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Abstract—In this paper, a data-driven fault diagnostic strategy
is designed for Proton Exchange Membrane Fuel Cell (PEMFC)
systems. In order to take the system dynamics and spatial
inhomogeneity into account, the individual cell voltages measured
in a sliding diagnosis window are considered integrally as a
diagnostic observation. In the proposed diagnostic approach, a
time-series analysis tool, named shapelet transform, is used to
extract the discriminative features from the diagnostic observa-
tions. The classification tool, named Sphere Shaped Multi-class
Support Vector Machine (SSM-SVM), is then carried out in
the feature space in order to realize both fault detection and
fault isolation. The approach is validated on the experimental
testbench. The performance of the approach is evaluated and the
necessity of considering both dynamic behaviors and the spatial
inhomogeneity is highlighted.

Index Terms—PEMFC systems, data-driven diagnosis, dynam-
ics, cell voltages, shapelet transform, SVM classification.

I. INTRODUCTION

Reliability and durability have been considered as two main
obstacles for the widespread commercialization of fuel cell
technology [1], [2]. Fault diagnosis, especially online fault
diagnosis, has been considered as an efficient solution to
improve the performance of fuel cells in those two aspects
[3], [4].

As multiple physical and time-scale phenomena are involved
in a running fuel cell stack, fuel cell systems have been
considered as nonlinear time-varying systems [5]. Designing
an efficient diagnosis for fuel cell systems is not a trivial
task. During the last two decades, a lot of research has been
carried out to propose an effective fault diagnosis strategy.
Most research works concern the Proton Exchange Membrane
Fuel Cell (PEMFC) systems, since this type of fuel cell has
received the most attention in both stationary and mobile
applications.

One of the most substantial works is dedicated to build-
ing model-based fault diagnosis [6], [7]. These diagnosis
approaches rely on the mathematical model of the normal
system. When such a model is available, fault diagnosis can
be achieved by comparing actual observations with the model
prediction. However, the physical model is usually built based
on a specific fuel cell system and stack. Considering the
differences between the different fuel cell stacks, auxiliary
components, and control laws, it is not evident to use one
model validated in a system to another one. To apply an
existing model for a specific fuel cell systems, usually a
lot of work is needed for model or parameter identification
and adjustment. To avoid building a physical and complex
mathematical model, some attempts have been taken to design

the fault diagnosis by building a “black-box” model. One
such well known model is realized by using Neuron Networks
(NNS) [8]. The approach is efficient on fault detection for a
specific fault. However, it fails on multiple faults isolation in
the current state. In addition, some phenomena and processes,
such as the spatial inhomogeneity, are hard to describe by
using a quantitative model.

Other research works were mainly focused on data-driven
fault diagnosis. The complex modeling process can be avoided
in data-driven diagnosis, although abundant data are usually
needed. In the framework of the data-driven diagnosis, one of
the key step is to find the features by which the faults can be
detected and isolated.

In [9], multivariate analysis was carried out to extract the
features for the PEMFC system which was applied in the
bus. In the approach, the required data need to be acquired
from more than 20 different sensors. The approach is therefore
limited to the demonstration items or the cases where a fair
amount of sensors are installed into the systems.

Some experimental instruments and methodologies are em-
ployed to extract the diagnosis oriented features. In [2], [10],
the Electrochemical Impedance Spectroscope (EIS), known
as a powerful electrochemical characterization tool, is used
for fault diagnosis. Some fault discriminative features can be
extracted thanks to the abundant information contained in the
EIS curves. In [11], the EIS test function is integrated into the
DC/DC converter and thus the EIS can be acquired without
additional instrument. A classical EIS test usually takes at least
10 min, which makes the EIS based approaches unsuitable
for online diagnosis of the fast faults. Recently, a broadband
method is proposed to reduce the EIS execution time to a
couple of seconds [12]. However, the EIS test requires the
fuel cell system to be operated with a static output current.
Hence, the EIS tool is still hard to be applied in the fuel cell
systems running in dynamic processes.

To avoid monitoring a whole EIS curve, some diagnostic
approaches are proposed through time-frequency analysis of
the output stack voltage signal. For instance, the wavelet
transform, which had been widely used for bearing tool fault
diagnosis, was extended and adapted to fuel cell diagnosis
[13]. Other time-frequency analysis tools, such as the singu-
larity analysis and empirical mode decomposition, were also
studied for diagnosis purposes [14], [15]. These techniques
were used to analyze the stack output voltage signal to find the
frequency components which are discriminative of the faults
concerned. However, a significant change in stack voltage may
be driven by input variables or by faults. These frequency
analysis based methods are risky, as they may lead to loss in
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performance in dynamic situations.
Actually, as research is going deeper and deeper, the

fuel cell fault diagnosis requirements are becoming more
and more critical. An efficient diagnostic approach needs to
satisfy the following criteria to the greatest extent: Multiple
faults diagnosis capability; High diagnostic accuracy; Unseen
fault recognition; Online capability; Good generalization; Self-
adaptation. However, most research approaches still can not
meet all these criteria.

Moreover, all the above mentioned studies assume, either
deliberately or not, that the fuel cells in a stack are iden-
tical. The differences among the different fuel cells are not
taken into consideration. However, because of the spatial
inhomogeneity on fluid, thermal, and humidity distributions,
it has been observed that the individual fuel cell voltages are
not strictly identical. Moreover, the distributions are highly
influenced by the faults [16]. Hence, it is more reasonable to
consider the spatial inhomogeneity in the design of the fault
diagnosis approach.

In a recent work [17], fault diagnosis algorithms were de-
veloped with considering the individual cell voltages sampled
at one time point as an observation for fault diagnosis, such
that the spatial inhomogeneity is taken into account. The am-
plitudes and spatial distributions of cell voltages play the role
to provide the fault discriminative information. The pattern
classification tools are then employed for fault detection and
isolation. The proposed approach was verified to satisfy most
of the aforementioned criteria. However, in this consideration,
the observations were assumed to be temporally independent.
Actually, the neighbor samples are correlated temporally when
the fuel cell system is operated in dynamic conditions. In the
case where the data are non-stationary, it is more reasonable
to investigate the features from the time sequences but a single
sample.

In this study, a diagnosis strategy is developed taking the
system dynamics and spatial inhomogeneity of the fuel cell
stacks. To realize this, the individual cell voltages sampled in a
sliding window are considered as an observation for diagnosis.
The techniques named shapelet transform and Sphere Shaped
Multi-class Support Vector Machine (SSM-SVM) are succes-
sively used to extract features from the multiple variate time
series and classify the features into the classes representing
the health states.

The paper is organized as follows: Section II is dedicated
to the presentation of the diagnostic approach. The imple-
mentation process is dealt with in the section. In Section III,
the experiments and the data used to validate the proposed
approach are introduced. Following that, the diagnostic results
are provided in Section IV. Finally, the paper is concluded in
Section V.

II. DIAGNOSTIC APPROACH

The diagnosis problem is regarded as multi-variate time
series classification problem. Considering the spatial inhomo-
geneity and the time correlations between samples, the individ-
ual fuel cell voltages sampled in a time interval are considered

as the variables for diagnosis. A diagnostic observation or a
diagnostic window is denoted as

T = [T (1), . . . , T (lw)] = [v1, . . . ,vlw ] (1)

where vk is the vector sampled at time index k and
composed by cell voltages of number ncell, as vk =
[vk(1), vk(2), . . . , vk(ncell)]

T , lw is the window width. It can
be seen that the observation T is a multi-variate time series.

The training dataset consists of N such observations which
are distributed in a variety of classes denoted as Ω0, Ω1, Ω2,
. . . , ΩC . The class label 0 corresponds to the fault free or
normal state, while 1, 2, . . . , C correspond to the faults of
various types. The numbers of diagnostic observations in these
classes are respectively N0, N1, . . . , NC , satisfying N0+· · ·+
NC = N . For an observation Ti (i = 1, . . . , N), the class label
gi ∈ {0, 1, . . . , C} is assumed to be known in prior.

A. Features extraction based on shapelet transform

In this study, the diagnosis in dynamic processes is con-
cerned. It is therefore necessary to analyze a time series other
than a single sample. One of the most promising recent time
series analysis methods consists in finding the shapelets within
a dataset. Unlike the time-frequency transformation tools, such
as wavelet transform, the discriminative local information can
be extracted directly by using this tool without any prior
configurations or parameterization. In our case, a shapelet is
a subsequence of a diagnosis observation, and is identified as
being representative of class membership [18], [19]. Fig. 1
shows an example of a shapelet generated from a diagnosis
observation which is a 5-variate time-series. In our approach,
the most discriminative shapelets are firstly generated from the
training data. Based on the shapelets, the shapelet transform
is performed to extract features from an arbitrary diagnostic
observation.

Value

Time

Shapelet Diagnosis 

observation

Fig. 1. Schema of shapelet

1) Generating shapelets: Finding a shapelet requires gener-
ating a set of candidates. Assuming the pursued shapelet width
is ls, the shapelet candidates are defined as the subsequences
of the observations in the training dataset. For instance,
lw− ls + 1 shapelet candidates of length ls for an observation
Ti (i = 1, . . . , N) can be formulated as

SCi,j = {Ti(j), Ti(j+1), . . . , Ti(j+ls−1)}, j = 1, . . . , lw−ls+1
(2)

where SCi,j denotes the jth shapelet candidate for Ti. As
SCi,j is a subsequence of Ti, its class label is also gi. Thus,
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the total number of the shapelet candidates generated from
the training dataset is (lw− ls + 1)N . Notice that, in [19], the
shapelet length is varied between 3 and lw. In this study, the
shapelet length is defined in prior as a fixed value to facilitate
calculation without losing performance.

The distance between a shapelet candidate SCi,j (i =
1, . . . , N and j = 1, . . . , lw − ls + 1) and an observation Tk
is the minimum distance between SCi,j and all the shapelet
candidates generated from Tk (k = 1, . . . , N), as

dis(SCi,j , Tk) = min
l∈{1,...,lw−ls+1}

||SCi,j − SCk,l|| (3)

where ||·|| denotes the Euclidean distance. For each candidate,
the distance from it to every observation in the training
dataset is calculated. The mean distance from SCi,j to the
observations in the same class is calculated as

dis(SCi,j) =

∑
gk=gi

dis(SCi,j , Tk)

Ni
(4)

The quality of a shapelet candidate is defined as a measure
of the discriminatory power of a shapelet candidate

Qual(SCi,j) =

∑
gk 6=gi

dis(SCi,j , Tk)2∑
gk=gi

(
dis(SCi,j , Tk)− dis(SCi,j)

)2
(5)

It can easily be seen that the quality of a shapelet candidate
becomes bigger as it gets closer to the observations in the
identical class and far from those in different classes. In other
words, the shapelet candidates with higher quality values own
more discriminatory power and thus can be selected as the
shapelets.

Once all candidates in a class have been assessed, they are
sorted in descending order of the quality values. Two shapelet
candidates from the same observation may have overlapped
indices. In such case, the one with lower quality is removed.
From the remaining candidates, some of those with the highest
quality values are finally selected as the shapelets.

The whole procedure of shapelet generation is abstracted
as Algorithm 1. By applying the algorithm, nc shapelets are
generated for the class labeled c, c ∈ {0, 1 . . . , C}. Thus, the
total shapelet number is Nshapelet =

∑C
c=0 nc.

Algorithm 1 Shapelet generation
1: Load {Ti|i = 1, . . . , N};
2: Initialize ls, nc (c = 0, 1, . . . , C);
3: for c = 0 to C do
4: for i = 1 to N do
5: for j = 1 to lw − ls + 1 do
6: Generate SCi,j ; /* use (2) */
7: Compute Qual(SCi,j); /* use (3)-(5) */
8: end for
9: end for

10: Select arg maxQual(SCi,j) as shapelets, denoted as
{Sc,1, . . . , Sc,nc

};
11: end for

2) Shapelet transform: For an arbitrary T , the shapelet
features are obtained by calculating the distance from it to all
the shapelets generated from the training dataset. The shapelet
transform is simply summarized as Algorithm 2. After shapelet
transform, the features of the dimensional number Nshapelet

can be extracted.

Algorithm 2 Shapelet transform
1: Get T ;
2: for c = 0 to C do
3: for i = 1 to nc do
4: Compute dis(Sc,i, T ) as shapelet feature;
5: end for
6: end for

Notice that several modifications have been made on
shapelet transform method to satisfy the requirement of online
diagnosis. First, the quality of a shapelet is defined specifically
to qualify the discriminatory power. Second, the size of
shapelet candidate is fixed to decrease the performing time.

B. SSM-SVM

Once shapelet features are acquired, the classification is car-
ried out in the feature space. Support Vector Machine (SVM)
has been considered as a state-of-art classifier thanks to its
superior characteristics [20]. In a recent study, one of the SVM
variants named SSM-SVM was applied for fault diagnosis
[17]. As shown in Fig. 2, the approach achieves classification
goal by projecting the data into high-dimensional space by
a nonlinear function and seeking class-specific spheres in
the projected space. The samples from one specific class are
enclosed by the corresponding sphere, while those from other
classes are excluded outside. Compared with the traditional
SVM classification, SSM-SVM benefits the potential of recog-
nizing the unseen classes (faults), i.e. a new fault type that does
not exist in the training dataset [17]. Similar to the traditional
SVM method, training SSM-SVM can also be translated into
a quadratic problem by introducing a kernel function and
playing “kernel trick” [21].

Class1
Class2

Class3

Class1
Class2

Class3

Fig. 2. Schematic of SSM-SVM

In our previous study [17], the diagnostic rule was proposed
based on a trained SSM-SVM, which enables not only clas-
sifying an example to a known class, but also recognizing an
unseen fault class. The principle of the diagnostic rule can be
described as follows: For a test example, the distance to each
sphere center is calculated in the high-dimensional space. If all
the distances exceed a threshold, it is considered that the test
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example belongs to an unseen new class. If all the distances
are within the threshold, the example belongs to the class with
the shortest distance. Mathematically, the class label g of an
arbitrary realtime sample T can be expressed as

g =

{
arg max

i
Gi (di(s)) if maxGi (di(s)) ≥ δi

new if maxGi (di(s)) < δi
(6)

where s is the vector composed by shapelet features extracted
from T , di is the distance to the ith sphere center, Gi a smooth
decreasing function, δi is the predefined threshold. di, Gi and
δi are all determined in the training phase. In the same study,
an online learning method was also proposed to achieve the
training and online adaptation goals in the whole life span
of the concerned stack. The mathematical details about the
formulation of SSM-SVM and the proposed diagnostic rule
can be found in [17] and the references therein.

C. Implementation of the diagnostic strategy
The diagram representing the implementation of the pro-

posed diagnostic strategy is given in Fig. 3. As conventional
data-driven fault diagnosis, the diagnostic strategy proceeds
successively from an offline learning stage to an online per-
forming stage.

In the offline stage, the historical data sampled in normal
state and in concerned faulty states are collected as the training
dataset. Then, the shapelets are generated from the training
data. With the shapelets and through the shapelet transform,
the shaplet features are extracted from the training data.
Based on the shapelet features, SSM-SVM classifier is further
trained. The generated shapelets and the trained SSM-SVM
classifier are then exported for online stage.

In the online stage, the diagnostic observation is acquired
by sliding a diagnostic window of width lw on the real-time
data. For instance, at time t ≥ lw, the diagnostic observation
Tt is formulated as

Tt = [vt−lw+1,vt−lw+2, . . . ,vt] (7)

where vt denotes the vector composed by the cell voltages
sampled at time t. Although the sliding window size is lw, the
diagnostic window is updated at the sampling frequency. This
means that the diagnostic period is 1 s which is sufficiently
short to provide an in time diagnostic result for the studied
faults.

The shapelet transform is actually achieved by calculating
the distance between the shapelet and the diagnostic observa-
tion in the sliding window. According to (3), the distance from
Tt to Sc,i is calculated as

dis(Sc,i, Tt) = min
j∈{t−lw+1,...,t−ls+1}

||Sc,i−[vj , . . . ,vj+ls−1]||
(8)

It can be seen that lw − ls + 1 Euclidean distances have to
be calculated. In this case, the computation complexity of
shapelet transform is O ((lw − ls + 1)lsncellNshaplet). When
the diagnostic window is slided a step ahead to Tt+1, the
distance from the shapelet Sc,i to Tt+1 is calculated as

dis(Sc,i, Tt+1) = min
j∈{t−lw+2,...,t−ls+2}

||Sc,i−[vj , . . . ,vj+ls−1]||
(9)

Comparing (9) with (8), the Euclidean distances with indices
j ∈ {t− lw +2, . . . , t− ls +1} have already been computed in
the previous diagnostic cycle (8). Only one more distance with
j = t − ls + 2 needs to be calculated. In this case, the com-
putation complexity turns to O (lsncellNshaplet). Hence, the
sliding window procedure can largely reduce the computation
complexity.

III. EXPERIMENTS AND DATABASE PRESENTATION

A. Stack and experiment setup

The fuel cell stack studied is a 64-cell PEMFC stack fabri-
cated by the French research organization CEA and dedicated
to automotive applications. The stack is operated in dead-
end anode, closed cathode mode. The hydrogen pressure is
regulated by an inlet side valve. A purge valve functions to
expel the vapor and impurities. In the cathode side, the air
inlet side compressor and the outlet side valve are regulated
to control the air flow rate and pressure. The nominal operating
parameters of this stack are summarized in Table I.

TABLE I
NOMINAL CONDITIONS OF THE STACKS

Parameter Value

Stoichiometry H2 1.5
Stoichiometry Air 2
Pressure at H2 inlet 150 kPa
Pressure at Air inlet 150 kPa
Temperature (exit of cooling circuit) 65-70 ◦C
Anode relative humidity 50%
Cathode relative humidity 50%
Current 90 A
Voltage per cell 0.7 V
Electrical power 4032 W
Active area 180 cm2

As Fig. 4 shows, the stack is installed into an integration
PEMFC system in which various operating parameters, such as
pressures, relative humidities, flow rates, and temperatures of
the reactants, can be regulated in a sufficiently wide range.
A programmable DC load is connected to the output of
the stack and emulates various user profiles. The measuring
and computing board is equipped with multi-channel Giant
Magnetoresistance (GMR) voltage sensors and an FPGA based
computing unit. Actually, these two parts are integrated in
the form of a 3D integration circuit (IC) in order to meet
the critical space requirement for an automotive application.
The computing board is devoted to measuring the individual
cell voltages and performing the diagnosis approach online.
In addition, the measured data can also be transferred and
saved in the PC with the help of a Labview based interface.
The diagnosis results can be visualized on the screen with the
same interface. More details about the testbench can be found
in [16].

B. Experimental Data

Besides operating the PEMFC in normal condition, a series
of experiments were carried out to emulate the different faults
that may occur in the PEMFC system in practice. The different
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Fig. 3. Implementation diagram for the proposed diagnostic strategy
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Fig. 4. Overview of the experimental testbench

health states are summarized in Table II. The concerned faults
are those related to faulty operations which are recoverable.
Actually, those faults are created by varying the input vari-
ables, such as pressures, gas flow rates, and temperature,
beyond the normal intervals. Each fault was produced by
modifying one input variable, while the other ones were kept
at the nominal values. For instance, the relative humidity and
pressure of air, the stack temperature evolutions are shown
in Fig. 5. An efficient online diagnosis can be combined with
fault tolerant control or action capable of eliminating the faults
before a permanent fault is generated [16].

Through the measuring and computing board, the individual
cell voltages were measured in real time and the data were
stored into the PC for the usages of training and posterior
analysis. The sample frequency was fixed at 1 s to facilitate an

TABLE II
EXPERIMENTS CARRIED OUT IN DIFFERENT HEALTH STATES

Operation Health state

Nominal condition Normal state (Nl)
Pressure of 1.3 bar on each side Low pressure fault (F1)
Pressure of 1.7 bar on each side High pressure fault (F2)
Lower relative humidity Drying fault (F3)
St. Air 1.5 Low air stoichiometry fault (F4)
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process
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in time diagnosis procedure for most faults and not to cause
a too heavy computational burden. An overview of the cell
voltages monitored in different health states is shown in Fig.
6(a). In this 1st-generation board, the equipped voltage sensor
is capable of monitoring 14 voltage signals. The 14 channels
were connected to the cell 1, 3, 5, 6, 7, 9, 10, 11, 12, 18, 19, 20,
21, 22 counting from the cathode side, because it was found
experimentally that the cell voltages near to cathode side (gas
supply side) are more sensible to the concerned faults. The
details of a length of 200 samples are shown in Fig. 6(b). It
can be observed that the voltage values differs from cell to cell.
Moreover, the voltage signals are not stationary, but present
a cyclical dynamic behavior. This can be linked to the purge
action which is activated each 90 s. The dynamic evolutions
of the cell voltage signals are also different.

In order to obtain the training data and validate the proposed
approach, the same experiments were repeated several times.
The data in the first run are used to train the diagnostic
algorithms, while those in the other runs are used to verify
the approach. In this way, the robustness of the approach can
be verified, since the data acquired in different runs show some
variations because of the different external disturbances, such
as environment humidity, temperature, fuel cell ageing effect.

IV. RESULTS AND DISCUSSION

In order to show the superiority of the approach, several
tests were carried out and the results were compared. First,
the cell voltages measured at one time point are considered as
the variables for diagnosis. The dynamics between neighbor
samples are thus omitted. In the second test, a time series of
the stack voltage measured in a diagnostic window is consid-
ered as the diagnosis variable. The spatial inhomogeneity is
out of consideration in this case. The last test is dedicated to
the proposed diagnostic approach, in which the individual cell
voltages measured within a diagnostic window are considered
as the diagnosis variables.

A. Diagnosis without considering dynamic behaviors

In this test, cell voltages measured at a time point are
formulated as a vector and considered as the variable for
diagnosis. The shapelet transform is not employed in this
case, while the SSM-SVM is used directly to process the
original data. The dataset used for training consists of 1380
samples in Nl class, and 780, 600, 1400, 600 in F1, F2,
F3, F4 classes respectively. The parameters of SSM-SVM are
initialized using a gradient descent algorithm [22].

After the training process, the overall classification accuracy
rate reaches to 99.89%. The classification results on the
training data are shown visually in Fig. 7. Only a little part
of data in F1 and F4 are misclassified into each other. This
can be explained by the fact that similar effects on fuel cell
voltages are caused by the low air pressure (F1) and low air
stoichiometry (F4). It can also be inferred that the high air
pressure fault may also be partly confused by high air flow
rate fault. In fact, air pressure and air flow rate are two coupled

(a) Cell voltages at different health states
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Fig. 6. Single cell voltage signals
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Fig. 7. Training results using cell voltages
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variables in the compressor control. The faults concerning on
these two variables could be difficult to be separated.

The trained SSM-SVM classifier is then tested on the data
obtained from another experiment run. The dataset for test
consists of 901 samples in NL, and 794, 306, 2043, 764 in F1,
F2, F3, F4. The overall diagnostic accuracy rate being 86.26%.
The diagnostic results on the test data are shown in Fig. 8.
The confusion matrix on the test results is presented in Table
III. The rows in the table show the distribution of the data
in an actual class. It can be observed that the false diagnosis
happens on the data in Nl, F1, F3, and F4, especially the
misclassification between F1 and F4 becomes more serious.
Obviously, without considering the dynamic behaviors of the
cell voltages, the generalization performance is not satisfying.
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Fig. 8. Diagnostic results without considering dynamics

TABLE III
CONFUSION MATRIX: DIAGNOSTIC RESULTS WITHOUT CONSIDERING

DYNAMICS

Diagnosed classes
Nl F1 F2 F3 F4

Actual classes

Nl 0.9689 0.0144 0 0.0166 0
F1 0.0038 0.7778 0.0038 0.0051 0.2096
F2 0 0 1.0000 0 0
F3 0.0362 0.0343 0 0.9241 0.0054
F4 0.3534 0.0340 0.0065 0 0.6060

B. Diagnosis without considering spatial inhomogeneity

In this test, the spatial inhomogeneity of the fuel cell stack
is neglected. In other words, the individual cell voltages are
assumed to be identical. A series of the stack voltage sampled
in a diagnostic window is considered as the diagnosis variable.
The implementation of this test follows the flow chart given in
Fig. 3 except that the diagnostic observation is an univariate
time-series rather than multi-variate time-series.

Considering that the purge cycle is 90 s, the diagnostic
window size is set as 100 in order to cover a completed
purge cycle. For shapelet transform, the shapelet width is 10.
8 shapelets are generated for each class, and a total number

of 40 shapelets are extracted from the training dataset. With
the shapelets, a 40-dimensional feature can be extracted from
each diagnostic window. The SSM-SVM classifier is trained
and implemented in the shapelet feature space.

According to the results, the accuracy rate on the training
data is 93.48%. While the overall diagnostic accuracy rate
on the test data is 91.90%. The diagnostic results are shown
visually in Fig. 9 and quantitatively in Table IV in the
confusion matrix form. Compared with the results of the last
test, the diagnostic performance is improved regarding the
diagnosis accuracy rates for each class. However, a significant
part of data in F4 is misclassified, which results in a low
diagnostic rate for this fault type.
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Fig. 9. Diagnostic results without considering spatial inhomogeneity

TABLE IV
CONFUSION MATRIX: DIAGNOSTIC RESULTS WITHOUT CONSIDERING

SPATIAL INHOMOGENEITY

Predicted classes
Nl F1 F2 F3 F4

Actual classes

Nl 1.0000 0 0 0 0
F1 0 0.8514 0 0 0.1486
F2 0 0 1.0000 0 0
F3 0 0.0057 0 0.9876 0.0067
F4 0 0.3338 0 0 0.6662

C. Diagnostic considering both dynamics and spatial inhomo-
geneity

The third test concerns the approach proposed in this study.
The diagnosis is implemented based on the individual cell volt-
ages sampled in a diagnostic window, such that both the spatial
inhomogeneity and the dynamic behaviors of the cell voltages
are taken into account. The implementation process follows
exactly the flow chart given in Fig. 3. As in the previous test,
the diagnostic window is set at 100. The width of shapelet is
10. 8 shapelets are generated from the training data in each
class. With the shapelets, the shapelet features extracted from
the training data are shown visually in Fig. 10. It can be seen
that the features exhibit class discriminative characteristics.
The SSM-SVM is trained in the shapelet feature space and
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a classification accuracy rate of 99.98% is obtained on the
training dataset.

After implementing the trained approach on the test data,
the overall diagnosis accuracy rate of 96.13% is obtained.
While the detailed results are given visually in Fig. 11 and
quantitatively in Table V. Compared with the previous two
tests, the performance is improved with respect to both the
overall diagnosis accuracy rate and those for each class. In
particular, the diagnosis accuracy rate for the data in F4
reaches almost 90%, which is considered as an acceptable
level.

Fig. 10. Shapelet features extracted from the training dataset
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Fig. 11. Diagnostic results using shapelet features from cell voltages

TABLE V
CONFUSION MATRIX: DIAGNOSTIC RESULTS USING SHAPELET FEATURES

FROM CELL VOLTAGES

Predicted classes
Nl F1 F2 F3 F4

Actual classes

Nl 1.0000 0 0 0 0
F1 0 0.8993 0 0 0.1007
F2 0 0 1.0000 0 0
F3 0 0.0123 0 0.9877 0
F4 0 0.1113 0 0 0.8887

D. Discussion
In this study, the faults caused by variation of one operating

parameter are put much importance, although the other faults
that caused by several operating parameters can also occur. In
fact, the probability of the latter faults is much lower than that
of the former ones. In addition, it is always the case that the
faults starts with a fault caused by single abnormal operating
parameter.

More faults can be encountered in practice. The proposed
approach can be utilized for the diagnosis of more faults only
if the data corresponding to the concerned faults are collected
in prior [16].

The stack concerned in this study is required to be operated
near to the nominal current value. In the case where dynamic
load is concerned, the training data should contain sufficient
dynamic conditions in order to obtain a reliable diagnosis re-
sult. Although the implementation is the same, the acquirement
of training data should be put more importance and attention.

Although training the proposed approach usually takes a
relatively long time (several minutes), performing the trained
diagnostic model is sufficiently fast for online use. According
to our experience, the performing time for one diagnosis
cycle is within 1 ms by using a PC and Matlab environment.
Meanwhile, using the designed IC, the executing time is
limited to 10 ms. In this study, the computation time of
the proposed diagnosis approach satisfies the requirement of
online use and it is not the main concern.

It should be noted that even the voltages of a part of cells
over the stack were measured and handled, a satisfying result
can still be obtained. As a big cell number is concerned, hun-
dreds cells for instance, some dimension reduction technique
can be optionally considered to reduce the complexity of the
problem [23].

In the proposed approach, the diagnosis is regarded as
a multi-variate time series classification problem. Shapelet
transform was selected as the tool to extract the features
because it has been regarded as one of the most promising
recent methods on time series analysis. It is probable that other
time series analysis methods could also be used to extract the
features and realize this classification task. From a theoretical
point of view, an increasing attention has been paid to the
research on multi-variate time series classification.

Although fuel cell diagnosis is talked about in thie paper,
the proposed approach should not be limited to the application
of fuel cell diagnosis. In fact, the diagnosis for many practical
systems can be regarded as a multi-variate time series classi-
fication problem so long as the necessary experimental data
are available.

V. CONCLUSION

The paper has presented and experimentally demonstrated
a novel data-driven fault diagnostic strategy for PEMFC sys-
tems. Taking both the spatial inhomogeneity and the dynamics
into account, the individual cell voltages monitored in a
sliding window were considered as the diagnostic observation.
The shapelet transform was employed to extract the class
discriminative features, which were fed to the SSM-SVM for
diagnostic oriented classification procedure.
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The experimental test results show that the high diagno-
sis accuracy rate and robust results can be acquired using
the proposed approach. The performing time satisfies the
requirement for online implementation. Through comparison,
it is also shown that the diagnostic performance is lowered
without either considering the spatial inhomogeneity or dy-
namic behaviors. Combines with the specially designed IC,
the strategy is promises to be used in the practical PEMFC
systems. Moreover, the proposed approach has the potential
to be extended to other diagnosis cases where the dynamics
of multiple variables is involved.
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