (τ ) < v r (τ )) at time τ , enters in place p i according to equation ( 6), after changing its speed and its density as follows: v r (τ ) = v h (τ ) and d r (τ ) = d h (τ ). Definition 3.7: (Move in congestion behavior) A controllable batch Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )), which is not a created or an output batch (x r (τ ) < S i and l r (τ ) = 0), in contact with a downstream batch Cβ h (τ ) = (l h (τ ), d h (τ ), x h (τ ), v h (τ )), and which is in a congestion behavior (v h (τ ) < v r (τ )) at time τ , is splitted as follows:

• Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) and • Cβ r (τ ) = (0, d r (τ ), x r (τ ), v r (τ )) with v r (τ ) = v h (τ ), d r (τ ) = d h (τ ) and x r (τ ) = x r (τ ).
From time τ on, the evolution of both batches Cβ r and Cβ r is governed by:

   ẋ r = v r (τ ) l r = d r (τ ) d r (τ ) -d r (τ ) .(v r (τ 1 ) -v r (τ )) (9) 
       ẋr = - d r (τ ) d r (τ ) -d r (τ ) .(v r (τ 1 ) -v r (τ )) l r = - d r (τ ) d r (τ ) -d r (τ ) .(v r (τ 1 ) -v r (τ )) (10) 
To leave the batch place, output batch Cβ r (τ ) must reduce its speed and should increase its density according to the output flow of p i . To represent this situation, it is necessary to apply the split function.

Definition 3.8: (Exit in congestion behavior) An output controllable batch Cβ r (τ ) = (l r (τ ), d r (τ ), S i , v r (τ )) of batch place p i , which is in a congestion behavior at time τ (i.e., φ out i < ϕ r (τ )), is split into two batches as follow: τ ) and x r (τ ) = S i . From time τ on, both batches evolves according to:

• Cβ r (τ ) = (l r (τ ), d r (τ ), S i , v r (τ )) and • Cβ r (τ ) = (0, d r (τ ), x r (τ ), v r (τ )) with d r (τ ) = d max i - φ out i Wi , v r (τ ) = φ out i d r (
   ẋ r = 0 l r = v r (τ ).d r (τ ) -φ out i d r (τ ) -d r (τ ) (11) 
       ẋr = - v r (τ ).d r (τ ) -φ out i d r (τ ) -d r (τ ) l r = φ out i -v r (τ ).d r (τ ) d r (τ ) -d r (τ ) (12) 
C) Decongestion dynamics The decongestion dynamics is only applied to congested batch. Of course, a created batch cannot be in a decongestion behavior.

Definition 3.9: (Decongestion behavior) Congested controllable batch Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) of batch place p i is in a decongestion behavior, if it can move with a higher speed. Three situations can cause this behavior:

• Cβ r (τ ) is a congested output batch and the output flow of p i is greater than the output batch flow (φ out i > ϕ r (τ )).

• Cβ r (τ ) is a congested batch in a downstream contact with Cβ h (τ ) that has a greater speed (v h (τ ) > v r (τ )).

• Cβ r (τ ) is a congested batch without contact with a downstream batch that has a lower speed than v i (τ ). Let us now focus on the dynamics of controllable batches in decongestion behavior, in compliance with the previous definition.

Definition 3.10: ( Exit in decongestion behavior) A congested output controllable batch Cβ r (τ ) = (l r (τ ), d r (τ ), S i , v r (τ )) of batch place p i , which is in a decongestion behavior at time τ (i.e., φ out i > ϕ r (τ )), is split into two batches as follow:

• Cβ r (τ ) = (l r (τ ), d r (τ ), S i , v r (τ )) and • Cβ r (τ ) = (0, d r (τ ), x r (τ ), v r (τ )) with d r (τ ) = φ out i vi(τ ) , v r (τ ) = v i (τ )and x r (τ ) = S i
From time τ on, the dynamics of both batches, Cβ r (τ ) and Cβ r (τ ), are governed by eq. ( 11) and eq. [START_REF] Papamichail | Integrated Ramp Metering and Variable Speed Limit Control of Motorway Traffic Flow[END_REF].

Two cases are considered for the moving dynamics in decongestion behavior: the batch moves with or without contact with a downstream batch.

Definition 3.11: ( Move in decongestion behavior with a downstream contact) Congested controllable batch, Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) of batch place p i without contact and which is in decongestion behavior, is split into two batches as follows:

• Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) and • Cβ r (τ ) = (0, d r (τ ), x r (τ ), v r (τ )) with v r (τ ) = v i (τ ), d r (τ ) = d cri i (v i ) and x r (τ ) = x r (τ ).
From time τ on, the dynamics of each batch Cβ r (τ ) and Cβ r (τ ) are governed by equation ( 9) and equation [START_REF] Gaddouri | Réseaux de Petri Lots Triangulaires pour la modélisation mésoscopique et létude de la congestion dans le trafic routier[END_REF].

Definition 3.12: ( Move in decongestion behavior without contact) Congested controllable batch, Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) of batch place p i in contact with a downstream batch Cβ h (τ ) = (l h (τ ), d h (τ ), x h (τ ), v h (τ )), and which is in decongestion behavior, is split into two batches as follows:

• Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) and • Cβ r (τ ) = (0, d r (τ ), x r (τ ), v r (τ )) with v r (τ ) = v h (τ ), d r (τ ) = d h (τ ) and x r (τ ) = x r (τ ).
From time τ on, the dynamics of each batch Cβ r (τ ) and Cβ r (τ ) are governed by equation ( 9) and equation [START_REF] Gaddouri | Réseaux de Petri Lots Triangulaires pour la modélisation mésoscopique et létude de la congestion dans le trafic routier[END_REF].

IV. EXAMPLE

For illustrating the proposed dynamics of controllable batches inside TB-places, we model a road section based on an example presented in [START_REF] Cho | Analysis of traffic flow with Variable Speed Limit on highways[END_REF] where we can observe congestion and decongestion phenomena. We consider a road section S with a length L = 12 km with two lanes in one direction and without on/off ramp. The maximum flow Q max of the road is equal to 4080 veh/h, the jam density k is 320 veh/km, its free speed v f ree is limit to 120 km/h and its inflow φ in is equal to 3060 veh/h. The CTBPN that represents such a road section is shown in Figure 6, where the input flow φ in , output flow φ out are represented by the maximum firing flows associated with batch transitions t 1 and t 2 , respectively Φ 1 = 3060, Φ 2 = 4080. TB-place p 2 represents the road section and continuous place p 1 limits the capacity of the section (k × L). In order to illustrate the dynamics of controllable batches inside TB-places when a congestion/decongestion phenomena traffic road occurs, we consider in the behavior the following traffic events: -one lane is blocked by an accident at the end of the road section 15 minutes after the simulation starts to run, the maximum flow in this point is reduced to 2040; -2 minutes after the occurrence of the accident, VSL control is applied and the free speed v f ree of the road section is reduced to 80 km/h; -the accident lasts for 10 minutes; -after the accident is over, the maximum flow is recovered to 4080 and the free speed v f ree is returned to 120 km/h.

The evolution graph, given in Figure 7 represents the behavior of the CTBPN model in Figure 6 (see [START_REF] Demongodin | Modeling and Analysis of Transportation Networks Using Batches Petri Nets with Controllable Batch Speed: 30th[END_REF] for more details on this graph). As we can see in Figure 8 the variation of congestion length is stopped in 0.22 km when we apply VSL control.

V. CONCLUSION

We have presented in this paper a continuous-time and discrete events dynamics of controllable batches inside triangular batch place. This dynamics is based on some controlled events and respects the fundamental diagram, shockwave theory and the conservation law of traffic road systems. As we can see the definition of controlled events in the CTBPN imply in different cases of congestion/decongestion behaviors. The equations that govern each case, represent the new dynamics of the CTBPN. To validate our results, an example was presented in Section IV studying VSL control on a road section. Applicability of CTBPN to a real system has been shown in [START_REF] Gaddouri | Réseaux de Petri Lots Triangulaires pour la modélisation mésoscopique et létude de la congestion dans le trafic routier[END_REF] from experimental data of a highway. 
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  It is always possible to split a batch into two batches in contact with the same density and speed. Let batch Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) is split in two batches with the same density and the same speed as follows: Cβ r (τ ) = (l r (τ ), d r (τ ), x r (τ ), v r (τ )) and Cβ r (τ ) = (0, d r (τ ), x r (τ ), v r (τ )).
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 4 Fig. 4. Batches after a decreasing of the maximum speed of a TB-place
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 6 Fig. 6. CTBPN model of road section S
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 78 Fig. 7. Evolution graph of the CTBPN model