
Assessing variable importance in clustering: a new method
based on unsupervised binary decision trees

Ghattas Badih1 · Michel Pierre1,2 · Boyer Laurent2

Abstract
We consider different approaches for assessing variable importance in clustering. We
focus on clustering using binary decision trees (CUBT), which is a non-parametric
top-down hierarchical clustering method designed for both continuous and nominal
data. We suggest a measure of variable importance for this method similar to the one
used in Breiman’s classification and regression trees. This score is useful to rank the
variables in a dataset, to determine which variables are the most important or to
detect the irrelevant ones. We analyze both stability and efficiency of this score on
different data simulation models in the presence of noise, and compare it to other
classical variable importance measures. Our experiments show that variable
importance based on CUBT is much more efficient than other approaches in a large
variety of situations.

Keywords Unsupervised learning · CUBT · Deviance · Variable importance ·
Variables ranking

1 Introduction

In most statistical modeling and data analysis tasks, variables’ scoring is essential. Its
most frequent use is for dimension reduction or feature selection (Liu and Yu 2005),
in order to reduce the complexity of the models, to reduce the noise in the data and
hence to gain in model accuracy and interpretability. Variables are generally scored
with respect to a model or a specific task.

B Ghattas Badih
badih.ghattas@univ-amu.fr

Michel Pierre
pierre.michel@univ-amu.fr

Boyer Laurent
laurent.boyer@ap-hm.fr

1 I2M UMR 7373, Aix Marseille Université, CNRS, Centrale Marseille, 13453 Marseille, France

2 SPMC EA3279, Aix Marseille Université, 13385 Marseille, France

1

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-018-0857-0&domain=pdf
http://orcid.org/0000-0002-6160-9341

In supervised learning, variable importance is often related to its correlation or
dependence with a target variable Y . It may be assessed within the model learning
process, or once the model is estimated. The most known approaches are classification
and regression trees (CART, Breiman et al. 1984), random forests (RF, Breiman 2001)
and support vector machines (SVM, Guyon et al. 2002; Rakotomamonjy 2003), where
variable importance is strongly related to the model structure and accuracy.

Unsupervised learning concerns data clustering and density estimation. We consider
here only clustering methods which aim to construct a partition of a set of n obser-
vations in k clusters, where k is specified a priori or determined by the method. Two
methods, k-means and hierarchical clustering are among the very common approaches
used in practice. In clustering, there is a need to determine which variables are the
most important with respect to the obtained clusters.

CUBT (Fraiman et al. 2013; Ghattas et al. 2017) is a non-parametric top-down
hierarchical method designed for both continuous and nominal data. A decision tree
constructed with CUBT can be used to identify which variables of the dataset are
active and take part directly in the growing stage of the tree. However, although some
input variables may be irrelevant for the tree construction, they may be competitive
with the active variables at different splits of the tree. Identifying these variables may
be very useful for many applications.

The goal of this paper is to define variable importance based on CUBT. The role of
important variables is analyzed through different data simulation models, comparing
CUBT with other classical methods. Stability and efficiency of the score of variable
importance are provided. The paper is structured as follows: Sect. 2 presents some
classical methods to assess variable importance in clustering. Section 3 gives a brief
description of CUBT. Section 4 presents the new methodology to assess variable
importance based on CUBT. In Sect. 5, we give a real data example to illustrate our
new method. Finally, Sect. 6 presents some experiments and results with different data
simulation models and different clustering methods.

2 Variable importance in clustering

In this section we present some scoring approaches for variables in the context of
clustering. Two of them are strongly related to the clustering approach, unsupervised
random forests (URF) and two-level variable weighting clustering algorithm TWKM.
A third scoring approach, the Laplacian score (LS), computes a variable importance
score independently from any partitioning model or algorithm. Finally, we propose
an intuitive scoring method, leave-one-variable out (LOVO) adapted for all clustering
methods.

2.1 Unsupervised random forests

Random Forests (Breiman 2001) and their variable importance measure are one of the
most known and used supervised methods both for regression and classification.
Breiman (2001) suggested to use RF for clustering by resolving a binary classification

2

problem: the unlabeled data are assigned to the first class. The second class contains
observations generated by independent sampling from the one-dimensional marginal
distributions of the first class data. The clustering task is thus transformed into a binary
classification problem and variable importance is computed accordingly. The impor-
tance of a variable corresponds to the mean decrease of the Gini criterion obtained if
each split within the trees of the forest was replaced by the surrogate split over this
variable (URFgini). It can also be computed from permuting out-of-bag (OOB) data:
for each tree, the prediction error over the OOB data is computed, the same error is
computed after randomly permuting each predictor variable. The difference between
the two errors are then averaged over all trees, and normalized by the standard devia-
tion of the differences (URFperm). URF may be used for both continuous and nominal
data. The number of trees used in the forest was set to 500. The minimal size of a
terminal node (nodesi ze) was set to 1 and the number of variables randomly sampled
as candidates at each split (mtry) was set to �√p�, with p the number of variables
in the data, and � � stands for the integer part. To apply this method we have used the
randomForest package (Liaw and Wiener 2002) from the R software (R Core Team
2013).

2.2 Weighting k-means clustering

The two-level variable weighting clustering algorithm TWKM (Chen et al. 2013) is a
weighted subspace clustering algorithm for continuous data which can assign weights
for each variable in the dataset or weights for groups of variables. This algorithm
is an extension of the entropy weighted k-means clustering algorithm, which itself
is an extension of the k-means algorithm (MacQueen 1967). First, a set of k initial
centers are randomly selected. Observations are assigned to the nearest centers using
a dissimilarity measure. Then, new centers are updated, based on these new clusters.
Weights are computed for each variable within each cluster, based on the current
clustering. The variable weight is inversely proportional to the sum of the within-
cluster variances of the variable in the clusters. Weights are taken into account in
the computation of the dissimilarity measure. The process continues in this way until
convergence. The dissimilarity measure used is the same as the one used with k-means
by default, i.e. it is based on the sum of squares between observations. To apply this
method, we used the R package wskm (Williams et al. 2015). This approach has been
implemented only for continuous data.

2.3 Laplacian score

The Laplacian score (LS, Belkin and Niyogi 2001) is a popular variable ranking index
for unsupervised learning. LS assesses variable importance by evaluating the power of
locality preserving of a variable. For each variable, this score is computed according to
proximities between observations in a k-nearest neighbor graph, with the assumption
that two observations are related if they are connected in the graph. A similarity
matrix S between observations is first computed. For each pair of observations i and j ,

3

Si j = e− ||xi−x j ||2
t , where t is a constant. In this study, we fix t = 1. For each observation

not in the k-nearest neighborhood, similarities are set to zero. Let D = diag(S1)
(where 1 is an identity vector) the diagonal matrix containing for each observation
the sum of the similarities to its k-nearest neighbors, i.e. D = ∑n

i=1 EiS1ei , where
Ei is a n × n matrix with 1 on the cell (i, i) and 0 elsewhere, and ei is a 1 × n row
matrix with 1 on cell (1, i) and 0 elsewhere. The Laplacian matrix is defined to be
L = D − S, each variable X . j , j ∈ {1, . . . , p}, is “centered” getting:

X̃ . j = X . j − X
′
. j D1

1′D1
1

Finally, the LS of variable j is computed as follows:

ImpLS(X . j) = X̃
′
. j L X̃ . j

X̃
′
. j D X̃ . j

LS assigns highest scores to variables that best respect the nearest neighbor’s graph
structure. It is often used in filter methods for feature selection (Zhu et al. 2012). When
compared to other classical scores such as data variance or Fisher score, LS showed
better results in terms of efficiency (Zhu et al. 2012).

2.4 Leave-one-variable-out score

We propose an intuitive scoring method that may be used with any clustering approach.
Once a partition P is obtained using all the variables we compute a within–cluster het-
erogeneity criterion denoted R(P). This heterogeneity criterion is defined in Sect. 3.2.
Denote P− j the partition obtained using the same algorithm but omitting variable j
from the data, and R(P− j) the within-cluster heterogeneity measure for P− j . The
importance of variable j is defined as follows:

ImpLOV O (X . j) = R(P− j)

We denote this method LOVO for leave one variable out and we use it later for CUBT,
k-means and k-modes.

3 Clustering using unsupervised binary trees

CUBT (Fraiman et al. 2013) is a clustering method inspired by CART. It defines a
set of clusters using binary decision rules over the original variables. The obtained
partition is represented by a binary decision tree interpretable in terms of the original
variables, and may be used to assign new observations to a cluster. The algorithm is
parallelizable, thus usable for large data sets.

CUBT proceeds using three stages. In the growing stage the sample is split recur-
sively into two subsamples reducing the heterogeneity of the data within the new

4

subsamples according to a heterogeneity measure. In the second and third stage the
maximal tree obtained from the growing stage is pruned using two different criteria,
a robust dissimilarity measure and a heterogeneity measure.

In recent works, an extension of CUBT was proposed for both ordinal and nominal
data (Ghattas et al. 2017), using Shannon entropy and mutual information. Compar-
isons with other classical methods using several data simulation models and real data
applications showed that CUBT outperforms most of the other methods, especially
in terms of prediction, that is using the clustering result to assign a cluster to new
observations not used in the clustering process. Some heuristics were proposed for a
fine tuning of the parameters used in the method.

We give now a brief description of CUBT.

3.1 Notations

Let X ∈ E = ∏p
j=1 supp(j), be a random p-dimensional vector with coordinates

X . j , j ∈ {1, . . . , p}, and supp(j) the support of variable j , i.e. the set of values it can
take. We have a set S of n random observations of X, denoted Xi with i ∈ {1, . . . , n}
and Xi j is the i th observation of component j of X . Similar notations are used with
small letters to denote the realizations of these variables: x , xi , x. j and xi j .

3.2 Heterogeneity criteria

For any node t (a subset of S), let nt be the number of observations in t , let X (t) be the
restriction of X to node t , i.e. X (t) = {X |X ∈ t}. We define R(t), the heterogeneity
measure of t for continuous data as follows:

R(t) = nt
n
trace(cov(X (t)))

=
∑

Xi∈t || Xi − X̄t ||2
n

where cov(X (t)) is the covariance matrix of X (t) and:

X̄t =
∑

Xi∈t Xi

nt

For nominal data, the heterogeneity measure of t is defined as follows:

R(t) = trace(MI(X (t)))

= −
p∑

j=1

∑

l∈supp(j)
p(t)
l j log2 p

(t)
l j

where MI(X (t)) is the mutual information matrix of X (t) and p(t)
l j is the probability

for the component j of X to take value l within node t . For continuous data, te

5

heterogeneity criterion R(t) is the sum of the variables’ variances while for nominal
data, it is the sum of their entropies.

3.3 Growing stage

Initially, the root node of the tree contains all the observations of S. The sample is
split recursively into two disjoint subsamples using binary splits of the form x. j ∈ A j ,
where j ∈ {1, . . . , p} and A j is a subset of supp(j). For continuous variables, A j

will be a real interval of the form A j =] inf(supp(j)); a j], with a j ∈ supp(j).
Thus, a split s j (t) of a node t into two subnodes tl and tr is defined by a pair (j,A j)

as follows:

tl = {x ∈ E : x. j ∈ A j } and tr = {x ∈ E : x. j /∈ A j }

The best split of t into two sibling nodes tl and tr is defined by:

argmax(j,A j){Δ(t, s j (t))}

where

Δ(t, s j (t)) = R(t) − R(tl) − R(tr)

The new subnodes are recursively split, and the growing process may stop when at
least one of the two following criteria is satisfied:

nt < minsi ze or Δ(t, s j (t)) < mindev × R(S)

where minsi ze and mindev are fixed thresholds, and R(S) is the deviance of the
entire sample. Theminsi ze parameter is the minimum number of observations within
a terminal node while mindev is the minimum proportion of deviance attained for a
split to be considered. Once the algorithm stops, a class label is assigned to each leaf
and the obtained tree is called the maximal tree. A partition of the initial dataset is
obtained, and each leaf of the tree corresponds to a cluster.

Details of both pruning stages of CUBT are described in previous works (Fraiman
et al. 2013; Ghattas et al. 2017), as they are not needed to assess variable importance.

The main difference between CUBT and CART are the follows:

– The splitting criterion is based on the output variable Y in CARTwhereas in CUBT
it is based on all input variables, no output variable being available.

– Pruning in CUBT is done in two stages using a dissimilarity measure when CART
uses a one-step cost complexity measure.

6

4 Assessing variable importance in CUBT

To define variable importance in CUBT we follow similar ideas used in CART. We
first define the surrogate splits for each variable within each node of a tree. Then we
use the surrogate splits to compute the variable importance score.

4.1 Surrogate splits

Let s be the best split of a node t in the tree T , based on variable j0 which splits t into
tL and tR . Let s j = s j (t) be any split of t using any variable j �= j0 splitting t into t ′L
and t ′R .

The probability for an observation to be sent to the left node for both splits s and
s j is defined as follows:

p(tL ∩ t ′L) = Card{tL ∩ t ′L}
nt

where Card is the cardinal of a set.
Then, the probability that both splits send an observation to the left node is:

pLL(s, s j) = p(tL ∩ t ′L)

p(t)

where p(t) = nt
n . pRR(s, s j) is defined equivalently.

The probability that s j predicts s is:

p(s, s j) = pLL(s, s j) + pRR(s, s j)

The surrogate split for s over variable j in node t , denoted s̃ j (t) is defined by:

p(s, s̃ j (t)) = max
s j∈S j

p(s, s j)

where S j is the set of all splits over variable j .
Surrogate splits are used to compute variable importance. They may also be used

when predicting new observations with missing data.

4.2 Variable importance

We define the importance of variable j as follows:

Imp(X . j) =
∑

t∈T
Δ(t, s̃ j (t))

The score of importance is the total loss of deviance induced if each split in the tree
T is replaced by the surrogate split over X . j .

7

Variable importance may be assessed using the dataset at hand, but using bootstrap
may give more stable results for the scores (Ghattas 1999). It is defined exactly like
in CART except that the criterion used in is not the same.

5 A real data example

As an example we use the Iris data set (Fisher 1936) from a supervised classification
context. The output variable has three levels corresponding to different types of iris
and the other are continuous variables corresponding to measurements of the plant
(length and width of petals and sepals). The data set contains 150 observations, 50
for each iris type. The goal is to predict the type of the plant (the species) from the
dimensions of the plant.

The output of CUBT applied to the Iris dataset is given in Fig. 1 (the class variable
is not used). The leaves of the tree correspond to the discovered clusters labeled
arbitrarily C1, C2 and C3.

Table 1gives the score of variable importance for each input variable, computedwith
CUBT, unsupervised random forests (URFgini and (URFperm)), leave-one-variable-out
using CUBT and k-means (LOVO-cubt and LOVO-km), two-level variable weighting
clustering algorithm TW-k-means (TWKM) and Laplacian score (LS). Regarding
CUBT, the only active variable (Petal.Length) has the highest score. This is also

Fig. 1 Three clusters (C1, C2,
C3) obtained by CUBT with the
Iris dataset. The only active
variable is Petal.Length

Petal.Length < 3.40?

C1 Petal.Length < 5.15?

C2 C3

yes no

yes no

Table 1 The four input variables of the Iris datasetwith their corresponding importance score using different
methods

Method Sepal.Length Sepal.Width Petal.Length Petal.Width

CUBT 0.82 0.04 1.00 0.96

URFgini 0.99 0.89 1.00 0.72

URFperm 0.77 0.44 1.00 0.88

LOVO-cubt 0.83 0.98 0.71 1.00

LOVO-km 0.96 0.93 1.00 0.93

TWKM 2.53 × 10−6 1.31 × 10−5 2.53 × 10−6 1.00

LS 0.45 1.00 0.08 0.20

Highest scores for each approach are indicated in bold

8

the case for URFgini, URFperm and LOVO-km. The other variables (Sepal.Length,
Sepal.Width, Petal.Width) are not active in the tree, however two of them have
high scores.

6 Experimental analysis

In this section, we analyze both the stability and the efficiency of variable importance
scores based onCUBT.Decision trees are known to be unstablewhen the data is subject
to small variations (Breiman 1996). Besides, CUBT like CART is very sensitive to the
choice of theminsi ze parameter. First, the stability of the score computed with CUBT
is analyzed using two datasets where the clusters are known, Toys (k = 2) and Iris
(k = 3). Then, the efficiency of important variables detection is analyzed using nine
data simulation models designed for both continuous and nominal data, and CUBT is
compared to other classical variable importance scoring methods (URFgini, URFperm,
LOVO-cubt, LOVO-km, TWKM and LS).

6.1 Stability of variable importance in CUBT

We focus here on the stability of variable importance obtainedwithCUBT,with respect
to data modifications and the choice of minsi ze.
For this analysis, we use two known datasets from supervised classification, the first is
the Toys simulated dataset (Weston et al. 2003) and the second is the real Iris dataset.

The Toys dataset has two levels (Y ∈ {−1, 1}) and n observations may be drawn
for p ≥ 6 variables as follows:

– For j ∈ {1, 2, 3}, P(X . j ∼ N (y j, 1)) = 0.7 and P(X . j ∼ N (0, 1)) = 0.3,
– For j ∈ {4, 5, 6}, P(X . j ∼ N (0, 1)) = 0.7 and P(X . j ∼ N (y(j − 3), 1)) = 0.3,
– For j > 6, P(X . j ∼ N (0, 1)) = 1.

The first six variables are the true important variables, the others are irrelevant for the
model.
For each dataset, we draw 100 simulated datasets using either the simulation model
(for Toys) or bootstrap samples (for Iris). For each sample a CUBT tree is constructed,
and variable importance is computed. This is repeated for different integer values of
minsi ze ranging from 2 to

⌊ n
4

⌋
. Thus for each value ofminsi ze we get 100 estimates

for the importance of each variable. An optimal value of minsi ze may be obtained
using the heuristic proposed in Ghattas et al. (2017) minimizing the within deviance
score of the CUBT trees using ten fold cross validation. For the Toys dataset we fix
n = 100 and p = 12, i.e. there are as many irrelevant variables as the true important
ones.

Figures 2 and 3 show the boxplots of variables’ importance for different values of
minsi ze for the Toys and the Iris datasets respectively. Figures 4 and 5 show these
boxplots for the optimal values of minsi ze, 8 for Toys and 16 for Iris respectively.

The score of variable importance is sensitive to the value of theminsi ze parameter.
It decreases when increasing the minsi ze value. As the score is additive with the

9

Fi
g.
2

St
ab
ili
ty

of
C
U
B
T
V
ar
ia
bl
es
’
im

po
rt
an
ce

fo
r
th
e
To
ys

da
ta
se
t,
ob
ta
in
ed

us
in
g
10
0
si
m
ul
at
ed

da
ta
se
ts
,f
or

di
ff
er
en
tv

al
ue
s
of

m
in
si
ze
.T

he
si
x
fir
st
va
ri
ab
le
s
ar
e
tr
ue

im
po
rt
an
tv

ar
ia
bl
es
,t
he

ot
he
rs
ar
e
no
is
e
va
ri
ab
le
s.
V
I
sc
or
es

w
er
e
no
rm

al
iz
ed
.R

ed
lin

es
in
di
ca
te
th
e
m
ea
ns

of
th
e
va
ri
ab
le
s.
T
hi
s
fig

ur
e
sh
ow

s
va
ri
ab
le
s’
im

po
rt
an
ce

fo
r
th
e

ni
ne

fir
st
va
ri
ab
le
s,
fo
r
di
ff
er
en
tv

al
ue
s
of

m
in
si
ze

10

Fi
g.
3

St
ab
ili
ty

of
C
U
B
T
V
ar
ia
bl
es
’
im

po
rt
an
ce

fo
r
th
e
Ir
is
da
ta
se
t,
ob
ta
in
ed

us
in
g
10
0
bo
ot
st
ra
p
sa
m
pl
es
,f
or

di
ff
er
en
tv

al
ue
s
of

m
in
si
ze
.V

I
sc
or
es

w
er
e
no
rm

al
iz
ed
.R

ed
lin

es
in
di
ca
te
th
e
m
ea
ns

of
th
e
va
ri
ab
le
s.
T
hi
s
fig

ur
e
sh
ow

s
va
ri
ab
le
s’
im

po
rt
an
ce

fo
r
di
ff
er
en
tv

al
ue
s
of

m
in
si
ze

11

Fig. 4 Stability of CUBTVariables’ importance for the Toys dataset, obtained using 100 simulated datasets,
for different values of minsi ze. The six first variables are true important variables, the others are noise
variables. VI scores were normalized. This figure shows variables’ importance for minsi ze = 8, which is
the optimal value obtained by cross validation

Fig. 5 Stability of CUBT Variables’ importance for the Iris dataset, obtained using 100 bootstrap samples,
for different values of minsi ze. VI scores were normalized. This figure shows variables’ importance for
minsize = 16, which is the optimal value obtained by cross validation

number of nodes in the tree, high values of minsize give trees with less nodes thus
lower variable importance scores.

For the Toys dataset, the boxplots show that the three first variables are always
detected as the most important variables, the next three variables are less important,
as expected due to generating the data model. The six remaining variables (the noisy
variables) show a very stable variable importance score, lower than all others.
Variables having lower scores also have a lower dispersion.

For the Iris dataset, the score of variable importance is more stable for the less
important variable (Sepal.Wid th), while the boxplots for ”intermediate” variables
(Sepal.Length and Petal .Wid th) are very dispersed. The variable Petal .Length
is appearing as the most important in this dataset, confirming the results given in
Table 1.

12

6.2 Efficiency of variable importance

The efficiency of variable importance scoring corresponds to its ability to detect the
most important variables in a dataset, providing the highest scores for the most impor-
tant variables and the lowest scores to irrelevant or redundant ones. To test the efficiency
of variable importance scoring methods we use nine data simulation models where the
true important variables defining the clusters are known. We choose the same simula-
tion models previously defined in Fraiman et al. (2013) and Ghattas et al. (2017) for
continuous and nominal data, considering different numbers of variables and clusters.
We also test the efficiency of this method using again the Toys dataset for p = 18 and
in high dimension for p = 1000.

6.2.1 Simulation models

We consider nine data simulation models. The first four models are designed for
continuous data while the five remaining are designed for nominal data.

M1: 2D-model In this model, we fix k = 4 and X ∈ R
2 following a multivariate

normal distribution N (μl ,Σ), l ∈ {1, . . . , k}, where μ1 = (−1, 0), μ2 = (1, 0),
μ3 = (0,−1) and μ4 = (0, 1), and the covariance matrix Σ = diag(σ 21), with
σ = 0.1.

M2: 5D-model This model generates k = 10 clusters of observations in R
5, hav-

ing different multivariate normal distributions N (μl ,Σ), l ∈ [1, k], with μ1 =
(1, 0, 0, 0, 0), μ2 = (0, 1, 0, 0, 0), μ3 = (0, 0, 1, 0, 0), μ4 = (0, 0, 0, 1, 0),
μ5 = (0, 0, 0, 0, 1) and μi = −μi−5 for i ∈ {6, . . . , 10}. The covariance matrix
is Σ = diag(σ 21), with σ = 0.1.

M3: Concentric cluster Model In this model, we consider two concentric clusters in
R
2; each cluster has observations distributed uniformly between two concentric circles

centered in (0, 0). The first cluster is delimited by circles having radius between 50
and 80, the second by circles with radius from 200 to 230.

M4: High-dimensional Model In this model, three clusters are normally distributed
in R

50, with μ1 = (−1, . . . ,−1), μ2 = (0, . . . , 0) and μ3 = (1, . . . , 1), and the
covariance matrix is Σ = diag(σ 21), with σ = 0.01.

M5: Labels distribution-based Model In this model, each variable X . j , j ∈
{1, . . . , p = 9} has m = 5 levels. We define k = 3 clusters, each characterized
by a high frequency of one level. For observations from cluster 1, P(X . j = 1) = q,
and a uniform probability is used for the other levels i.e. P(X . j = l) = 1−q

m−1 for
l �= 1. For clusters 2 and 3, the frequent levels are 3 and 5, respectively, using the
same probabilities. We fix q = 0.8.

M6: Tree Model 1We use here a tree structure model. We fix the dimension p = 3
and the number of groups k = 4. Each variable X . j , j ∈ {1, . . . , p}, hasm = 4 levels,
X . j ∈ {1, 2, 3, 4}. Clusters are defined as follows:

– C1: x1 and x2 have odd levels, and x3 is arbitrary
– C2: x1 has odd levels, x2 has even levels, and x3 is arbitrary
– C3: x1 has even levels, x3 has odd levels, and x2 is arbitrary
– C4: x1 and x3 have even levels, and x2 is arbitrary

13

M7: TreeModel 2We use the same tree structure model. As in the previous case, we
fix p = 3 and the number of groups k = 4.Here, each variable X . j , j ∈ {1, . . . , p}, has
m = 4 levels. The only difference is that variable levels are not uniformly distributed
in each cluster. Here, we consider a parameter p0 that controls the non-uniformity of
the distribution of levels. In our experiments, we fix p0 = 0.8. Clusters are defined as
follows:

– C1: x1 and x2 have odd levels with P(x1 = 1) = P(x2 = 1) = p0, and x3 is
arbitrary

– C2: x1 has odd levels, x2 has even levels with P(x1 = 1) = P(x2 = 2) = p0, and
x3 is arbitrary

– C3: x1 has even levels, x3 has odd levels with P(x1 = 2) = P(x3 = 1) = p0, and
x2 is arbitrary

– C4: x1 and x3 have even levels with P(x1 = 2) = P(x3 = 2) = p0, and x2 is
arbitrary

M8: Nominal IRT-based model We use here an item response theory (IRT) model
designed for nominal data. We fix the dimension p = 9 and the number of groups k =
3. Each variable has m j = 5 levels. We now suppose that variables are representing
multiple-choice items. The nominal response model (NRM, Bock 1972) can address
nominal data. It is a specialization of the general model for multinomial response
relations and is defined as follows:

Let θ be a level of latent ability underlying the response to the items. The probability
that a subject of ability θ responds category l for item j is given by

Ψ jl j (θ) = exp[z jl j (θ)]
∑m j

h=1 exp(z jh(θ))

where z jh(θ) = c jh + a jhθ with h = 1, 2, . . . , l j , . . . ,m j , θ is a latent trait, and c jh
and a jh are item parameters associated with the h-th category of item j . We generate
random datasets using the NRM by simulating latent trait values for the four groups.
For c ∈ {1, 2, 3}, we simulate a vector of latent trait values for each group c using
N (μc, σ

2), μ = (−3,−1, 1, 3) and σ 2 = 0.2. For j ∈ {1, . . . , p}, the values of c jh
range uniformly between−2 and 2 while c jh are distributed as N (1, 0.1). Simulations
are performed using the NRM.sim function of themcIRT package (Reif 2014) with R.
M9: IRT-based Model We use IRT models again. These models allow us to assess
the probability of observing a level for each variable given a latent trait level. The
latent trait is an unobservable continuous variable that defines the individual’s ability,
measured by the observed variables. In the IRT framework, the variables called items
are ordinal. The observations can be either binary or polytomous. Here, we introduce a
polytomous IRT model to generate data in a probabilistic way. The generalized partial
credit model (GPCM, Muraki 1992) is an IRT model that can address ordinal data. It
is an extension of the 2-parameter logistic model for dichotomous data. The model is
defined as follows:

p jx (θ) = P(Xi j = x |θ) = exp
∑x

l=0 α j (θi − β jl)
∑m j

r=0 exp
∑r

l=0 α j (θi − β jl)

14

where θ is the latent trait and θi represents the latent trait level of individual i . β jl

is a difficulty threshold parameter for the level l of the item j . For j ∈ {1, . . . , p},
β j is a vector of dimension m − 1. α j is a discrimination parameter represented by a
scalar. We generate random datasets using the GPCM by simulating latent trait values
for the three groups. For c ∈ {1, 2, 3}, we simulate a vector of latent trait values for
each class c using N (μc, σ

2), μ = (−3, 0, 3) and σ 2 = 0.2. For j ∈ {1, . . . , p}, α j

is distributed as N (1, 0.1), and β j is a vector of ordered values that range uniformly
between −2 and 2. Simulations are performed using the rmvordlogis function of the
ltm package (Rizopoulos 2006) with R.

6.2.2 Adding noise to the simulated datasets

Each of the simulation models suggested in the previous subsection is based on p
variables. These variables may be considered as the true important variables with
respect to the clusters identification. For each case, we add p′ irrelevant variables
to the model, also called noise variables. We test two configurations: p′ = p and
p′ = 2p.

For continuous datasets (models M1 to M4), we simulate
⌊

p′
2

⌋
variables following

the normal distribution N (0, σ0
2), where σ0 = min j∈{1,...,p} σ j is the minimum stan-

dard deviation observed in the initial set of variables. The other p′ −
⌊

p′
2

⌋
additional

variables follow the uniform distribution U

(

−σ0

√
3
4 , σ0

√
3
4

)

. This method allows

us to consider two types of distributions for the noise variables, that have the same
variance.

For nominal simulation models M5 to M9, for each of the p relevant variables
in the model, we generate p′ corresponding irrelevant variables as follows: if the
original variable has m levels, its corresponding noise variable has the distribution
(p1, . . . , pm) over the same support where pl = 0.8 and p j = 0.2

m−1 for j �= l and
level l is chosen arbitrarily. This approach ensures that the noise variables generated
will have a low entropy.

6.2.3 Controlling the separability of the clusters

For each simulation model, we test two configurations of high and low cluster
separability. For the continuous datasets (models M1, M2 and M4, all based on multi-
dimensional gaussian distributions), the separability is reduced by fixing higher values
for the standard deviations of the distributions within the clusters. The standard devi-
ations are fixed to 0.8 for models M1 and M2, and to 0.1 for model M4. For the
concentric model M3, the radius of the circles is changed so that the circles are closer.
The first cluster is unchanged while the second is delimited by circles having radius
between 100 and 130. For the nominal datasets (models M5 to M9), the separability
is controlled in the same way as described in recent work (Ghattas et al. 2017).

15

Table 2 True positive rate (TPR) for each simulation model and each method, with high separated clusters

Model n CUBT URFgini URFperm LOVO-cubt LOVO-km LS TWKM

M1 100 100(2) 30.5(4) 65(2) 100(2) 100(2) 0(4) 23(4)

p = 2 300 100(2) 18.5(4) 65(2) 100(2) 99.5(2) 0(4) 56.5(4)

p′ = 2 500 99(2) 19(4) 70(2) 100(2) 100(2) 0(4) 57(4)

M1 100 100(2) 23(6) 50(5) 100(2) 100(2) 0(4) 17.5(6)

p = 2 300 100(2) 16.5(6) 30(5) 100(2) 100(2) 0(4) 54.5(6)

p′ = 4 500 99.5(2) 13.5(6) 45(2) 95(2) 100(2) 0(4) 58.5(4)

M2 100 100(5) 56.6(9) 46(9) 93(5) 91.4(5) 20(9) 29.8(9)

p = 5 300 96(5) 58.4(8) 54(8) 86.4(5) 96.2(5) 20(9) 75(9)

p′ = 5 500 100(5) 54(9) 56(9) 85.2(5) 96.8(5) 20(9) 90.6(9)

M2 100 100(5) 36.8(10) 28(15) 86.4(5) 93.6(14) 0(14) 21.8(5)

p = 5 300 96.2(5) 39.2(6) 40(10) 82.6(5) 94.2(5) 0(13) 24.2(6)

p′ = 10 500 100(5) 34.4(15) 38(13) 79.4(5) 96.2(5) 0(10) 88.8(14)

M3 100 97.5(2) 30(4) 55(4) 42(4) 80.5(2) 50(4) 61(4)

p = 2 300 99.5(2) 8(4) 55(2) 53(4) 78.5(2) 50(4) 55.5(4)

p′ = 2 500 100(2) 5.5(4) 45(4) 81(2) 77.5(2) 50(4) 49(4)

M3 100 97.5(2) 19(4) 15(5) 40.5(3) 77(2) 50(6) 92(2)

p = 2 300 100(2) 18(5) 35(4) 52.5(3) 71(2) 50(4) 59(4)

p′ = 4 500 100(2) 8(6) 50(4) 89(2) 71.5(2) 50(4) 41(4)

M4 100 100(50) 2.3(100) 62.4(88) 99.9(97) 73.4(100) 0(100) 78.5(50)

p = 50 300 100(50) 0.3(100) 68.8(92) 100(50) 72.4(100) 0(100) 79.3(50)

p′ = 50 500 100(50) 0(100) 68.6(95) 100(50) 71.7(97) 0(100) 75.7(50)

M4 100 100(50) 0(150) 46.2(138) 99.8(136) 46(150) 0(147) 74.1(50)

p = 50 300 100(50) 0(146) 52.6(144) 100(50) 43.8(149) 0(150) 76(50)

p′ = 100 500 100(50) 0(150) 56.6(145) 100(50) 45.3(147) 0(150) 80(50)

M5 100 100(9) 64.4(9) 33.3(18) 57.8(14) 86.7(18) 37.8(18) –

p = 9 300 100(9) 78.9(9) 44.4(18) 55.6(16) 86.7(18) 28(18) –

p′ = 9 500 100(9) 84.4(9) 57.8(18) 57.8(18) 81.7(15) 18.1(18) –

M5 100 100(9) 58.9(9) 15.6(27) 43.3(25) 51.1(23) 27.6(26) –

p = 9 300 100(9) 71.7(9) 15.6(23) 41.7(22) 63.9(25) 22.4(27) –

p′ = 18 500 100(9) 80(9) 24.4(27) 38.9(25) 65(27) 19.1(26) –

M6 100 96.7(3) 100(3) 26.7(6) 56.7(6) 53.3(6) 78(13) –

p = 3 300 100(3) 100(3) 40(6) 28.3(6) 31.7(6) 12(6) –

p′ = 3 500 100(3) 100(3) 26.7(6) 21.7(6) 35(6) 0(6) –

M6 100 95(3) 100(3) 10(8) 28.3(7) 38.3(7) 70.3(3) –

p = 3 300 100(3) 100(3) 6.7(9) 21.7(7) 26.7(9) 68(3) –

p′ = 6 500 100(3) 100(3) 16.7(9) 25(9) 20(8) 26(9) –

M7 100 96.7(3) 98.3(3) 33.3(6) 43.3(6) 58.3(4) 45(6) –

p = 3 300 100(3) 100(3) 33.3(6) 55(6) 53.3(5) 1(6) –

p′ = 3 500 100(3) 100(3) 50(5) 41.7(6) 50(6) 0(6) –

M7 100 98.3(3) 100(3) 3.3(8) 33.3(9) 45(3) 49(3) –

16

Table 2 continued

Model n CUBT URFgini URFperm LOVO-cubt LOVO-km LS TWKM

p = 3 300 100(3) 100(3) 6.7(9) 45(4) 46.7(9) 20(9) –

p′ = 6 500 100(3) 100(3) 10(9) 35(6) 45(5) 1(9) –

M8 100 73.9(9) 83.3(9) 45.6(16) 51.7(18) 55(17) 62.7(15) –

p = 9 300 76.1(9) 84.4(9) 43.3(18) 53.3(16) 53.3(17) 60(14) –

p′ = 9 500 76.1(9) 86.7(9) 44.4(18) 50.6(15) 54.4(16) 66.9(9) –

M8 100 68.3(9) 77.2(9) 25.6(23) 40(27) 36.7(27) 45.9(26) –

p = 9 300 71.1(9) 85.6(9) 30(27) 37.8(26) 31.7(23) 46.2(17) –

p′ = 18 500 73.3(9) 85(9) 30(21) 31.7(25) 34.4(27) 48.4(22) –

M9 100 100(9) 55.6(11) 64.4(16) 66.7(14) 61.1(15) 21.6(18) –

p = 9 300 100(9) 59.4(16) 87.8(9) 52.2(18) 62.8(10) 3.8(18) –

p′ = 9 500 100(9) 60(16) 94.4(9) 55(16) 58.3(14) 0.3(18) –

M9 100 100(9) 43.9(13) 33.3(27) 56.7(23) 40.6(23) 16(27) –

p = 9 300 100(9) 47.8(26) 48.9(9) 50.6(23) 47.2(24) 9.2(25) –

p′ = 18 500 100(9) 56.1(22) 62.2(9) 35(11) 53.3(27) 2.6(27) –

Values in parentheses represent the highest rank (HR) among the ranks of the p true important variables.
Bold values correspond to the best performances. p is the number of true important variables and p′ the
number of irrelevant variables added to the data. TWKM cannot be computed on nominal data

6.2.4 Results

For each simulation model, we vary the sample size using n = 100, 300 and 500,
and we run 100 simulated datasets computing importance scores from the following
methods: CUBT, URFgini, URFperm, LOVO-cubt, LOVO-km, TWKM and LS. For
both continuous and nominal datasets, clusters are equally sized. For CUBT, the score
of variable importance is computed from the optimal clustering tree obtained after both
the pruning stages are applied. To assess the efficiency of each scoring method, we
compute the proportion of true important variables appearing among the top p highest
score variables. This index is similar to a true positive rate (TPR). Highest values
correspond to a highest ability to detect important variables. When it is far from 100%
it may be interesting to see how are the “undetected” true important variables scored.
We also report the highest rank (HR) among the ranks of the p true important variables.
The first index (TPR) is averaged over the 100 simulated datasets while the HR is the
rank computed from the mean variable importance score of each variable.

Table 2 provides the results for all the models and all the methods, for two levels
of noise, with high separated clusters. It gives the TPR together with the HR (between
parentheses). For continuous data (models M1 to M4), LOVO-km uses k-means, and
for the other models it uses k-modes. Table 3 provides the same results as Table 2, for
low separated clusters. Results obtained using the Toys dataset are given in Table 4.

In the case of high separated clusters (Table 2), in terms of TPR, CUBT outperforms
all the methods for all sample sizes except for model M8, retrieving correct important
variables 90% of the times. For continuous datasets (models M1 to M4), URFgini
shows poor results, which are worse when increasing the sample size. URFperm has

17

Table 3 True positive rate (TPR) for each simulation model and each method, with low separated clusters

Model n CUBT URFgini URFperm LOVO-cubt LOVO-km LS TWKM

M1 100 100(2) 45(4) 55(4) 90(2) 100(2) 0(4) 50(4)

p = 2 300 100(2) 40(3) 65(2) 70(2) 100(2) 0(4) 50(4)

p′ = 2 500 100(2) 40(3) 65(4) 85(2) 100(2) 0(4) 50(4)

M1 100 100(2) 45(2) 35(5) 70(2) 100(2) 0(4) 50(6)

p = 2 300 100(2) 30(4) 35(5) 65(2) 100(2) 0(4) 50(4)

p′ = 4 500 100(2) 15(6) 40(3) 80(2) 100(2) 0(4) 50(5)

M2 100 98(5) 58(9) 62(9) 80(5) 100(5) 20(9) 66(9)

p = 5 300 100(5) 58(8) 50(9) 66(6) 100(5) 20(9) 80(9)

p′ = 5 500 100(5) 56(8) 58(8) 72(5) 100(5) 20(9) 80(9)

M2 100 96(5) 50(11) 34(15) 74(5) 100(5) 0(14) 28(14)

p = 5 300 100(5) 40(12) 32(13) 60(5) 100(5) 0(15) 80(13)

p′ = 10 500 100(5) 38(14) 36(15) 40(12) 100(5) 0(15) 80(15)

M3 100 100(2) 20(4) 50(3) 55(4) 70(2) 45(4) 50(4)

p = 2 300 100(2) 10(4) 40(4) 55(3) 80(2) 45(4) 50(4)

p′ = 2 500 100(2) 0(4) 45(3) 95(2) 85(2) 40(4) 50(4)

M3 100 90(2) 30(5) 40(6) 35(6) 55(2) 90(6) 50(6)

p = 2 300 100(2) 15(6) 20(6) 70(5) 65(2) 50(5) 50(4)

p′ = 4 500 100(2) 5(5) 35(6) 80(2) 80(2) 50(3) 50(6)

M4 100 100(50) 34.6(100) 54(98) 75.2(100) 91.8(99) 0(100) 0(100)

p = 50 300 100(50) 27.8(100) 54.6 (100) 58.2(100) 98.8(87) 0(100) 0(100)

p′ = 50 500 100(50) 23.8(100) 56(95) 68.6(99) 99.4(97) 0(100) 0(100)

M4 100 99.8(50) 19(150) 34.4 (146) 71.4(145) 81.6(149) 0(150) 0(150)

p = 50 300 100(50) 11.8(149) 36.8(150) 51.6(144) 95.6(136) 0(150) 0(145)

p′ = 100 500 100(50) 5.8(149) 40(147) 53(150) 98(146) 0(149) 0(150)

M5 100 98.9(9) 100(9) 26.7(18) 50(18) 60(17) 80(15) –

p = 9 300 98.9(9) 100(9) 26.7(18) 53.3(18) 60(17) 76.7(14) –

p′ = 9 500 100(9) 100(9) 15.6(18) 53.3(16) 71.1(18) 72.2(17) –

M5 100 96.7(9) 100(9) 12.2(27) 37.8(22) 37.8(25) 50(24) –

p = 9 300 100(9) 100(9) 5.6(27) 35.6(27) 43.3(21) 50(27) –

p′ = 18 500 100(9) 100(9) 3.3(26) 37.8(26) 48.9(26) 57.8(26) –

M6 100 30(8) 36.7(6) 0(18) 20(16) 33.3(8) 23.3(14) –

p = 3 300 23.3(7) 40(7) 0(15) 23.3(15) 26.7(16) 13.3(9) –

p′ = 3 500 40(7) 40(5) 3.3(18) 26.7(18) 33.3(9) 30(14) –

M6 100 46.7(9) 43.3(5) 3.3(26) 13.3(15) 16.7(7) 13.3(8) –

p = 3 300 46.7(9) 16.7(7) 0(20) 6.7(23) 26.7(22) 6.7(27) –

p′ = 6 500 46.7(8) 26.7(6) 0(25) 6.7(26) 23.3(16) 10(8) –

M7 100 23.3(9) 10(9) 6.7(17) 16.7(13) 23.3(8) 16.7(13) –

p = 3 300 43.3(9) 10(8) 6.7(17) 23.3(16) 26.7(18) 20(17) –

p′ = 3 500 23.3(7) 0(8) 0(18) 16.7(15) 43.3(3) 20(5) –

M7 100 26.7(8) 10(7) 0(24) 20(27) 23.3(14) 10(26) –

18

Table 3 continued

Model n CUBT URFgini URFperm LOVO-cubt LOVO-km LS TWKM

p = 3 300 43.3(7) 6.7(9) 3.3(27) 16.7(27) 16.7(25) 13.3(9) –

p′ = 6 500 30(8) 6.7(9) 3.3(19) 16.7(22) 10(22) 13.3(11) –

M8 100 76.7(9) 85.6(9) 45.6(18) 52.2(18) 53.3(15) 58.9(15) –

p = 9 300 71.1(17) 88.9(9) 46.7(17) 46.7(18) 45.6(18) 60(18) –

p′ = 9 500 73.3(10) 87.8(9) 47.8(18) 45.6(17) 47.8(16) 67.8(14) –

M8 100 74.4(19) 80(18) 26.7(26) 36.7(21) 42.2(25) 48.9(26) –

p = 9 300 64.4(9) 83.3(9) 34.4(26) 35.6(26) 27.8(26) 48.9(25) –

p′ = 18 500 73.3(9) 90(9) 22.2(27) 31.1(24) 26.7(26) 48.9(27) –

M9 100 97.8(9) 100(9) 41.1(17) 56.7(18) 56.7(17) 68.9(18) –

p = 9 300 100(9) 98.9(9) 40(17) 45.6(17) 54.4(18) 64.4(17) –

p′ = 9 500 100(9) 100(9) 53.3(18) 45.6(16) 56.7(18) 60(16) –

M9 100 97.8(9) 95.6(9) 24.4(27) 32.2(27) 47.8(22) 48.9(19) –

p = 9 300 100(9) 100(9) 28.9(27) 32.2(25) 38.9(23) 41.1(24) –

p′ = 18 500 100(9) 98.9(9) 33.3(27) 27.8(27) 45.6(25) 50(16) –

Values in parentheses represent the highest rank (HR) among the ranks of the p true important variables.
Bold values correspond to the best performances. p is the number of true important variables and p′ the
number of irrelevant variables added to the data. TWKM cannot be computed on nominale data

Table 4 True positive rate (TPR) for the Toys dataset

Data n CUBT URFgini URFperm LOVO-cubt LOVO-km LS TWKM

Toys 100 85.7(6) 34.3(12) 55.8(7) 75.7(12) 73(9) 16.7(12) 83.7(12)

p = 6 300 95.5(6) 25.7(12) 57.5(7) 65(11) 72.7(7) 6.7(12) 83.3(12)

p′ = 6 500 95.7(6) 23.5(12) 60(12) 58.7(9) 75.2(10) 2.5(12) 83.8(12)

Toys 100 80.5(6) 18.2(18) 37.2(16) 68.8(17) 61.2(18) 11.2(18) 83.5(16)

p = 6 300 91.7(6) 11.2(18) 42.7(15) 50.8(17) 62.3(11) 4.2(18) 83.5(17)

p′ = 12 500 95.2(6) 8.2(17) 40.8(8) 51.2(17) 62(17) 4.3(18) 83.3(18)

Toys

p = 6 100 36.6(469) 0.3(589) 0.0(889) 25(869) 8.3(983) 0(936) 83.3(895)

p′ = 994

Values in parentheses represent the highest rank (HR) among the ranks of the p true important variables.
Bold values correspond to the best performing method(s). p is the number of true important variables and
p′ the number of irrelevant variables added to the data

a better performance than URFgini. This is not the case for TWKM and LS, whose
performances remain stable and increase with sample size (except for model M3), but
are still unsatisfactory. CUBT is often placed equal with both LOVO approaches in
model M1 (and model M4 for LOVO-cubt).

For nominal datasets CUBT is largely better than the other methods. For models
M6 and M7, CUBT and URFgini performances are very close, with a TPR greater
than 90%, and outperform the LOVO approaches. The results according to the HR are
complementary with those already exposed (higher proportions induce lower ranks).

19

However, when CUBT is not the best performing method regarding the TPR (it happens
13 times out of the 54 cases), it is performing in the same way as the other best-
performing methods (LOVO or URFgini) regarding the HR. Even if the gap with the
TPR of other methods is often negligible, the HR ensures that CUBT shows a good
ability to detect the important variables in our simulated datasets.

In the case of low separated clusters, CUBT has the best performances except for
models M5, M6 and M8, where it is at the second position just after or close to URFgini.
The gap is more significant for model M8 that corresponds to the nominal IRT model.
For continuous datasets, the TPR retrieved by CUBT is similar to the one in the case
of high separated clusters (i.e. ≥ 90%). The other methods (except LOVO-km) show
poor results and the same behavior is observed for URFgini and URFperm (i.e. worse
results when increasing the sample size). CUBT outperforms the other methods except
for model M2 with N = 100. In this case, CUBT and LOVO-km have the same HR,
see Table 3.

For nominal datasets (M5–M9), CUBT and URFgini outperform the other methods,
except for model M7 with a low level of noise (in which LOVO-km is better). For
models M5 and M9, CUBT and URFgini performances are very close (TPR is ≥ 90%).
When CUBT is not the best performing approach, its results are similar to the ones
obtained with the best performing method (URFgini or LOVO-km), except for model
M8 for which URFgini is better than CUBT. In some situations (in models M6, M7 and
M8), CUBT is placed equal with the best performing method in terms of HR, even it
does not have the highest TPR.

For the Toys dataset (see Table 4), CUBT shows the highest values of TPR (except
when p′ = 2p and n = 100 where TWKM is best performing regarding this index)
and the best values of HR, detecting perfectly the p true important variables. With
1000 variables, CUBT and TWKM have a better performance than the other methods.
While TWKM has the best TPR, CUBT is better than TWKM in terms of HR, meaning
that all the true important variables are detected earlier with CUBT.

7 Conclusion

We have presented a new method to assess variable importance based on CUBT. We
have compared this approach to other classical scoring methods over several data
simulation models, in the presence of noise. CUBT Variable Importance score was the
best performing in most experiments. More experiments may be undertaken to analyze
the efficiency of the presented scores with respect to correlation or redundancy between
the variables and in higher dimensions. We have also analyzed the stability of this score
with respect to the data and to the tuning parameters of CUBT (especially the minsi ze
parameter), using heuristics defined in previous works.

Variable importance based on CUBT may be used for feature selection as for super-
vised learning. The surrogate splits used to compute the score may also be used to
handle missing data within CUBT both for the learning process and for predictions.
These ideas are now under study.

20

Acknowledgements We thank Claude Deniau and Pascal Auquier for their valuable comments. This work
was partially supported by the Project ECOS SUD U14E02.

References

Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering.
Adv Neural Inf Process Syst 14:585–591

Bock RD (1972) Estimating item parameters and latent ability when responses are scored in two or more
nominal categories. Psychometrika 37:29–51

Breiman L (1996) Heuristics of instability and stabilization in model selection. Ann Stat 24:6
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth and

Brooks, London
Chen X, Xu X, Huang JZ, Ye Y (2013) Tw-k-means: automated two-level variable weighting clustering

algorithm for multiview data. IEEE Trans Knowl Data Eng 25(4):932–944
Fisher R (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188
Fraiman R, Ghattas B, Svarc M (2013) Interpretable clustering using unsupervised binary trees. Adv Data

Anal Classif 7:125–145
Ghattas B (1999) Importance des variables dans les méthodes cart. Modulad 24:29–39
Ghattas B, Michel P, Boyer L (2017) Clustering nominal data using unsupervised binary decision trees:

comparisons with the state of the art methods. Pattern Recognit 67:177–185
Guyon I, Weston J, Barnhill S, Vapnik VN (2002) Gene selection for cancer classification using support

vector machines. Mach Learn 46(1–3):389–422
Liaw A, Wiener M (2002) Classification and regression by randomforest. R News 2(3):12–22
Liu H, Yu L (2005) Toward integrating feature selection algorithms for classifcation and clustering. IEEE

TKDE 17:491–502
MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Neyman

J, Le Cam LM (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, pp 281–297

Muraki E (1992) A generalized partial credit model: application of an em algorithm. Appl Psychol Measur
16:159–176

R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna

Rakotomamonjy A (2003) Variable selection using SVM-based criteria. J Mach Learn Res 3:1357–1370
Reif M (2014) mcIRT: IRT models for multiple choice items. Technical report, R package version 0.41
Rizopoulos D (2006) ltm: an R package for latent variable modelling and item response theory analyses. J

Stat Softw 17(5):1–25
Weston J, Elisseff A, Schoelkopf B, Tipping M (2003) Use of the zero norm with linear models and kernel

methods. J Mach Learn Res 3:1439–1461
Williams G, Huang JZ, Chen X, Wang Q, Xiao L (2015) wskm: weighted k-means clustering. Technical

report, R package version 1.4.28
Zhu L, Miao L, Zhang D (2012) Iterative Laplacian score for feature selection. Pattern Recognit 321:80–87

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

21

	Assessing variable importance in clustering: a new method based on unsupervised binary decision trees
	Abstract
	1 Introduction
	2 Variable importance in clustering
	2.1 Unsupervised random forests
	2.2 Weighting k-means clustering
	2.3 Laplacian score
	2.4 Leave-one-variable-out score

	3 Clustering using unsupervised binary trees
	3.1 Notations
	3.2 Heterogeneity criteria
	3.3 Growing stage

	4 Assessing variable importance in CUBT
	4.1 Surrogate splits
	4.2 Variable importance

	5 A real data example
	6 Experimental analysis
	6.1 Stability of variable importance in CUBT
	6.2 Efficiency of variable importance
	6.2.1 Simulation models
	6.2.2 Adding noise to the simulated datasets
	6.2.3 Controlling the separability of the clusters
	6.2.4 Results

	7 Conclusion
	Acknowledgements
	References

