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Abstract

Reliability and durability are two key hurdles that prevent the widespread use

of fuel cell technology. Fault diagnosis, especially online fault diagnosis, has

been considered as one of the crucial techniques to break through these two

bottlenecks. Although a large number of works dedicated fuel cell diagno-

sis have been published, the criteria of diagnosis, especially online diagnosis

have not yet been clarified. In this study, we firstly propose the criteria

used for evaluating a diagnosis strategy. Based on that, we experimentally

demonstrate an online fault diagnosis strategy designed for Proton Exchange

Membrane Fuel Cell (PEMFC) systems. The diagnosis approach is designed

based on advanced feature extraction and pattern classification techniques,
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and realized by processing individual fuel cell voltage signals. We also de-

velop a highly integrated electronic chip with multiplexing and high-speed

computing capabilities to fulfill the precise measurement of multi-channel

signals. Furthermore, we accomplish the diagnosis algorithm in real-time.

The excellent performance in both diagnosis accuracy and speediness over

multiple fuel cell systems is verified. The proposed strategy is promising to

be utilized in various fuel cell systems and promote the commercialization of

fuel cell technology.

Keywords: PEMFC system, Fault diagnosis, Application specific

integrates circuit, Data-driven, Classification, Online implementation

1. Introduction1

Fuel cell technology, because of its potential for effectively alleviating en-2

vironmental and resource issues, has been attracting considerable increasing3

attention. Among the various fuel cells, proton exchange membrane fuel cell4

(PEMFC), thanks to its high power density and efficiency, low operating5

temperature, and quick response to load, is the most promising one to be6

widely applied in both stationary and automotive cases. However, reliabil-7

ity and durability are currently two main barriers which prevent the process8

for its wide applications [1, 2]. Among the solutions, fault diagnosis, more9

particularly online diagnosis, dedicated to detecting, isolating, and analyzing10

different faults, has proved to be beneficial for keeping fuel cell systems op-11

erating safely, reducing downtime and mitigating performance degradation12

[3, 4, 5].13

The operation of a PEMFC system involves multiple auxiliary subsystems14
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other than fuel cell stack, and requires multi-field knowledge, for example15

complex electrochemistry, thermodynamics, and fluid mechanics. To accu-16

rately detect and identify the faults occurring in the system is not a trivial17

task. During the last decade, considerable attention has been focused on the18

topics related to fault diagnosis for PEMFC systems.19

Among the most substantial approaches, model based fault diagnosis ap-20

proaches have been proposed. A review of model based methods is available21

in [6]. Most of these approaches are based on some general input-output22

or state space models, which are usually developed from the physical and23

mathematical knowledge of the process [7]. In [8], the authors developed24

an electrical equivalent circuit which can be seen as an analytical model of25

the concerned PEMFC system. The component parameters are identified26

and the variation of the specific electrical component values can be seen as27

the indicator of the corresponding faults. In [9], a linear parameter vary-28

ing (LPV) model is built for a commercial PEMFC system. An observer29

is proposed based on the proposed LPV model. Then, the residuals can30

be computed by comparing the process outputs and the outputs estimated31

from the observer. The similar methods are also used in [10, 11]. Besides32

designing a specific observer, the parity relation is also used for residual33

generation procedure in a more straightforward way [12]. To carry out the34

above mentioned three kinds of analytical model based approaches, an accu-35

rate process model of PEMFC systems is necessary. However, modeling the36

PEMFC systems is a rather difficult task. Especially, the identification of37

fuel cell inner parameters concerning the operation, the geometries as well38

as the materials is difficult [13]. Even the parameters are identified, some of39
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them are time-varying because of the ageing degradation. In addition, the40

existing models are usually not able to fulfill sufficient accuracy, generaliza-41

tion and real-time implementability, which makes model based approaches42

insufficiently suitable for wide practical applications [14].43

Another branch named data-driven diagnosis has been gaining increasing44

attention. The data-driven methods are those make use of the information45

from the historical data other than an analytical model. A review of data-46

driven methods is available in [4]. In [15], [16], and [17], fuzzy inference and47

neural networks are used to build “black-box” models whose parameters are48

obtained by fitting the experimental data obtained in fault free state. With49

these “black-box” models, the diagnosis can be realized by evaluating the50

difference between the real system outputs and the model outputs. In [18], a51

multivariate analysis technique, named principal component analysis (PCA),52

is used for diagnosis by analyzing the variables measured by multiple sensors53

installed in a PEMFC system. In [19], the fuzzy clustering method is used to54

process the signals acquired from a commercial PEMFC system in order to55

achieve fault diagnosis. In [20] and [21], Bayesian networks classification is56

used for the PEMFC diagnosis. In [22], [23], and [24], the signal processing57

methods, fast fourier transform, wavelet transformation, multifractal formal-58

ism, are respectively used to extract the features which are sensitive to faults59

from the fuel cell stack voltage signals. Although some interesting prelimi-60

nary results have been proposed in the frame of data-driven diagnosis, the61

online validation of those approaches in different real PEMFC systems has62

not yet been announced.63

Actually, some criteria have to be satisfied to realize online diagnosis for64
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PEMFC systems serving in real conditions. First, the sensors for measuring65

the variables serving as the inputs of the fault diagnosis approach should be66

minimized and arranged in limited space. The intrusive and/or costly sensors67

or instruments should be avoided whenever possible. Second, the diagnosis68

accuracy should be maintained at a high level with respect to different faults69

and different PEMFC systems. Third, the online diagnosis approach needs70

to be computationally efficient since it is usually implemented in some “on-71

board” embedded system with limited computational power available [25, 26].72

Fourth, because of ageing effects, fuel cells’ behaviors are time-variant. The73

diagnosis approach should be capable of being adapted online. In addition,74

the serial-connected single fuel cells which compose a fuel cell stack are usu-75

ally considered to be identical in the existing approaches. Nevertheless, the76

inhomogeneity among cells should be more emphasized when we talk about77

“faults”. This is because usually a proportion of fuel cells fall into faulty78

state first when a fault occurs [27, 28].79

In this article, we propose and experimentally demonstrate an online fault80

diagnosis strategy for PEMFC systems. To achieve the diagnosis goal, we de-81

signed an reduced volume application specific integrates circuit (ASIC) which82

integrate multichannel voltage sensors of giant magneto resistance (GMR)83

type, and a field programmable gate array (FPGA) based computing unit84

[29, 30]. The individual fuel cell voltages can be precisely measured and85

treated as the input variables of the diagnosis approach. The discriminant86

features are extracted using fisher discriminative analysis (FDA) from the87

vectors composed by cell voltages and classified the features using support88

vector machine (SVM) into different classes that represent different states of89
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health. Besides the requirements for a basic diagnosis approach, the novel90

fault detection and online adaptation functions are also developed and added91

to the proposed approach. They are realized through using specifically de-92

signed diagnosis rules and an incremental learning method. We verified the93

efficiency of our strategy via the experiments on several stacks and multiple94

faulty types. To our knowledge, this work is the first to provide a high-95

performance online diagnosis strategy implemented in an ASIC for PEMFC96

systems.97

The rest of the paper is organized as follows: the development process of98

the proposed diagnosis strategy is given in Section 2. Section 3 and Section 499

present respectively the diagnosis approach and the ASIC designed to realize100

diagnosis function. Experimental platform and database preparation are101

described in Section 5. Diagnosis results are summarized and analyzed in102

Section 6. We finally conclude the work in Section 7.103

2. Diagnosis strategy development process104

The proposed data-driven diagnosis strategy consists of offline and online105

stages (see Fig. 1(a)). The feature extraction (FDA) and the classification106

models (SVM) are trained and tested offline. The objective of the test stage107

is to optimize the parameters used for SVM. The trained models are imple-108

mented online to achieve the diagnosis goal. Moreover, based on the data109

sampled online, the SVM model can be adapted online.110

The realization process is shown in Fig. 1(b). In the offline stage, the111

historical data (individual cell voltages) are measured using the GMR sensors112

integrated in the ASIC and saved as the training and test database into a113
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PC. Then the diagnosis model is trained using the PC and programmed into114

the memory of the ASIC. In the online stage, the variables (individual cell115

voltages) are measured and processed using the ASIC with the model trained116

offline.117

3. Diagnosis approach118

In this section, the diagnosis problem and the involved methodologies are119

presented mathematically in a general manner. Actually, the main focus of120

this paper is to provide the completed implementation process of the pro-121

posed diagnosis strategy, which includes both software and hardware devel-122

opments. The mathematical details of the involved algorithms are provided123

by citing several published works.124

3.1. Problem formulation125

The diagnosis approach proposed in this study belongs to the category of126

supervised methods. The basic tasks of fault diagnosis, i.e. fault detection127

and isolation, can be abstracted as a typical pattern classification problem128

(see Fig. 2).129

Suppose that the fuel cell stack in a concerned system is composed of M130

single fuel cells. At a certain time, the individual cell voltages are measured131

and denoted as a vector v = [v1, v, . . . , vM ]T . Suppose that we have a training132

dataset V which consists of N such vectors, i.e. V = {v1,v2, . . . ,vN}. These133

vectors are known to be distributed in the classes denoted as Ω0, Ω1, Ω2, . . . ,134

ΩC , in which the class label 0 corresponds to the fault free state, while 1, 2,135

. . . , C correspond to the faults of various types. The class label gi of vector136

vi is known in prior. Based on the dataset V , a function denoted as F (·)137
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Figure 1. Diagram of the proposed diagnosis approach and of the realization process. (a)

Workflow of the proposed diagnosis approach. (b) Realization process of the diagnosis

strategy.
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can be trained offline. Through the function, the class label of a given vector138

formed by the cell voltages can be determined as139

gn = F (vn) (1)

The diagnosis procedure is the process of implementing this function online.140

(a) Training data collection

Fault 1 Fault 2

Normal

(b) Training classifier

Fault 1 Fault 2

Normal

(c)  Online diagnosis 

Fault 1
Fault 2

Normal

Real-time data

Figure 2. Principle of classification based fault diagnosis. The implementation of the

approach can be divided into three steps. (a) The historical data in both health state and

concerned faulty states are collected as the training data base. In this case, the data are

distributed in three classes: normal, fault 1 and fault 2. (b) A classifier is trained based

on the training data base. The trained classifier is described as the boundaries among the

classes. (c) The trained classifier is performed online. According to the classifier or the

boundaries here, an arbitrary online sample is classified into one of the concerned classes.

Fault detection and isolation is thus realized. In this case, the online sample is classified

into fault 2 class.

A large dimensional number M , i.e. the single fuel cell number, may141
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cause a heavy burden of online computation and a reduced diagnosis power.142

We therefore propose a two-step diagnosis procedure to solve the problem as143

follows: a feature extraction stage to reduce the original data dimensional144

number is carried out first, as145

zn = f1(vn) (2)

where zn is a L-dimensional vector composed of features (L < M). Then,146

the classification is implemented in the feature space as147

gn = f2(zn) (3)

Such that the diagnosis procedure is transformed into a two-step proce-148

dure. By comparing several representative feature extraction and classifica-149

tion methods from the point of view of diagnosis precision and computational150

complexity, FDA and SVM methods were selected as the feature extraction151

and classification tools, respectively [31].152

3.2. Principle of FDA153

FDA is a supervised technique developed to extract the features from the154

data in the hope of obtaining a more manageable classification problem [32].155

The objective of FDA is to project the data into a lower dimensional space156

in which the variance between classes is maximized while the variance within157

an identical class is minimized. Through the training process, C projecting158

vectors (C fault types in the training dataset), denoted as w1, w2, . . .wC ,159

can be determined in the offline training phase. The features of the vector160

vn can be computed as zn = [wT
1 vn,w

T
2 vn, . . . ,w

T
Cvn]T . The details on FDA161

implementation can be found in [31].162
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3.3. Principle of SVM163

SVM is a classification method developed originally by V. Vapnik in 1998164

and has been considered as the present state of art classifier [33]. SVM func-165

tions by projecting the data into a high-dimensional space and constructing166

a hyperplane which separates the cases of different classes in this space.167

Different from the basic SVM, spherical shaped multi-class support vector168

machine (SSM-SVM), considered as a modified version, was employed in our169

approach [34]. The principle of SSM-SVM is to project the original data170

into a high-dimensional space and seek multiple class-specific spheres which171

enclose the samples from an identical class while excluding those from the172

other classes in this space (see Fig. 3). The projection from original space to173

high-dimensional space and some data processing are realized by introducing174

a kernel function and playing “kernel trick”. Training a SVM classifier can be175

finally abstracted as a quadric problem, while implementing a SVM classifier176

involves a small proportion of the training data which are named “support177

vectors”.178

To determine the class label of a sample zn, the following criterion is used179

gn = arg max
i
Gi (di(zn)) i = 0, 1, 2, . . . , C (4)

where Gi is a smooth monotonous decreasing function, di(zn) is the distance180

from zn to the ith sphere center and it can be calculated based on training181

result. See [14] for more details of SSM-SVM classification.182

3.4. Diagnosis rules183

A conventional classification method can only classify a sample into a184

known class. It will lose its efficiency as a sample comes from a novel class,185
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Figure 3. Principle of SSM-SVM classification. The training data are distributed in

three classes labeled by class 1, class 2 and class 3. Through nonlinear mapping, the

original data are projected into high-dimensional space (3-dimension in this case). In the

high-dimensional space, the class-specific spheres can be found through training. The

class-specific spheres enclose the samples from a specific class, while excluding those from

the other classes. These spheres can be seen as the class-specific boundaries in the original

space.
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i.e. a novel faulty mode in our case. In order to recognize the novel faulty186

mode, we propose to set boundaries for the spheres in high-dimension space.187

The samples from a novel cluster can thus be detected if they are outside all188

the closed boundaries. To realize this, the function Gi in terms of di(z) is189

defined as190

Gi (di(z)) =


0.5

(
1− di(z)/Ri

1 + ζ1di(z)/Ri

)
+ 0.5 if di(z) ≤ Ri

0.5

(
1

1 + ζ2(di(z)−Ri)

)
otherwise

(5)

where Ri is the radius of ith sphere, ζ1 and ζ2 are constants that satisfy191

Riζ2(1 + ζ1) = 1. It could be proved that Gi : R+ → R+ is a smooth192

decreasing function with lim
τ→∞

Gi(τ) = 0.193

It is considered that a sample z belongs more probably to the class with194

the shortest distance from the sphere center to the sample. However, if this195

distance is still larger than a threshold, we will consider the sample is from196

a novel class (novel fault mode). Mathematically, the diagnosis rule is197

gn =


arg max

i
Gi (di(z)) if maxGi (di(z)) ≥ δi

new if maxGi (di(z)) < δi

(6)

where the threshold δi is determined based on a calibration dataset with Ni198

elements, and a way to fix its value is to use the 3-sigma law :199

δi = Mi − 3

√
1

Ni

∑
gn=i

(Gi(di(z))−Mi)
2 (7)

with Mi = 1
Ni

∑
gn=i

Gi(di(zn)).200

3.5. Online adaptation method201

Traditional SVM training is performed in one data batch and it must202

be redone from scratch if the training dataset varies. The computational203
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cost for the training procedure is usually heavy and realized offline. To204

realize online updating of the classifier as time goes on, we propose here an205

incremental learning method for training the proposed SSM-SVM [14]. In206

this method, the solution for N+1 training data could be formulated in terms207

of the solution for N data and one new data point. The light computational208

complexity makes the incremental learning procedure suitable for online use.209

The theoretical deduction of incremental learning can be found in [14].210

4. ASIC developed for implementing the diagnosis approach211

Since the input variables for the diagnosis approach we propose are in-212

dividual cell voltages, a sensor capable of precisely measuring the voltage213

signals of low amplitude and multiplexing is required. We propose here an214

integrated voltage sensor which is based on GMR technology [29]. Compared215

with the traditional Hall effect sensors which are commonly used for voltage216

or current measurement, the GMR sensors exhibit a much higher sensitivity217

especially in low current (voltage), high precision applications [35]. Knowing218

that a single cell voltage is usually less than 1 V, GMR sensors are well suited219

in our case. Moreover, the sensor developed here also improves the present220

state of the art in the aspects of increasing insulation capability (> 2000kV )221

[36].222

To implement the proposed diagnosis approach, multiple GMR voltage223

sensors are packaged with a commercial system on chip (SoC) FPGA device224

which functions as the computation and communication unit. As shown in225

Fig. 4(a), these components are designed in the form of a 3D integration cir-226

cuit. The upper layer taking charge of computation and communication can227
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be seen as the “main board”. In this layer, the Smartfusion on-chip system228

developed by Microsemi is integrated. The device integrates an FPGA fab-229

ric, an ARM Cortex-M3 Processor, and programmable analog circuitry. The230

ARM Cortex-M3 processor is an 100 MHz, 32-bit CPU. The programmable231

analog circuitry can function as the D/A and A/D conversion blocks. This232

integrated device is equipped with up to 512 KB flash and 64 KB of SRAM.233

Besides, another two 16 M memory chips is added to the system. With the234

abundant connecting ports, different kinds of communications can be realized235

with other devices. The other two layers, which are equipped with GMR sen-236

sors, are adapted for measuring multi-channel voltage signals precisely. The237

appearance of the 3D ASIC and the test board are shown respectively in Fig.238

4(b) and Fig. 4(c).239

5. Database preparation240

In order to generate the database for training and testing the diagnosis241

model as well as validating the performance of online implementation, we242

carried out a series of experiments including the ones under normal operating243

condition and faulty conditions. The faults created deliberately cover the244

abnormal operations in different components of a PEMFC system, such as245

the water management subsystem, the temperature management subsystem,246

the electric circuit, the air and hydrogen circuits. The faults studied are247

usually considered as “reversible” or “recoverable”, which means they can be248

corrected through appropriate operations and do not cause the permanent249

defects in the systems. Actually, accurate diagnosis of this kind of faults can250

usually avoid the occurrence of those so-called permanent faults. During the251
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Figure 4. ASIC designed for monitoring individual fuel cell voltages and implementing

the diagnosis approach. (a) The architecture of the ASIC, which was specially designed

for the PEMFC system diagnosis. (b) The appearance of the designed ASIC. The ASIC

is with compact package dimensions of 27×27×12 mm3. (c) The ASIC is installed into a

printed circuit board (PCB) which is equipped with the connectors, test points and LED

lights.
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experiments the data were captured using the designed ASIC and saved into252

the disk of a PC.253

5.1. PEMFC platform254

A 1 kW and a 10 kW experimental platform, which had been developed255

in-lab, were employed to fulfill the experimental requirements (see Fig. 5).256

In the hydrogen and air circuits, the temperatures, pressures, flow rates, and257

relative humidifies can be regulated in a wide range. A thermal-regulated258

water circuit ensures the flexible control of the stack temperature. The load259

current profile can be defined or simulated with the help of a DC electronic260

load. A terminal is installed into the stack to facilitate the connection to the261

ASIC and to monitor the cell voltages.262

The platform enables us to emulate different faults artificially, and thus263

generate the database for both offline training and online validation. In or-264

der to verify the generalization performance of the proposed approach, three265

stacks from different industrial suppliers and with different cell numbers,266

power levels, mechanical designs were explored respectively on the two plat-267

forms (Fig. 6).268

5.2. Concerned faults269

Thanks to the home-made platforms in which a number of operating270

parameters can be set flexibly, we experimentally simulated a variety of faults271

that can potentially occur in different components of a PEMFC system.272

In order to cover the possible fault types, 7 fault types involving different273

subsystems or components were explored in this study. These faults and274

corresponding operations are summarized in Table 3. In addition to the275
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Figure 5. Schematic of the platforms used for generating the training and test database

and for online validation.

(a)

Cooling out

Cooling in

H2 in

Air in

Air outH2 out

(b)

Figure 6. (a) 20-cell stack installed in the platform. (b) Appearance of the 8-cell stack

and 40-cell stack.
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Table 1. Technical parameters of the 20-cell stack

Parameter Value

Active area 100 cm2

Flow field structure serpentine

Electrode surface area 100 cm2

Nominal output power 500 W

Operating temperature region 20-65 �

Maximum operating pressures 1.5 bar

Anode stoichiometry 2

Cathode stoichiometry 4

individual cell voltages, a detailed measurements of temperatures, current,276

pressures and gas flow rates have been achieved thanks to the well-equipped277

platforms. In this study, the importance is put on the combination of ASIC278

and data-driven diagnosis approach and their implementation for various fuel279

cell stacks. The detailed waveforms and analysis of the acquired data during280

each fault experiment have been summarized in the previous articles [37] [28]281

[38].282

6. Results283

We carried out a number of experiments in both normal operating and284

faulty cases to collect the data for training and testing the proposed diagnosis285

model. Then, the trained diagnosis model was programmed into the memory286

of the ASIC and implemented online.287
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Table 2. Technical parameters of the 8-cell stack and 40-cell stack

Parameter Value

Active area 200 cm2

Stoichiometry H2 1.5

Stoichiometry Air 2

Pressure at H2 inlet 150 kPa

Pressure at Air inlet 150 kPa

Pressure differential between anode and cathode 30 kPa

Temperature (exit of cooling circuit) 80 ◦C

Anode relative humidity 50%

Cathode relative humidity 50%

Current 110 A

Voltage per cell 0.7 V

Electrical power of 8-cell stack 616 W

Electrical power of 40-cell stack 3080 W
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Table 3. Experiments on various health states carried out on different PEMFC stacks

Stack Health state de-

scription

Location Operation Notation

20-cell stack

Normal operating Whole system Nominal operation Normal

Flooding Water management

subsystem

Increase air relative hu-

midity

F1

Membrane drying Water management

subsystem

Deactivate air humidifier F2

8-cell stack

Normal operating Whole system Nominal operation Normal

High current pulse Electric circuit Short circuit F3

High temperature Temperature sub-

system

Stop cooling water F4

High air stoichiom-

etry

Air supply subsys-

tem

Increase air stoichiome-

try to 2.0 normal value

F5

Low air stoichiome-

try

Air supply subsys-

tem

Decrease air stoichiome-

try to 0.6 normal value

F6

Anode CO poison-

ing

H2 supply subsys-

tem

Feed hydrogen with 10

ppm CO

F7

40-cell stack

Normal operating Whole system Nominal operation Normal

High current pulse Electric circuit Short circuit F3

High temperature Temperature sub-

system

Stop cooling water F4

High air stoichiom-

etry

Air supply subsys-

tem

Increase air stoichiome-

try to 2.2 normal value

F5

Low air stoichiome-

try

Air supply subsys-

tem

Decrease air stoichiome-

try to 0.65 normal value

F6
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As the individual cell voltages were used as the variables for diagnosis,288

the dimensional number of the original data was equal to the cell number in289

the concerned stack. By using the FDA method, the features were extracted290

from the original data. A part of extracted features are shown in Fig. 7(a),291

Fig. 7(b) and Fig. 7(c). From these figures, it can be seen that the features in292

normal state and different faulty states are generally separated in the lower293

dimensional feature space. The characteristic lightens the computational294

burden and improves the performance of the classification following feature295

extraction step [37].296

In a diagnosis cycle, classification is conducted in the feature space follow-297

ing the feature extraction procedure. SSM-SVM, combined with the diagnos-298

tic rule, is implemented in this phase. To construct the SSM-SVM classifier,299

the radial basis function (RBF) was selected as the “kernel function”, and300

parameters including the penalty factor and kernel parameter were optimized301

based on the test database.302

6.1. Diagnosis accuracy303

We evaluated the online implementation results using two criteria: false304

alarm rate (FAR) which is the rate of the samples in normal state wrongly305

diagnosed into the faulty classes, and the diagnosis accuracy of each specific306

fault type. According to the recorded diagnosed results, FAR reaches respec-307

tively 2.82%, 0%, 2.09% for the three stacks, which exhibits a low level. The308

diagnosis accuracies of the 7 fault types concerned are listed in Table 4. It309

should be noted that the parameters are maintained at a high level (> 95%)310

for most fault types (F1, F2, F4, F5, F7). The mis-classifications happened311

mostly on the data in F6 (low air stoichiometry fault) state, in which the cell312
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Figure 7. Features extracted from data of cell voltages. Normal, F1, F2, F3, F4, F5, F6

and F7 represent respectively the normal state, membrane drying fault, flooding fault,

high current pulse fault, cooling water stopping fault, high air stoichiometry, low air

stoichiometry, and anode CO poisoning. (a) 2-dimensional features extracted from the

data in normal, F1 and F2 faulty states for a 20-cell stack. (b) 3-dimensional features

extracted from normal and 5 various faulty states for a 8-cell stack. (c) 3-dimensional

features extracted from normal and 4 various faulty states for a 40-cell stack. (d) 3-

dimensional features extracted from normal state and 4 various faulty states for a 40-cell

stack. The data in normal state (denoted as Normaltime1, Normaltime2, Normaltime3,

Normaltime4) are sampled at different time points.
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voltages show vary slightly compared with those in normal state. We also313

observe that the wrongly diagnosed data are mostly distributed in the initial314

stage of the fault where the data are located in the transition zone between315

clear normal state and faulty states.316

Table 4. Diagnosis accuracy for different faults for different PEMFC stacks

Fault F1 F2 F3 F4 F5 F6 F7

Stack 1 (20-cell) 94.01% 99.21% - - - - -

Stack 2 (8-cell) - - 91.63% 95.02% 100.00% 89.44% 99.08%

Stack 3 (40-cell) - - 93.55% 100.00% 99.56% 85.14% -

F1: Membrane drying fault; F2: Flooding fault; F3: High current pulse fault; F4:

Cooling water stopping fault; F5: High air stoichiometry; F6: Low air stoichiometry;

F7: Anode CO poisoning.

6.2. Online computational complexity317

Since the diagnosis approach is implemented using the ASIC whose com-318

puting capability and storage capacity are limited compared with a standard319

PC, the online computational complexity of the algorithm needs to be eval-320

uated. In our approach, the needed memories are respectively O(ML) and321

O(LS) for saving the trained feature extraction and classification models, in322

which S is the number of support vectors, while the online computing times323

are O(ML) and O(LS) for implementing the feature extraction and classifi-324

cation methods. From our test, the occupied memory is less than 200 kb for325

saving the parameters for diagnosis, while the online implementing time of a326

diagnosis cycle can be maintained at the level of 10 ms using the developed327
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ASIC. In our platforms, the sample time was set to 1 s, which means the328

diagnosis cycle can be achieved by a large margin. To our knowledge, the329

diagnosis cycle obtained in our test could satisfy the requirements for most330

fuel cell systems.331

6.3. Novel fault mode recognition332

Conventional classification methods can only be used to recognize the333

known faults which have been shown in the training database. When an334

example from a new fault mode is treated, it will be diagnosed wrongly into335

a known fault class or the normal one. We propose here the modified SVM336

and diagnostic rule to overcome this shortcoming. To verify the proposal,337

we assumed that a fault is unknown in the training process, and occurs in338

the diagnosis stage. Taking the case of a 40-cell stack as example, when F3,339

F4, F5, F6 were considered as the unseen fault, the probabilities that they340

were successfully recognized as a novel fault mode are respectively 96.77%,341

100.00%, 95.36%, 39.86% which are at a high level except the case of F6.342

This results from the fact that the data in F6 are too close to the normal343

ones. They are mostly classified into the normal state class.344

6.4. Online adaptation345

In consideration of the ageing effects, the performance of the PEMFC346

degrades with time. It results that the variables measured in the normal op-347

erating state are non-stationary, i.e. the cell voltages decrease to some degree348

after a period of time operation. Accordingly, the location of data in normal349

state varies in the feature space (Fig. 7(d)). In this case, the initially trained350

diagnosis approach may gradually lose its efficiency, i.e., the FAR increases.351
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To maintain the performance, we propose here an online adaptation method.352

The online adaptation is realized via incremental learning of the SSM-SVM353

classifier. We tested the diagnosis approach with and without online adapta-354

tion during long-term operation. The 1st, 2nd, and 3rd tests were carried out355

respectively at three different time points (the 20th day, 80th day, 170th day356

counting from the beginning of the test). With the initially trained diagnosis357

model (without online adaptation), the FARs obtained at the 1st, 2nd, and358

3rd tests were respectively 35.5%, 100%, and 100%. This means that more359

and more data in normal state were diagnosed as the faulty ones if we did not360

modify the initially trained model. By contrast, with our proposed online361

adaptation method, the FARs obtained at the 1st, 2nd, and 3rd tests were362

respectively 0.25%, 0%, and 0%. The performance of the diagnosis approach363

was therefore maintained.364

6.5. Discussion365

The data studied in this paper were acquired from the stacks operated in366

nominal steady state. In some applications such as fuel cell vehicles, dynamic367

operating conditions should be handled in diagnosis. In these cases, the368

correlations of the samples could be considered. To achieve this, data series369

instead of single data sample could be treated as the objects for classification370

[39].371

Data-driven diagnosis approach is focused on in this study to coordinate372

with the cell voltage measurement. The proposed approach can be combined373

with some model-based techniques to handle the system dynamics and to374

improve the generalization capability. Hybrid diagnosis approach could be375

one promising solution for fuel cell diagnosis [40].376
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The proposed data-driven approach is supposed to be applied jointly with377

the developed ASIC. Although in the current commercial PEMFC systems, it378

is not easy to measure individual cell voltages. We believe that the proposal379

can be interesting for many fuel cell suppliers and can be a potential solution380

in their future products.381

7. Conclusion382

In this study, we firstly propose the criteria for online fuel cell online di-383

agnosis. To attain these criteria, we experimentally demonstrated an online384

fault diagnosis strategy for PEMFC systems. With the specifically designed385

ASIC, the proposed diagnosis approach was implemented online to diagnose386

multiple faults with respect to several PEMFC stacks. We proposed here to387

monitor the individual fuel cell voltages and employ them as the variables for388

diagnosis. In contrast to most of the available approaches in which the fuel389

cell voltages are assumed to be identical, the inhomogeneity among cells was390

utilized and dedicated to fault diagnosis. From a fundamental point of view,391

different faults can cause different thermal, fluidic, electrochemical spatial392

distributions and these can be reflected by the amplitudes of individual cell393

voltages. In this study, it was proved that the individual cell voltages pos-394

sess the discriminative information of different health states. The importance395

of monitoring every cell voltage, or several of them together, was therefore396

stressed. From the diagnostic results of online validation, the diagnosis accu-397

racy can be maintained at a high level with respect to different types of fault398

and for different fuel cell stacks thanks to the utilization of FDA and SVM399

methods. Besides, the capabilities of recognition an unseen faulty mode and400
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online adaptation, which the traditional diagnosis methods are not capable401

of handling, were installed into our approach. The efficiency of the ASIC402

that we designed here, which is dedicated to precisely measuring and online403

implementing the diagnosis algorithm, was validated. The ASIC therefore404

promises to be used as a routine component for monitoring fuel cell voltage405

and implementing the diagnosis approach we proposed here.406

Several directions can be interesting on fuel cell diagnosis. First, more407

general system model should be built in consideration of different faulty408

conditions. Second, more advanced data-based techniques can be applied to409

improve the adaptability of the diagnosis methods. Third, the fault diagnosis410

should be combined with control strategy to improve the fuel cells’ reliability411

finally.412

28



References413

[1] J. Wang, Barriers of scaling-up fuel cells: Cost, durabil-414

ity and reliability, Energy 80 (2015) 509 – 521. doi:http:415

//dx.doi.org/10.1016/j.energy.2014.12.007.416

URL http://www.sciencedirect.com/science/article/pii/417

S0360544214013644418

[2] L. Dubau, L. Castanheira, F. Maillard, M. Chatenet, O. Lottin,419

G. Maranzana, J. Dillet, A. Lamibrac, J.-C. Perrin, E. Moukheiber,420

et al., A review of PEM fuel cell durability: materials degradation, local421

heterogeneities of aging and possible mitigation strategies, Wiley Inter-422

disciplinary Reviews: Energy and Environment 3 (6) (2014) 540–560.423

[3] R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland,424

D. Myers, M. Wilson, F. Garzon, D. Wood, et al., Scientific aspects425

of polymer electrolyte fuel cell durability and degradation, Chemical426

reviews 107 (10) (2007) 3904–3951.427
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