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Controlled Triangular Batches Petri Nets for hybrid mesoscopic
modeling of traffic road networks under VSL control

Radhia Gaddouri, Leonardo Brenner and Isabel Demongodin

Abstract— In the discrete event and hybrid systems theory,
Batches Petri Nets (BPN) have been defined as an extension of
Hybrid Petri nets for representing in a single node a linear
relation between flow and density. This formalism and its
extensions allow us to delay flows according to accumulation
phenomena. Applied to mesoscopic modeling of traffic road
networks, Triangular Batches Petri Nets (TBPN) have been
defined as a triangular flow-density relation, allowing the
representation of traffic congestion/decongestion phenomena.
When variable speed limit (VSL) control is applied on the traffic
road networks, i.e., a method that improves the traffic con-
ditions by the reduction of congestion, Controlled Triangular
Batches Petri Nets (CTBPN) can be used for analyzing such
phenomena. In this paper, we present the hybrid formalism
defined in CTBPN, i.e., the hybrid behavior of a batch in free,
congestion or decongestion behavior. As an illustrative example,
the congestion/decongestion phenomena on a road section and
the impact of a VSL control are shown.

I. INTRODUCTION

Nowadays the traffic demand is often greater than traffic
capacity of the roads and, when it occurs, a phenomenon of
traffic congestion appears. To reduce the traffic congestion
without expand or build new roads, the optimization of the
traffic flow becomes an important study issues in transporta-
tion systems. The most common optimization strategies are
Ramp Metering Regulation (RMR) and Variable Speed Limit
(VSL) [11] [12]. RMR strategy controls the upstream flow
reallocating the vehicles into other parts of network where
the demand is lower. VSL strategy consists in the variation
of the speed limits to change the maximum capacity of the
road in order to remove the congestion (reducing speed) or
to reduce the decongestion time (increasing speed). VSL is
computed based on different factors like traffic flow, density,
and speed and it must follow the traffic flow-density (also
called fundamental diagram) model. The relation traffic flow-
density is studied in a macroscopic level (hydrodynamic
theory) [2]. We propose in this paper to model the conges-
tion/decongestion phenomena caused by flow-density model
in a mesoscopic level (group of vehicles) using a hybrid
model based on discrete events and to detail the behavior of
a group of vehicles when a VSL is implied.

Among the formalisms that consists of discrete events and
hybrid models, continuous and hybrid Petri nets [4] are well
adapted to the modeling and analysis of performance and
control of flow systems. Batches Petri Nets (BPN) [6] extend
the hybrid Petri nets class by defining a new type of node,
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the batch node, and the concept of controllable batch, i.e., a
group of entities (vehicles) moving through a transfer zone at
its transfer speed. These Petri nets, by their hybrid dynamics
formalization, allow transfer elements to be represented at
a mesoscopic level with possibility of accumulation (or
congestion) of entities (vehicles). In the BPN formalism,
the dynamics of batches inside a batch place is governed
by a flow-density relation representing a switching between
free and accumulation behaviors. Gaddouri et al. [9] have
extended and enriched these formalisms by a more general
flow-density relation, i.e., a triangular form that represents
in a very detailed manner the fundamental diagram of the
traffic road domain [3], [1]. The batch place is extended
to a Triangular Batch place (TB-place) defined by four
continuous characteristics: a maximum speed, a maximum
density, a length and a maximum flow.

More specifically, this paper extends the hybrid dynamics
of batches inside a triangular batch place previously defined
in [8], by defining controlled events, such as the variation
of maximum speeds of TB-places or the modification of
maximum flows associated to continuous/batch transitions.
This new semantic can then be located within the context of
the VSL strategy for controlling congestion in freeways or
highways. The hybrid dynamics is also presented by three
continuous behaviors: free, congestion and decongestion.

This paper is organized as follows. In Section 2, concepts
associated with Controlled Triangular Batch Petri Nets are
introduced. We propose in Section 3, new continuous-time
and discrete event dynamics of controllable batches under
variation of maximum speed of TB-places and according
to assumptions imposed by the triangular relation of flow-
density. Section 4 presents an example illustrating the con-
gestion/decongestion phenomena of traffic flows with VSL
control. Some concluding remarks compose Section 5.

II. CONTROLLED TRIANGULAR BATCHES PETRI NETS
FORMALISM

We first recall in this section some concepts and definitions
of Triangular Batches Petri Nets (TBPN)) [9] used in this pa-
per. Next, Controlled Triangular Batches Petri Nets (CTBPN)
is presented as an extension of a TBPN where variations of
maximum speeds and maximum flows are controlled.

A. Triangular Batches Petri Nets

A Triangular Batches Petri Net (TBPN) is an extension of
a Generalized Batches Petri Net (see [5], [6] and [7] for more
details on this formalism), where some new characteristics
related to the batch place have been added.



Definition 2.1: A Triangular Batches Petri Net (TBPN)
is a 6-tuple N = (P, T, Pre, Post, γ, T ime) where:
• P = PD ∪ PC ∪ PTB is a finite set of places

partitioned into the three classes of discrete, continuous
and triangular batch places.

• T = TD ∪ TC ∪ TB is a finite set of transitions
partitioned into the three classes of discrete, continuous
and batch transitions.

• Pre, Post : (PD×T → N)∪((PC∪PB)×T → R≥0)
are, respectively, the pre-incidence and post-incidence
matrices, denoting the weight of the arcs from places
to transitions and from transitions to places.

• γ : PTB → R4
≥0 is the triangular batch place function.

It associates with each triangular batch place pi ∈ PTB
the quadruple γ(pi) = (Vi, d

max
i , Si,Φ

max
i ) that repre-

sents, respectively, the maximum speed, the maximum
density, the length and the maximum flow.

• Time : T → R≥0 associates a non negative number
with every transition:

– if tj ∈ TD, then Time(tj) = dj denotes the firing
delay associated with the discrete transition;

– if tj ∈ TC∪TTB , then Time(tj) = Φj denotes the
maximal firing flow associated with the continuous
or batch transition. �

The nodes of a TBPN [8] are represented in Fig. 1.
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Fig. 1. Nodes of Triangular Batches Petri Nets

Definition 2.2: Let a triangular batch place pi, with
γ(pi) = (Vi, d

max
i , Si,Φ

max
i ). A propagation speed of

congestion, denoted Wi, and a critical density dcrii , are
associated with pi, defined respectively by:

Wi =
Φmaxi · Vi

dmaxi · Vi − Φmaxi

(1)

dcrii =
Wi.d

max
i

Vi +Wi
(2)

The flow-density relation that governs the dynamics of TB-
place pi is defined as follows:

φ =

{
d.Vi if 0 ≤ d ≤ dcrii
Wi.(d

max
i − d) if dcrii < d ≤ dmaxi

(3)

where d denotes density and φ denotes flow. �
Figure 2 represents these definitions. Let us now in-

troduced some definitions needed for the rest of this
paper. Let a Triangular Batch place pi, with γ(pi) =
(Vi, d

max
i , Si,Φ

max
i ). An input flow φini (τ) and an out-

put flow φouti (τ) of place pi are respectively: φin
i (τ) =

Post(pi, ·) · ϕ(τ) and φout
i (τ) = Pre(pi, ·) · ϕ(τ) where

ϕ(τ) is the instantaneous firing vector of continuous and
batch transitions (see [7] for more details).

B. Controlled Triangular Batches Petri Nets

A Controlled Triangular Batches Petri Net (CTBPN) has
the same syntax than TBPN. However we associate with
CTBPN a different semantics, assuming that the maximal
firing flow of continuous and batch transitions and, the
maximal transfer speed of triangular batch places are control
inputs.

Definition 2.3: A Controlled Triangular Batches Petri Net
(CTBPN) is a TBPN where the maximal transfer speed of
TB-place pi ∈ PTB and, the maximal firing flow associated
with a continuous or batch transition tj ∈ TC ∪ TB , can
varied. We denote respectively these variables: vi(τ), with
0 ≤ vi(τ) ≤ Vi, and φj(τ), with 0 ≤ φj(τ) ≤ Φj . �

It should be noted that the variation of the speed of TB-
places imposes a variation of the critical density and of the
maximum flow of TB-place while the propagation speed of
congestion, Wi stays constant (see Fig. 2).

Definition 2.4: Let TB-place pi with γ(pi) = (Vi, d
max
i ,

Si,Φ
max
i ) with a maximal transfer speed vi(τ) such that 0 ≤

vi(τ) ≤ Vi. At time τ , the controlled critical density dcrii (τ)
and the controlled maximum flow φmaxi (τ) are respectively
defined by:

dcrii (τ) =
Wi.d

max
i

vi(τ) +Wi
, (4)

φmaxi (τ) = vi(τ).dcrii (τ) (5)

with 0 ≤ φmaxi (τ) ≤ Φmaxi and Φmax
i

Vi
≤ dcrii (τ) ≤ dmaxi .
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Fig. 2. Flow-density relation of a TB-place

C. Batches and markings of TB-places

A batch, i.e., a group of discrete entities characterized
by continuous variables, has been defined for Batches Petri
Nets. When, three continuous variables are associated with
it, it is called a batch. When, four continuous variables are
considered [6], it is called a controllable batch, which is
a batch with a speed characteristic lower or equal to its
maximum speed.

Definition 2.5: A controllable batch Cβr(τ) at
time τ , is defined by a quadruple, Cβr(τ) =
(lr(τ), dr(τ), xr(τ), vr(τ)) where lr(τ) ∈ R≥0 is its
length, dr(τ) ∈ R≥0 is its density, xr(τ) ∈ R≥0 is its head
position and vr(τ) ∈ R≥0 is its speed. The instantaneous
batch flow of Cβr(τ) is such that: ϕr(τ) = vr(τ) · dr(τ). �

Each batch place contains a series of controllable batches
ordered by their head positions.



Definition 2.6: The marking of a TB-place at time τ is
a series of controllable batches. If pi ∈ PTB then mi =
{Cβh, · · · , Cβr}.

Definition 2.7: A controllable batch Cβr(τ) =
(lr(τ), dr(τ), xr(τ), vr(τ)) of TB-place pi with
γ(pi) = (Vi, d

max
i , Si,Φ

max
i ), where its head position

equals to the length of pi, i.e., xr(τ) = Si, is called an
output controllable batch, denoted OCβr(τ). The output
density, douti (τ), of a TB-place is defined as follows. If
at time τ , TB-place pi has an output controllable batch
OCβr(τ), then douti (τ) = dr(τ), else douti (τ) = 0. �

All controllable batches composing the marking of a TB-
place must respect the triangular flow-density relation (see
eq.3). This condition allows us to define states of controllable
batches.

Definition 2.8: (States of batches) Let Cβr(τ) =
(lr(τ), dr(τ), xr(τ), vr(τ)) be a controllable batch of TB-
place pi, with vi(τ) variable speed and Vi maximum speed
of pi (vi(τ) ≤ Vi).
• Cβr is in a free state if its density is lower or equal to

the critical density of pi: dr(τ) ≤ dcrii (vi);
• Cβr is in a congested state if its density is greater to

the critical density of pi: dr(τ) > dcrii (vi). �
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Fig. 3. Free and congested states of controllable batches

Let us now define, at time τ , two static functions which
can be applied on batches of a TB-place.
• Merge. If two batches with the same density and

the same speed are in contact, they can be merged.
Let batches Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ))
and Cβh(τ) = (lh(τ), dh(τ), xh(τ), vh(τ)), such that
xr(τ) = xh(τ) + lr(τ), dr(τ) = dh(τ) and vr(τ) =
vh(τ). In this case, batch Cβr(τ) becomes Cβr(τ) =
(lr(τ) + lh(τ), dr(τ), xr(τ), vr(τ)) and batch Cβh(τ)
is destroyed.

• Split. It is always possible to split a batch into two
batches in contact with the same density and speed. Let
batch Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)) is split in
two batches with the same density and the same speed
as follows: Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)) and
Cβr′(τ) = (0, dr(τ), xr(τ), vr(τ)).

D. Variation of maximum speeds of TB-places

In a CTBPN, characteristics and states of batches change
when the maximal speed of TB-place pi varies from vi(τ) to
v′i(τ). It has to be noted that, at time τ , the maximal speed

jumps from value vi to value v′i. As previously presented
and according to eq. 4, when the maximal speed of place
pi increases (resp. decreases), the critical density dcrii (vi)
decreases (resp. increases). Thus at time τ , two cases must be
considered: the maximal speed decreases, i.e., v′i(τ) < vi(τ),
or the maximal speed increases, i.e., v′i(τ) > vi(τ).

1) Decreasing speed v′i(τ) < vi(τ)
Three cases are possible when the maximal speed de-

creases (see Fig. 4):
• case 1: Cβ1 = (l1, d1, x1, v1) is a free controllable

batch. When the speed of TB-place decreases, batch
Cβ1 reduces its speed but keeps its density. It stays a
free batch, Cβ1 = (l1, d1, x1, v

′
i).

• case 2: Cβ2 = (l2, d2, x2, v2) is a congested control-
lable batch with a higher speed than v′i (v2 > v′i). When
the speed of TB-place decreases, batch Cβ2 reduces its
speed to v′i but keeps its density. It becomes a free batch,
Cβ2 = (l2, d2, x2, v

′
i).

• case 3: Cβ3 = (l3, d3, x3, v3) is a congested control-
lable batch with a lower speed than v′i (v3 < v′i).
When the speed of TB-place decreases, Cβ3 keeps all
its characteristics and stays a congested batch.
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Fig. 4. Batches after a decreasing of the maximum speed of a TB-place

2) Increasing speed v′i(τ) > vi(τ):
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Fig. 5. Batches after an increasing of the maximum speed of a TB-place

Three cases are possible when the maximal speed in-
creases (see Fig. 5) :
• case 1: Cβ1 = (l1, d1, x1, v1) is a free controllable

batch and its density is lower than dcrii (v′i). When the
TB-place speed increases to v′i, batch Cβ1 increases its
speed to v′i and keeps its density. It stays a free batch,
Cβ1 = (l1, d1, x1, v

′
i).

• case 2: Cβ2 = (l2, d2, x2, v2) is a free controllable
batch and its density is greater than dcrii (v′i). When



the TB-place speed increases to v′i, batch Cβ2 keeps
its density while its speed increases to speed v′2 =
(Wi · (dmaxi − d2))/d2, that respects vi < v′2 < v′i.
It becomes a congested batch, Cβ2 = (l2, d2, x2, v

′
2).

• case 3: Cβ3 = (l3, d3, x3, v3) is a congested control-
lable batch. When the speed of TB-place changes, this
batch does not changed and stays a congested batch.

E. Events of a TB-place

The behavior of a TB-place is based on a discrete event
approach with linear and constant evolutions between events.
The invariant behavior state (IB-state) of a batches Petri
net characterizes the global state between two timed events.
Restricted to a TB-place, it corresponds to a period of time
such that the input flow, the output flow, the output density
and the transfer speed are constants. In a CTBPN, two
controlled events have been added:
• a controlled speed event which is a triplet (pi, vi, τ ),

where pi is a TB-place (pi ∈ PTB), vi ∈ [0, Vi] is
the variable maximum speed of pi and τ is the date of
occurrence of this event.

• a controlled flow event which is a triplet (tj , φj , τ ),
where tj is a continuous or batch transition (tj ∈
TC ∪ TB), φj ∈ [0,Φj ] is the variable maximum firing
flow of tj and τ is the date of occurrence of this event.

More generally, in a CTBPN, the events that have to be
considered during the evolution are:
• Internal events

i.1 - a batch becomes an output batch Cβr = OCβr;
i.2 - two batches meet;
i.3 - a batch is destroyed Cβr = ∅.

• External events
e.1 a discrete transition is fired;
e.2 a continuous place becomes empty;
e.3 a discrete transition becomes enabled;
e.4 a batch becomes an output batch;
e.5 an output batch is destroyed.

• Controlled events
c.1 - the maximum flow of a batch or a continuous

transition is modified: (tj , φ′j , τ );
c.2 - the maximum speed of a TB-place is modified:

(pi, v′i, τ ). �

Let us now focus on the continuous dynamics of batch
places.

III. CONTINUOUS-TIME DYNAMICS OF CONTROLLABLE
BATCHES INSIDE A TB-PLACE

As the dynamics of batches can be controlled through
the modification of maximum flows associated with contin-
uous and batch transitions and through the variation of the
maximum transfer speeds of TB-places, a new dynamics of
batches circulate inside TB-places has to be defined. This
dynamics is based on the theory of shockwave and takes
into account the triangular flow-density relation.

Moreover, with every TB-place pi, are associated con-
tinuous functions that represent transformation of batches:

inputing, moving and exiting. These continuous functions
change, by linear variations, variables of length and position,
while density and speed of batches stay constant in time (i.e.,
these last variables only change when an event occurs, see
previous section). Consequently, for any batch Cβr(τ) =
(lr(τ), dr(τ), xr(τ), vr(τ)), it holds: ḋr = v̇r = 0.

Let us present now the three dynamics of controllable
batches.

A) Free dynamics
First we recall the definition of the free behavior, previ-

ously introduced in [6].
Definition 3.1: (Free behavior) Controllable batch

Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)) of batch place pi is
in a free behavior, if it moves freely at its transfer speed
vr(τ). �

Three different dynamics can occur.
Definition 3.2: (Input in free behavior) A created control-

lable batch, Cβr(τ) = (0, dr(τ), 0, vr(τ)), without contact
with another batch or in contact with a downstream batch
Cβh(τ) that has a greater speed (i.e., vh(τ) ≥ vr(τ)), freely
enters in place pi according to:

ẋr = l̇r = vr(τ) (6)
Definition 3.3: (Move in free behavior) A controllable

batch, Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)), which is a
free batch, freely moves inside place pi according to:

ẋr = vr(τ); l̇r = 0 (7)
Definition 3.4: (Exit in free behavior) An output control-

lable batch Cβr(τ) = (lr(τ), dr(τ), Si, vr(τ)), which has
its flow equals to the output flow of pi, or which is free with
a lower batch flow than the output flow, freely exits from
place pi according to:

ẋr = 0; l̇r = −vr(τ) (8)
B) Congestion dynamics
To adapt some definitions on GBPN to CTBPN, the

accumulation behavior previously introduced in [6] and [7]
is now called congestion behavior.

Definition 3.5: (Congestion behavior) Controllable batch
Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)) of batch place pi is
in a congestion behavior, if it cannot move at its speed but
must reduces it, i.e., it starts an accumulation. Two cases can
cause this behavior:
• Cβr(τ) is an output batch of pi and the output flow of
pi is lower than the output batch flow (φouti < ϕr(τ)).

• Cβr(τ) is a batch in contact with a downstream batch
Cβh(τ) that has a lower speed (vh(τ) < vr(τ)). �

Let us now focus on the dynamics of controllable batches
in congestion behavior, in compliance with the previous
definition.

Definition 3.6: (Input in congestion behavior) A created
controllable batch Cβr(τ) = (0, dr(τ), 0, vr(τ)) in con-
tact with a downstream batch Cβh(τ) = (lh(τ), dh(τ),
xh(τ), vh(τ)), and which is in a congestion behavior
(vh(τ) < vr(τ)) at time τ , enters in place pi according
to equation (6), after changing its speed and its density as
follows: vr(τ) = vh(τ) and dr(τ) = dh(τ).



Definition 3.7: (Move in congestion behavior) A control-
lable batch Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)), which
is not a created or an output batch (xr(τ) < Si and
lr(τ) 6= 0), in contact with a downstream batch Cβh(τ) =
(lh(τ), dh(τ), xh(τ), vh(τ)), and which is in a congestion
behavior (vh(τ) < vr(τ)) at time τ , is splitted as follows:
• Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)) and
• Cβr′(τ) = (0, dr′(τ), xr′(τ), vr′(τ)) with vr′(τ) =
vh(τ), dr′(τ) = dh(τ) and xr′(τ) = xr(τ).

From time τ on, the evolution of both batches Cβr and
Cβr′ is governed by:

˙xr′ = vr′(τ)

˙lr′ =
dr(τ)

dr(τ)− dr′(τ)
.(vr′(τ1)− vr(τ))

(9)


ẋr = − dr(τ)

dr(τ)− dr′(τ)
.(vr′(τ1)− vr(τ))

l̇r = − dr′(τ)

dr(τ)− dr′(τ)
.(vr′(τ1)− vr(τ))

(10)

�
To leave the batch place, output batch Cβr(τ) must reduce

its speed and should increase its density according to the
output flow of pi. To represent this situation, it is necessary
to apply the split function.

Definition 3.8: (Exit in congestion behavior) An output
controllable batch Cβr(τ) = (lr(τ), dr(τ), Si, vr(τ)) of
batch place pi, which is in a congestion behavior at time
τ (i.e., φouti < ϕr(τ)), is split into two batches as follow:
• Cβr(τ) = (lr(τ), dr(τ), Si, vr(τ)) and
• Cβr′(τ) = (0, dr′(τ), xr′(τ), vr′(τ)) with dr′(τ) =

dmaxi − φout
i

Wi
, vr′(τ) =

φout
i

dr′ (τ) and xr′(τ) = Si.
From time τ on, both batches evolves according to:

˙xr′ = 0

˙lr′ =
vr(τ).dr(τ)− φouti

dr′(τ)− dr(τ)

(11)


ẋr = −vr(τ).dr(τ)− φouti

dr′(τ)− dr(τ)

l̇r =
φouti − vr(τ).dr′(τ)

dr′(τ)− dr(τ)

(12)

�
C) Decongestion dynamics
The decongestion dynamics is only applied to congested

batch. Of course, a created batch cannot be in a decongestion
behavior.

Definition 3.9: (Decongestion behavior) Congested con-
trollable batch Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)) of
batch place pi is in a decongestion behavior, if it can move
with a higher speed. Three situations can cause this behavior:
• Cβr(τ) is a congested output batch and the output flow

of pi is greater than the output batch flow (φouti >
ϕr(τ)).

• Cβr(τ) is a congested batch in a downstream contact
with Cβh(τ) that has a greater speed (vh(τ) > vr(τ)).

• Cβr(τ) is a congested batch without contact with a
downstream batch that has a lower speed than vi(τ).�

Let us now focus on the dynamics of controllable batches
in decongestion behavior, in compliance with the previous
definition.

Definition 3.10: ( Exit in decongestion behavior)
A congested output controllable batch Cβr(τ) =
(lr(τ), dr(τ), Si, vr(τ)) of batch place pi, which is in
a decongestion behavior at time τ (i.e., φouti > ϕr(τ)), is
split into two batches as follow:
• Cβr(τ) = (lr(τ), dr(τ), Si, vr(τ)) and
• Cβr′(τ) = (0, dr′(τ), xr′(τ), vr′(τ)) with dr′(τ) =

φout
i

vi(τ) , vr′(τ) = vi(τ)and xr′(τ) = Si

From time τ on, the dynamics of both batches, Cβr(τ)
and Cβr′(τ), are governed by eq. (11) and eq. (12). �

Two cases are considered for the moving dynamics in
decongestion behavior: the batch moves with or without
contact with a downstream batch.

Definition 3.11: ( Move in decongestion behavior with
a downstream contact) Congested controllable batch,
Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)) of batch place pi
without contact and which is in decongestion behavior, is
split into two batches as follows:
• Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)) and
• Cβr′(τ) = (0, dr′(τ), xr′(τ), vr′(τ)) with vr′(τ) =
vi(τ), dr′(τ) = dcrii (vi) and xr′(τ) = xr(τ).

From time τ on, the dynamics of each batch Cβr(τ) and
Cβr′(τ) are governed by equation (9) and equation (10).

Definition 3.12: ( Move in decongestion behavior with-
out contact) Congested controllable batch, Cβr(τ) =
(lr(τ), dr(τ), xr(τ), vr(τ)) of batch place pi in contact with
a downstream batch Cβh(τ) = (lh(τ), dh(τ), xh(τ), vh(τ)),
and which is in decongestion behavior, is split into two
batches as follows:
• Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)) and
• Cβr′(τ) = (0, dr′(τ), xr′(τ), vr′(τ)) with vr′(τ) =
vh(τ), dr′(τ) = dh(τ) and xr′(τ) = xr(τ).

From time τ on, the dynamics of each batch Cβr(τ) and
Cβr′(τ) are governed by equation (9) and equation (10).

IV. EXAMPLE

For illustrating the proposed dynamics of controllable
batches inside TB-places, we model a road section based
on an example presented in [2] where we can observe
congestion and decongestion phenomena. We consider a road
section S with a length L = 12 km with two lanes in one
direction and without on/off ramp. The maximum flow Qmax

of the road is equal to 4080 veh/h, the jam density k is
320 veh/km, its free speed vfree is limit to 120 km/h and
its inflow φin is equal to 3060 veh/h. The CTBPN that
represents such a road section is shown in Figure 6, where
the input flow φin, output flow φout are represented by the
maximum firing flows associated with batch transitions t1
and t2, respectively Φ1 = 3060, Φ2 = 4080. TB-place p2

represents the road section and continuous place p1 limits
the capacity of the section (k × L).
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6000

Φ1=3060 

t2 

V2= 120 
dmax

2= 320 
S2 = 12 
Ф
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2=4080 p2 

 

p1 

3840 

t1 

4080 

Fig. 6. CTBPN model of road section S

A. Simulation of a road section

In order to illustrate the dynamics of controllable batches
inside TB-places when a congestion/decongestion phenom-
ena traffic road occurs, we consider in the behavior the
following traffic events:
- one lane is blocked by an accident at the end of the road
section 15 minutes after the simulation starts to run, the
maximum flow in this point is reduced to 2040;
- 2 minutes after the occurrence of the accident, VSL control
is applied and the free speed vfree of the road section is
reduced to 80 km/h;
- the accident lasts for 10 minutes;
- after the accident is over, the maximum flow is recovered
to 4080 and the free speed vfree is returned to 120 km/h.

The evolution graph, given in Figure 7 represents the
behavior of the CTBPN model in Figure 6 (see [6] for more
details on this graph). As we can see in Figure 8 the variation
of congestion length is stopped in 0.22 km when we apply
VSL control.

V. CONCLUSION

We have presented in this paper a continuous-time and
discrete events dynamics of controllable batches inside trian-
gular batch place. This dynamics is based on some controlled
events and respects the fundamental diagram, shockwave
theory and the conservation law of traffic road systems.
As we can see the definition of controlled events in the
CTBPN imply in different cases of congestion/decongestion
behaviors. The equations that govern each case, represent
the new dynamics of the CTBPN. To validate our results, an
example was presented in Section IV studying VSL control
on a road section. Applicability of CTBPN to a real system
has been shown in [10] from experimental data of a highway.
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