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Diagnosis for PEMFC Systems: A Data-Driven 
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Zhongliang Li, Rachid Outbib, Stefan Giurgea, and Daniel Hissel, Senior Member, IEEE

Abstract—In this paper, a data-driven strategy is pro-
posed for polymer electrolyte membrane fuel cell system 
diagnosis. In the strategy, features are first extracted from 
the individual cell voltages using Fisher discriminant 
analy-sis. Then, a classification method named spherical-
shaped multiple-class support vector machine is used to 
classify the extracted features into various classes related 
to health states. Using the diagnostic decision rules, the 
potential novel failure mode can be also detected. 
Moreover, an online adaptation method is proposed for the 
diagnosis approach to maintain the diagnostic 
performance. Finally, the experimental data from a 40-cell 
stack are proposed to verify the approach relevance.

Index Terms—Classification, data-driven diagnosis, fea-
ture extraction, novel fault detection, online adaptation, 
polymer electrolyte membrane fuel cell (PEMFC) systems.

I. INTRODUCTION

INCREASING environment and resource issues have moti-
vated the development and commercialization of fuel cell

technologies. Among the various categories of fuel cells, poly-
mer electrolyte membrane fuel cell (PEMFC) is one of the most
promising fuel cells, particularly for mobile applications. To
meet the requirements of reliability and durability for practical
uses, much effort is being put into research on PEMFC material
degradation mechanisms, as well as the design and assembly of
fuel cells [1]. In addition to this, the topic of fault diagnosis for
PEMFC systems is currently receiving considerably increasing
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attention. It has been recognized that an efficient fault diagnosis
strategy can help PEMFCs (or stacks) operating in relatively
optimal and efficient conditions, and, thus, mitigate the perfor-
mance degradation of fuel cells.

In the literature on PEMFCs, several methods have been
proposed for fault diagnosis. Among the most substantial,
the approach-oriented models have been explored [2]. This
approach is interesting; however, due to the complexity of iden-
tification of fuel cell inner parameters, a sufficiently accurate
and diagnosis-oriented model is usually difficult to obtain [3].
Therefore, data-driven fault diagnosis methodologies have been
drawing the attention of researchers. Several data-driven meth-
ods have been proposed for PEMFC diagnosis during the last
decade [4]–[6]. Although these preliminary results have been
obtained, more effort is yet to be made in this direction. For
instance, from a practical point of view, the diagnostic method
performance, such as diagnosis accuracy and computational
cost, should be seriously evaluated. However, these aspects
have been usually unclear or omitted in the literature.

Within the scope of data-driven diagnosis, pattern classifi-
cation techniques have been widely used for fault diagnosis
[7]–[10]. The classification-based diagnostic procedure usu-
ally proceeds in two steps. First, an empirical classifier is
established from prior knowledge and/or history data. This is
considered as the training process. Then, by using the classifier
obtained, the real-time data are classified into certain classes
that correspond to the health states (normal state or various
fault states). Thus, fault detection and isolation can be achieved.
In addition, it has been also noticed that the classification per-
formance can be improved by combining some signal analysis
and/or feature extraction methods (see, for instance, [5], [11],
and [12]). In [12], the feature extraction method, i.e., Fisher
discriminant analysis (FDA), and the classification method,
i.e., support vector machine (SVM), were adopted to detect
the faults, such as flooding and membrane drying. In [13], the
combination of FDA plus SVM is compared with several other
representative methods and justified to possess the advantages
of both high diagnosis accuracy and low computational cost.
Thus, this approach is a promising candidate as an online diag-
nostic tool for PEMFC systems. Nevertheless, some aspects of
the approach still need to be improved.

One of the main limits of the conventional classification
methods is that the classifiers trained using the preexisting data
can only be used to recognize the known classes. An arbitrary
example will be classified into a known class even if it belongs



to a new cluster, which strongly differs from the samples of
known classes.

Specifically for PEMFC systems, multiple physical and
chemical processes are involved in the fuel cells, and the
systems consist of a set of auxiliary components. A variety of
faults could be encountered on different parts of the systems
[14]. It is usually not possible to get the data in all the failure
modes at the training stage. The data from unseen failure modes
would always be falsely diagnosed in such cases.

Moreover, specifically for PEMFCs, the data in the normal
operating state are nonstationary when the aging effect is taken
into account. For instance, the cell voltages decrease to some
degree after a period of time operation. The initially trained
diagnosis strategy may gradually lose its efficiency.

To solve the aforementioned problems, in this work, a data-
driven fault diagnosis strategy for the PEMFC system is pro-
posed. As in [12], the individual cell voltages are employed
as the original variables for diagnosis, and FDA is used to
extract the features for classification. A classifier, which is
named spherical-shaped multiple-class SVM (SSM-SVM), is
adopted to classify the features into various classes to fulfill
the diagnostic tasks, including the detection and isolation of the
known faults and the recognition of the potential novel failure
modes. Moreover, an online adaptation procedure is proposed
to update the diagnosis models in real time.

The contributions of this work are summarized as follows.

• By using the proposed approach, multiple faults involving
various parts of the PEMFC systems can be detected and
isolated with high diagnostic accuracy.

• The procedure to detect a novel failure mode is proposed
and added to the approach. With the procedure, the false
diagnosis can be avoided in the case where a novel fault
occurs.

• By using the proposed online updating procedure, the
efficiency of the strategy can be kept, when the aging
effect is taken into account during long-term operation.

• The low computational cost can certify the real-time
implementation of the approach in an embedded system.

This paper is organized as follows: In Section II, the diag-
nosis strategy is presented. Then, the procedure for adapting
the diagnostic approach online is introduced in Section III.
Section IV is dedicated to the presentation of the investigated
PEMFC system and the experimental database. The diagnosis
results and corresponding discussion are given in Section V.
Finally, we conclude the work in Section VI.

II. DIAGNOSTIC STRATEGY

A. Framework of the Strategy

The framework of the proposed diagnostic strategy is sum-
marized in Fig. 1. The strategy contains an offline initial train-
ing stage, an online performing stage, and an online adapting
stage. In the offline training stage, the initial models of FDA
and SSM-SVM are successively trained based on the basic
training database. Historical samples of cell voltages, which are
distributed in the normal class and various fault classes, form
the basic training database.

Fig. 1. Flowchart of the proposed diagnostic strategy.

In the online performing stage, the real-time sample (cell
voltages) is first processed by the trained FDA model, through
which features can be extracted from raw data. Then, with the
aid of the trained SSM-SVM model, the features are assigned
either to a certain known class to get the diagnostic decision or
to a potential novel failure class.

As for the online adapting stage, the labeled data for adapting
the models are first collected. The data can either be prepared
from real-time samples or from the potential novel failure class.
These data are processed using the trained FDA model. Then,
the extracted features will be explored to update the SSM-SVM
model.

B. Mathematical Description of the Problem

The diagnostic problem can be mathematically abstracted as
follows. Let H ∈ N. Suppose that we have a training data set of
N H-dimensional samples xn(n ∈ T = {1, . . . , N}), which
are distributed in C classes denoted by Ω1,Ω2, . . . ,ΩC . In the
sequel, for a set Ω, the cardinal (i.e., the number of the elements
in Ω) will be denoted as |Ω|. FDA and SSM-SVM models
are trained based on the training data set. Through the trained
models, a real-time sample x can be classified into a defined
class Ωi, i = 1, . . . , C or a novel cluster denoted by Ωnovel.

C. FDA

FDA is a technique developed for feature extraction or
dimension reduction in the hope of obtaining a more man-
ageable classification problem. Through FDA, the original H-
dimensional samples are projected onto L-dimensional space,
where L ∈ N, with L < H , such that

zn =
[
wT

1 xn,w
T
2 xn, . . . ,w

T
Lxn

]T
n = 1, . . . , N (1)

where zn is the projected vector corresponding to xn, and
wi (i = 1, . . . , L) are unit projecting vectors. The elements of



zn (n ∈ T ) are named features, and the L-dimensional pro-
jected space is also called feature space.

The objective of training FDA is to find the projecting
vectors, so that the projected vectors of the same class are
concentrated, whereas those in different classes are as separated
as possible [15].

Avoiding the detailed theoretical deducing process (which
can be found in [15]), the seeking of the projecting vectors is
converted into the following eigenvector problem:

Sbwi = λiSwwi i = 1, . . . , L and λ1 ≥ · · · ≥ λL > 0 (2)

where Sw and Sb are the within-class covariance matrix and
the between-class covariance matrix, which are given by

Sw =
C∑
i=1

∑
xn∈Ωi

(xn − x̄i)(xn − x̄i)
T

Sb =

C∑
i=1

|Ωi|(x̄i − x̄)(x̄i − x̄)T

where x̄i(i=1, . . . , C) and x̄ are the mean vector of class Ωi and
the mean vector of the total data set, respectively, and are de-
fined by x̄i = (1/Ni)

∑
xn∈Ωi

xn and x̄ = (1/N)
∑N

n=1 xn.
It is found that no more than C − 1 of the eigenvalues are

nonzero, and the projecting vectors correspond to these nonzero
eigenvalues [15]. Hence, the dimension of the feature space L
should satisfy the following constraint:

L ≤ C − 1. (3)

In this paper, the equalization case is preferred. After train-
ing FDA, the projected vectors zn (n ∈ T ) corresponding
to xn (n ∈ T ) are exported to the next classification step.
Projecting vectors wi (i = 1, . . . , L) are saved for the use of
performing.

D. SSM SVM

SVM is considered as a powerful classifier due to its superior
characteristics, such as local minima can be avoided, the solu-
tions can be sparsely represented, and good generalization per-
formance can be achieved [16]. SVM was originally designed
for binary classification. By combining the basic binary SVM,
multiclass SVM classification can be achieved [17]. Although
the classifiers based on the binary SVM can classify the data
from the known classes, the capability of detecting an unseen
cluster seems to be defective. As Fig. 2(a) shows, the bounders
among the trained classes (i.e., Class1, Class2, and Class3) can
be affirmed by a multiclass classifier based on binary SVM.
According to the decision of the trained classifier, an arbitrary
sample will be classified into one of the three classes, even if
the data are from a novel cluster, as shown in Fig. 2(b).

Hao and Lin in [18] proposed SSM-SVM. Different from the
binary-SVM-based classifier, the approach achieves the classifi-
cation goal by seeking class-specific spheres. The samples from
one specific class are enclosed by the corresponding sphere,
whereas those from other classes are excluded outside. As
Fig. 2(c) shows, the closed bounders for all of the known classes

Fig. 2. Schematic diagrams of a conventional binary-SVM-based mul-
ticlass classifier and SSM-SVM.

can be found by training SSM-SVM. Thus, the samples from a
novel cluster could probably be detected if they are outside all
the closed bounders, as shown in Fig. 2(d).

Following the FDA step, the training of SSM-SVM is based
on the projected vectors zn (n ∈ T ). More precisely, to solve
the nonlinear classification problem, the projected vectors are
first projected onto high-dimensional space via a nonlinear
transform Φ [18]. Taking the ith class for example, the method
is realized by seeking the sphere with the minimal radius in the
high-dimensional space. The sphere encloses all data points in
the ith class and leaves the other data points outside. That is,{

‖Φ(zn)− ai‖2 ≤ R2
i + ξin if zn ∈ Ωi

‖Φ(zn)− ai‖2 ≥ R2
i − ξin if zn �∈ Ωi

(4)

where Ri and ai are the radius and center of the ith sphere, re-
spectively, and ξin, which satisfy ξin ≥ 0, are the slack variables
corresponding to the training data point zn (n ∈ T ). The slack
variables permit the occurrence of errors. For instance, the data
in class i could be outside the sphere, whereas the data outside
class i could be inside the sphere.

This amounts to solving the following optimization problem
(see [18]):

min
Ri,ai

(
R2

i +D
∑
n∈T

ξin

)

s.t.

{
cin

(
‖Φ(zn)− ai‖2 −R2

i

)
− ξin ≤ 0

ξin ≥ 0
for n ∈ T

(5)

where cin = 1 if zn ∈ Ωi and cin = −1 if zn �∈ Ωi; D is a
parameter controling the penalty of errors [18].

By using the Lagrange multipliers, one can deduce that the
solutions for problem (5) are given by (see [18])

ai =
∑
n∈T

αi
nc

i
nΦ(zn) (6)



where αi
n(n ∈ T ) denote the Lagrange multipliers, and

Ri = ‖Φ(zn)− ai‖ for some zn so that αi
n ∈ (0, D). (7)

E. Diagnostic Rules

The goal of this section is to present the diagnostic rules,
including that for novel cluster detection.

Let Fi : R+ → R+ be a smooth function such that Fi is
decreasing with limτ→∞ Fi(τ) = 0. In the classical approach,
i.e., without detection of a novel cluster, a general sample z is
allotted to a class using the following criterion:

Class(z) = argmax
i

Fi (‖Φ(z)− ai‖) . (8)

It should be noted that in this classical approach, the number
of classes is fixed, and the sample z is associated to a class even
if the distances to the different centers are very large.

In this paper, it is assumed that the classes are not limited to
those initially defined. Furthermore, the fact that the distances
between a sample z and the different centers are very large,
i.e., maxFi(‖Φ(z)− ai‖) is very small and, in a meaning to
be defined, can mean the appearance of a novel cluster.

The principle for deciding that a sample belongs to a defined
class or to a new cluster can be described as follows. For
each class Ωi, δi ∈ R+ is considered to denote the threshold
from which a sample z is considered to be definitely outside
the class. More precisely, it is assumed that z is outside Ωi

if Fi(‖Φ(z)− ai‖) < δi. The value of the threshold can be
determined based on a calibration data set, and a way to fix
its value is to use the 3-sigma law, i.e.,

δi = Mi − 3

√
1

|Ωi|
∑

zn∈Ωi

(Fi (‖Φ(z)− ai‖)−Mi)
2 (9)

with Mi = (1/|Ωi|)
∑

zn∈Ωi
Fi(‖Φ(z)− ai‖).

Within this approach, the decision rule is defined by

Class(z) =

{
argmax

i
Fi(z) if maxFi(z) ≥ δi

novel if maxFi (‖Φ(z)− ai‖) < δi.
(10)

Note that by considering the threshold given by (9), less than
0.15% of the samples in the training data set are misclassified
to the novel class.

As for function Fi, several expressions are possible. For the
implementation part, that proposed in [18] is used.

Here, the principle for the decision rule is presented. How-
ever, the strategy is presented by using the nonlinear transform
Φ and without explicitly giving the solutions depending on
the available data. Thus, the goal of the training process is
to solve the quadratic problem (QP) expressed by (5). In the
following section, an online learning method is used to achieve
the training procedure.

III. ONLINE ADAPTATION METHOD

From (6) and (7), it is observed that the solutions of problem
(5) correspond to the multipliers αi

n(n ∈ T ) and nonlinear

transform Φ. By introducing the kernel function, the dual
problem of (5), which is in terms of αi

n(n ∈ T ), is deduced
(see [18]) as

min

⎛
⎝ ∑

n,m∈T
αi
nQ

i
n,mαi

m −
∑
n∈T

αi
nc

i
nk(zn, zn)

⎞
⎠

s.t.
∑
n∈T

αi
nc

i
n = 1 and 0 ≤ αi

n ≤ D ∀n (11)

where Qi
n,m = cinc

i
mk(zn, zm); k(zn, zm) = Φ(zn)Φ(zm) is

known as the kernel function, which implicitly defines the
transformation Φ. Throughout this paper, the Gaussian kernel
k(zn, zm) = exp(−‖zn − zm‖2/σ) will be used.

In [18], the sequential minimal optimization method is pro-
posed to solve the QP problem (11) so as to train SSM-SVM.
This method is known as a batch training approach, which
is performed in one batch. It implies that if more training
data arrive subsequently, the SSM-SVM classifier should be
retrained from scratch. This is considered to be computationally
inefficient [19]. In [20], an incremental learning method is
proposed for training the classic binary SVM. In this method,
the solution for N + 1 training data could be formulated in
terms of that for N data and one new data point. Here, the
incremental training method is extended to the training and
online adaptation for SSM-SVM without much modification.
In addition, a procedure is also proposed to further lower the
real-time computational cost.

A. Incremental Learning Method for SSM-SVM

By introducing another Lagrange multiplier bi, problem (11)
can be reexpressed as

min
0≤αi

n,α
i
m≤D

Wi=
1

2

∑
n,m∈T

αi
nQ

i
n,mαi

m+ bi

(∑
n∈T

cinα
i
n − 1

)
.

(12)

The goal of incremental learning is to keep the Kuhn–Tucker
(KT) conditions of (12) satisfied when a new training sample is
added to the current training data.

1) Incremental Procedure: To solve the optimization
problem (12), we proceed as in [20]. Let gin(n ∈ T ) and hi be
the quantities defined by

gin =
∂Wi

∂αi
n

=
∑
m∈T

Qi
n,mαm + cinbi (13)

hi =
∂Wi

∂bi
=

∑
n∈T

cinα
i
n − 1 = 0. (14)

According to the value of gin, set T is partitioned into three
sets, i.e.,

T = T i
m ∪ T i

E ∪ T i
R

=
{
n∈T : gin=0

}
∪
{
n∈T : gin≤0

}
∪
{
n∈T : gin≥0

}
.

(15)



It should be noted that the solutions for (12) (see, for instance,
[20]) are such that⎧⎪⎨

⎪⎩
αi
n = 0 for n ∈ T i

R

αi
n ∈ (0, D) for n ∈ T i

M

αi
n = D for n ∈ T i

E .

(16)

We use (tMj )
j=1,...,|T i

M
| as the denotations of the elements of

T i
M , and (t̄Mj )

j=1,...,|T i
E
∪T i

R
| as those of T i

E ∪ T i
R.

The matrix P i ∈ R
(|T i

M |+1)×(|T i
M |+1), which will be used

later, is defined as{
P i
1,1 = 0, P i

1,k+1 = P i
k+1,1 = cik, and P i

l+1,k+1 = Qi
tM
l

,tM
k

for k, l ∈
{
1, . . . ,

∣∣T i
M

∣∣} .
(17)

In the following, U will denote the index set of unlearned
vectors. Let zs (s ∈ U) be a new sample to be added to the
learned data. Moreover, let αi

s = 0 be the coefficient assigned
to zs and gis be the quantity associated to αi

s and determined
using (13). If gis ≥ 0, s will be added to T i

R, and thus, the
KT conditions are satisfied. Otherwise, the KT conditions are
maintained by varying the margin vector coefficients αi

n (n ∈
T i
M ) and bi in response to the perturbation imparted by the

incremented new coefficient Δαi
s, until s enters into T i

E or T i
M .

Taking into account the perturbation caused by the incremen-
tal step, the coefficient differences Δαi

l ,Δgil (l∈T ∪{s}), and
Δbi are introduced. Furthermore, for τ ∈ {Δbi,Δαi

n,Δgin;
n ∈ T }, coefficient sensitivities τ̄ are defined so that τ =
τ̄Δαi

s.
The KT conditions (13) and (14) can be differentially ex-

pressed as

Δgin =
∑

m∈T i
M

∪{s}

Qi
n,mΔαi

m + cinΔbi ∀n ∈ T ∪ {s} (18)

Δhi =
∑

m∈T i
M

∪{s}

cimΔαi
m = 0. (19)

For all n ∈ T i
M , the condition gin ≡ 0 should be maintained.

Thus, it can be deduced from (18) and (19) that

P i

⎛
⎜⎜⎜⎜⎜⎝

Δbi
Δαi

tM1
...

Δαi
tM|T i

M |

⎞
⎟⎟⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎜⎝

cis
Qi

tM1 ,s

...
Qi

tM|T i
M |,s

⎞
⎟⎟⎟⎟⎟⎠Δαi

s (20)

or, in terms of coefficient sensitivities, we have⎛
⎜⎜⎜⎜⎜⎝

b̄i
ᾱi
tM1
...

ᾱi
tM|T i

M |

⎞
⎟⎟⎟⎟⎟⎠ = P̄

i

⎛
⎜⎜⎜⎜⎜⎝

cis
Qi

tM1 ,s

...
Qi

tM|T i
M |,s

⎞
⎟⎟⎟⎟⎟⎠ (21)

where P̄
i
= −{P i}−1

. Note that ᾱi
n ≡ 0 for all n ∈ T i

E ∪ T i
R.

According to (18) and (21), it can be deduced that

ḡin =
∑

l∈T i
M

∪{s}

Qi
n,lᾱ

i
l + cinb̄i, ∀n ∈ T i

E ∪ T i
R ∪ {s}

(22)

and ḡin ≡ 0 for all n ∈ T i
M .

From the given explanations, it can be seen that Δαi
s can be

absorbed by varying αi
n (n ∈ T i

M ) and bi. Meanwhile, gin (n �∈
T i
M ) vary accordingly. Thus, within several incremental steps,

s will be added to category T i
E when αi

s = D or to T i
M when

gis = 0 [20].
Remarks: As in [20], some procedures in the incremental

learning algorithm can be used here without modifications. For
instance, we have the following.

• The composition of sets T i
M , T i

E , and T i
R can be changed

with the change of αi
l (l ∈ T i

M ∪ {s}) and gin (n ∈ T i
E ∪

T i
R ∪ {s}). The procedure to determine the maximum

Δαi
s such that the index of some sample migrates can be

utilized here.
• To account for the new composition ofT i

M , matrix P̄
i must

be recomputed. The procedure of recursive computing of
P̄

i proposed in [20] can be also adopted in our case.

2) Incremental Learning Algorithm: The overall incre-
mental procedure for learning the new sample zs can be sum-
marized as Algorithm 1. The samples in U can be sequentially
learned using the algorithm.

Algorithm 1 Incremental SSM-SVM algorithm

1: Assign αi
s = 0;

2: Compute gis;
3: if gis ≥ 0 then
4: Add s to T i

R;
5: end if
6: while gis < 0 & αi

s < D do
7: Compute MΔαi

s
= maxΔαi

s; /∗ See [20] ∗/
8: Update αi

s +MΔαi
s
→ αi

s;
9: Compute b̄i;

10: Update bi + b̄iMΔαi
s
→ bi;

11: for l = 1 to |T i
M | do

12: Compute ᾱi
tM
l

;

13: Update αi
tM
l

+ ᾱi
tM
l

MΔαi
s
→ αi

tM
l

;

14: end for
15: for l = 1 to |T i

E ∪ T i
R| do

16: Compute ḡi
t̄M
l

;

17: Update gi
t̄M
l

+ ḡi
t̄M
l

MΔαi
s
→ αi

t̄M
l

;

18: end for
19: Update T i

M , T i
E , T i

R;
20: Update P i; /∗ Use recursive procedure (see [20]) ∗/
21: end while

3) Initialization Procedure: The KT conditions (13) and
(14) are assumed to be satisfied on T before carrying out
Algorithm 1. However, the conditions are not satisfied initially
by default, when the training of a new SSM-SVM classifier is



launched. An initial procedure is therefore necessary to make
the KT conditions fulfilled for a certain number (N i) of training
samples. The initialization procedure proposed in this study is
summarized as Algorithm 2.1

Algorithm 2 Initialization of incremental SSM-SVM

1: Assign N i = 1/D�+ 1;
2: Select zi

1, . . . ,z
i
Ni from Ωi;

3: Assign αi
1 = 1− 1/D�D;

4: for n = 2 to N i do
5: Assign αi

n = D;
6: end for
7: for n = 1 to N i do
8: Compute gin =

∑Nini

m=1 Q
i
n,mαi

m;
9: end for

10: Assign bi = −max{gin};
11: for n = 1 to N i do
12: Update gin + bi → gin;
13: end for
14: if argmaxn g

i
n = 1 then

15: Assign T i
M = {1}, Assign T i

E = {2, . . . , N i};
16: else
17: Assign T i

M = {argmaxn g
i
n}, T i

E = {2, . . . , N i} −
{argmaxn g

i
n};

18: Assign s = 1, go to step 6 of Algorithm 1;
19: end if

B. Improvement of Real-Time Learning Performance

It can be noticed that the ith sphere (ai, Ri) is determined
by the samples associated to T i

M and T i
E , whereas Algorithm 1

involves the whole set T . Based on the tacit assumption that the
sphere surface before incremental training does not move much
after the incremental procedure, the samples that are associated
to T i

R and are far away from the sphere surface have little impact
on the training results. Thus, these samples could be discarded
to reduce the memory consumption and the computation time.
Nevertheless, the potential candidates for T i

M and T i
E should

not be deleted in the deletion process.
In this paper, a procedure is proposed to keep the training can-

didates and to discard the useless ones whose indexes are from
T i
R. The samples nearest the sphere surface are kept, for they

are the more promising candidates. To find these samples, the
square of the distance from Φ(zn) to the center ai is defined as

din
2
= ‖Φ(zn)− ai‖2 . (23)

The difference of din
2 and Ri

2 is deduced from (6), (7), (13),
and (23) (see the Appendix), i.e.,∣∣∣din2 −R2

i

∣∣∣ = 2gin n ∈ T i
R. (24)

1In the algorithm, �x� denotes the floor function largest integer not greater
than x.

Hence, the samples corresponding to the |T i
R| smallest gin are

kept, whereas the others are discarded. Here, the maximum |T i
R|

is set as twice the value |T i
M ∪ T i

E |, as

∣∣T i
R

∣∣ =
{∣∣T i

R

∣∣ , if
∣∣T i

R

∣∣ ≤ 2
∣∣T i

M ∪ T i
E

∣∣
2
∣∣T i

M ∪ T i
E

∣∣ , if
∣∣T i

R

∣∣ > 2
∣∣T i

M ∪ T i
E

∣∣ . (25)

Since |T i
M ∪ T i

E | is usually small, this procedure can confirm
the slight memory consumption and computation.

IV. EXPERIMENTS AND DATABASE

A. PEMFC Stack and Test Bench

A 5-kW PEMFC test bench was used to carry out the various
experiments (see Fig. 3 for an overall view). As shown in Fig. 4,
this test bench is composed of a fuel cell stack and of the
following subsystems.

• Air supply subsystem: The flow rate, pressure, tempera-
ture, and hygrometry level at the air inlet can be regulated
to the required conditions.

• Hydrogen supply subsystem: The flow rate and pressure at
the hydrogen inlet, temperature, and hygrometry level at
the hydrogen inlet can be regulated to the required condi-
tions. Due to the compressor and the flow controller (mass
flow controller 2 in Fig. 4), hydrogen recirculation can be
achieved.

• Temperature subsystem: This subsystem is dedicated to
the control of the stack temperature.

• Electronic load: The load current can be flexibly varied
through an electronic load.

• Control/supervision unit: The controls of the test bench
and the parameter monitoring are fulfilled using National
Instruments Materials and Labview software.

A more detailed description of the test bench can be found
in [21].

A 40-cell PEMFC stack was investigated.2 The active area of
the stack/cell is 220 cm2. The nominal operating conditions of
the stack are summarized in Table I.

B. Experimental Database

The experiments in the normal state and various faulty states
were carried out on the test bench. The concerned health states
are listed in Table II. Note that the normal tests were carried
out at four different time points to take the influence of aging
into account. The faults were manually induced by varying the
operation conditions. For instance, the fault denoted by F3 in
Table II was deduced by setting the air stoichiometry value
to 4. The data sampled during the faulty operation periods are
collected as the database of the corresponding states.

The experiment in each state was repeated several times.
Although various physical variables had been sampled and col-
lected from the test bench, only the cell voltages sampled during

2The stack was fabricated by the French research organization Alternative
Energies and Atomic Energy Commission (CEA) within the framework of the
French ANR DIAPASON project.



Fig. 3. Photograph of the employed 5-kW PEMFC test bench.

Fig. 4. Schematic of the used PEMFC system.

TABLE I
NOMINAL CONDITIONS OF THE STACK

the experiments were drawn to construct the training data set
and the test data set. The absolute and relative deviations of
the cell voltage measurements are, respectively, 4 mV and
0.57%. For each state, data from one (or several) experiment(s)
were used as training data, whereas data from the others were
considered as test data.

The evolution of cell voltages in different states is shown
in Fig. 5. It should be noted that those for Nl2, Nl3, and
Nl4 are not given here for they are visually little varied from
that of Nl1. Among them, F1 and F2 occurred in between the
experiments, whereas Nl1, F3, and F4 were maintained during
the whole corresponding experiments. It can be found that the
voltages of different cells have different magnitudes and distri-

butions in different health states. In fact, different spatial distri-
butions of temperature, humidity, and gas fluids led by different
health states can result in different behaviors of the cell volt-
ages. Essentially, this character is utilized for fault diagnosis.

V. RESULTS AND DISCUSSION

A. Multifault Detection and Isolation

First, the performance of multifault detection and isolation
was investigated. Four faulty states (F1, F2, F3, and F4) and
the normal state at time point 1 (Nl1) were taken into consider-
ation. After training FDA, the data of five states were projected
onto 4-D feature space. Fig. 6 shows the first three features
of the projecting vectors. Globally, the samples from different
classes are isolated from the visual point of view.

Following the FDA training process, the SSM-SVM clas-
sifier was then trained in feature space. The training process
could be considered as the initial training, which is offline.

With the trained FDA and SSM-SVM models, the diagnostic
accuracy of the test data set was evaluated. The confusion
matrix, which allows visualization of the classification perfor-
mance, is shown in Table III. Each row of the table represents
the classification distribution of the samples in an actual class.
From the table, it can be seen that the diagnostic accuracy is
more than 95% for each class, except for class F4. In fact, F4

is the lightest fault, which has some overlaps with the normal



TABLE II
CONCERNED STATES (CLASSES)

Fig. 5. Evolution of cell voltages in different states. (a) Nl1. (b) F1.
(c) F2. (d) F3. (e) F4.

state. The overlaps can also be observed in Fig. 6. Moreover,
as the decision rule given by (10) was used, a tiny fraction of
the samples was misclassified or misdiagnosed to the new fault
class. Table IV gives the results without the new fault detection
procedure. Comparing the two tables, it can be found that the

Fig. 6. First three features of the projecting vectors from five different
health states.

TABLE III
CONFUSION MATRIX (%) WITH NEW FAULT DETECTION

TABLE IV
CONFUSION MATRIX (%) WITHOUT NEW FAULT DETECTION

samples that were misclassified to the new fault class were also
mostly misclassified without the new fault detection procedure.

B. Online Adaptation

When the aging effect is taken into account, performance
degradation arises over time. Fig. 7 shows the stack voltage
sampled at four different time points. The variation of data
sampled at each time is caused by system disturbance and



Fig. 7. Evolution of stack voltage over time.

Fig. 8. First three features of the projecting vectors from eight different
health states.

noise. Globally, a decrease can be observed over time. Since
the operating frequency is not homogeneous, the descent speed
of stack voltage is varying during the time.

The performance degradation due to the aging effect is
usually considered as normal degradation, which is acceptable
within certain limits. By using the trained FDA, the data from
states Nl2, Nl3, and Nl4 can be projected onto the feature
space. Fig. 8 shows the first three features of the projected
vectors. It could be seen that the data from normal classes shift
over time. The diagnostic models should be updated to avoid
misclassifying the data in normal functioning, but collected
after normal aging into the classes representing faults.

Here, to test the efficiency of the updating procedure, the
data from classes Nl1, Nl2, Nl3, and Nl4 were tested by
using the diagnostic models that were updated at different
times. Model1,Model2,Model3, and Model4 were the mod-
els trained or updated at time 1, time 2, time 3, and time 4. Each
model was updated by using the previous model and the current
samples. For instance, Model3 was updated by using Model2
and data from Nl2.

TABLE V
CLASSIFICATION ACCURACY (%) OF NORMAL DATA SETS USING

THE MODELS UPDATED AT DIFFERENT TIMES

TABLE VI
CONFUSION MATRIX (%) WITH F1 AS NEW FAULT CLASS

TABLE VII
CONFUSION MATRIX (%) WITH F2 AS NEW FAULT CLASS

TABLE VIII
CONFUSION MATRIX (%) WITH F3 AS NEW FAULT CLASS

The test results are summarized in Table V. It can be seen that
the diagnostic accuracy is low without an updating procedure
at each time. On the contrary, with an updating procedure,
the diagnosis accuracy could be significantly improved. Hence,
the updating procedure is therefore justified to be useful and
efficient.

C. Detection of a Novel Failure Mode

Here, classes NlR (R = 1, . . . , 4) are combined as a unique
class denoted by Nl. To test the performance of the strategy
proposed for detecting a novel failure mode, we proceed as
follows. Let j ∈ {1, . . . , 4}. Let us assume that the fault rep-
resented by class Fj was initially an unknown fault. Hence, the
initial step dedicated to training was realized with the data that
were representative of classes Nl and Fi with i ∈ {1, . . . , 4} −
{j}. After that, the data from various classes including those
used in the training phase and the unknown class Fj were
treated. Tables VI–IX show the confusion matrices for the
different values of j.



TABLE IX
CONFUSION MATRIX (%) WITH F4 AS NEW FAULT CLASS

TABLE X
OCCUPIED MEMORY AND COMPUTING TIME

For all the cases, the probabilities that the data located in the
known classes were misclassified to the novel classes are gen-
erally low. It should be noted that for the cases where F1, F2,
and F3 were considered as novel classes, the probabilities of
detection of the novel class were more than 95%. However,
for the case where F4 was considered as a novel class, the
probability was only equal to 39.86%, which is a low level. It
can be deduced that it is relatively difficult to recognize the data
in the novel class when they are too close to the known classes.

D. Real-Time Capability

To implement the proposed approach online in an embedded
system, the computational cost should be carefully evaluated. In
this paper, the computational costs of the two online procedures
(performing process and updating process), were evaluated
from the perspectives of occupied memory and computing time.
The tests were carried out under a 64-bit MATLAB 2010b
environment with a 2.7-GHz CPU and 8-G RAM. The results
are summarized in Table X (Model1 is the initial model that
was trained offline).

It can be found that the updating time is longer than the
performing time and is thus the main part of the computing
burden. To our knowledge, the diagnostic period of 1 s can
satisfy the requirements of diagnosis for most PEMFC systems.
Moreover, the memory used by most embedded systems can
achieve the storage task easily. Hence, the proposed strategy is
suitable for online implementation.

E. Discussion

In practice, the diagnosis of the other faults different from
those studied can also be relevant, for instance, the faults
related to water management and hydrogen supply. If only the
cell voltage magnitudes and/or distributions caused by a fault
are different from those of the normal state and other fault
states, the fault is detectable and isolable by using the proposed
strategy. Hence, it is feasible to extend the approach to the
diagnosis of other fault types.

The proposed diagnosis approach is dependent on data. If
we want to diagnose a specific fault, the data in the concerned
fault mode must be prepared. This could be the weak point
of the proposed approach. In practice, the diagnosis of several
most common faults could be initially considered, such that
the system failure rate could be significantly lowered through
successful diagnosis of these faults. Then, the diagnosis of
new faults could be added to the existing approach when the
corresponding data are collected.

VI. CONCLUSION

This paper has presented a novel data-driven diagnostic strat-
egy for PEMFC systems. The FDA and SSM-SVM methods
were used successively to extract the features from individual
cell voltages and to classify the extracted features into differ-
ent classes corresponding to the known health states and the
potential novel failure mode. By the incremental learning of
SSM-SVM, the online adaptation of the diagnostic approach
is realized.

The test results for a 40-cell PEMFC stack show that different
faults can be detected and isolated with high accuracy, and
the data from the potential novel failure modes can be recog-
nized in most cases. Using an online adaptation procedure, the
diagnostic approach can be adapted over the operating time,
and the diagnostic performance can be maintained. Moreover,
the computational cost is justified to be suitable for online
implementation.

APPENDIX

PROOF OF (24)

According to (23) and (7), the left-hand side of (24) can be
expressed as∣∣∣din2 −R2

i

∣∣∣ = |−2Φ(zn)ai + 2Φ(zl)ai| for l ∈ T i
M . (26)

Substituting (6) and taking into account (13), we obtain

Φ(zl)ai = Φ(zl)
∑
m∈T

cimαi
mΦ(zm) =

∑
m∈T Qi

m,l

cil

=
gil − cilbi

cil
=

0− cilbi
cil

= −bi. (27)

Substituting (27) and (6) and taking into account (13), the
right-hand side of (26) can be expressed by∣∣∣∣∣−2Φ(zn)

∑
m∈T

cimαi
mΦ(zm)− 2bi

∣∣∣∣∣
= 2

∣∣∣∣∣
∑
m∈T

Qm,n + cinbi

∣∣∣∣∣ = 2
∣∣gin∣∣ = 2gin for n ∈ T i

R. (28)
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