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Speed-Selectivity in Retinal 
Ganglion Cells is Sharpened 
by Broad Spatial Frequency, 
Naturalistic Stimuli
César R. Ravello   1, Laurent U. Perrinet   2, María-José Escobar   3 & Adrián G. Palacios   1

Motion detection represents one of the critical tasks of the visual system and has motivated a large 
body of research. However, it remains unclear precisely why the response of retinal ganglion cells 
(RGCs) to simple artificial stimuli does not predict their response to complex, naturalistic stimuli. To 
explore this topic, we use Motion Clouds (MC), which are synthetic textures that preserve properties 
of natural images and are merely parameterized, in particular by modulating the spatiotemporal 
spectrum complexity of the stimulus by adjusting the frequency bandwidths. By stimulating the retina 
of the diurnal rodent, Octodon degus with MC we show that the RGCs respond to increasingly complex 
stimuli by narrowing their adjustment curves in response to movement. At the level of the population, 
complex stimuli produce a sparser code while preserving movement information; therefore, the stimuli 
are encoded more efficiently. Interestingly, these properties were observed throughout different 
populations of RGCs. Thus, our results reveal that the response at the level of RGCs is modulated by the 
naturalness of the stimulus - in particular for motion - which suggests that the tuning to the statistics of 
natural images already emerges at the level of the retina.

Motion detection is essential for animal survival, and studies show that many retinal cells1–3 and a considerable 
portion of the cortex4 are involved in its processing. However, most of these studies have focused on the detection 
of artificial stimuli, such as random dots, lines, or moving gratings, while ignoring the natural signals from the 
environment in which animals have evolved and to which their visual system would be attuned to5–9. Moreover, 
computational models based on the response to simple, artificial stimuli fail to predict the response to naturalistic 
images10,11. Nevertheless, working with natural images directly is not always possible due to their complexity 
regarding critical parameters of signals processing, including visual content and its variability. The latter makes it 
hard to control the motion information that is effectively being presented to the visual system12,13.

In the visual cortex, motion is detected at different levels and by populations of cells attuned to different 
parameters of the stimulus (see4 for a review). It has been reported that visual neurons stimulated with complex 
images, which should be closer to natural images, change their tuning curves compared to the response obtained 
with simple stimuli, becoming narrower and thus more selective to speed14. In turn, stimulation with naturalistic 
images generates sparser code15,16 and eye tracking responses become more precise17.

In the retina, the most basic form of motion detection is the response to moving textures in which Y-like 
Retinal Ganglion Cells (RGCs) increase their firing rate when sub-regions of their Receptive Field (RF) alternate 
between light and dark luminosity levels through time, regardless of the direction of motion18,19. It has been 
demonstrated that these mechanisms arises from the RF properties of ON and OFF Bipolar Cells (BCs) that con-
nect to the RGCs20 and transmit their activity in a non-linear fashion. This non-linear integration of the activity 
of BCs allows that the alternating activation of cells of both polarities do not cancel each other upon reaching 
RGCs21. These BCs can generate fast transient responses when there is a luminance change of the corresponding 
polarity (dark to light or light to dark respectively), so each time that BCs detect a temporal change in luminance, 
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they will generate EPSPs in the corresponding RGCs. The integration time of the RGCs is longer than the time 
course of the response of the BCs, so fast successive activations will be added. In this way, the RGCs will respond 
with higher firing rates to higher speeds because of the higher rate of alternating activation of the ON and OFF 
sub-fields.

More specialized computations are carried out by, e. g. Direction Selective RGCs (DSRGC) which respond 
preferentially to a single direction in a varied range of speeds depending on the RGC type and the species1,3,22. 
The circuitry involved in the computation of DSRGCs relates the integrated activity of BCs and starburst amac-
rine cells (SACs). At least two types of calculations are simultaneously present in the retina projecting to differ-
ent places of the central nervous system23–25. ON-OFF DSRGCs have been reported both in mouse and rabbits, 
responding to ON and OFF stimuli and being selective to four different types of motion direction in a broad 
range of speed. Besides, there also exists an On-DSRGC type reacting to slow velocities23. Rabbit and salamander 
retina report Object Motion RGCs detectors, which fire when a small patch of the image moves in a different 
pattern than the rest of the background26,27. More recently, it has been reported that the mouse retina contains a 
non-DS high-definition RGC, which is mainly selective to the motion of small objects across their RF28. Another 
sophisticated processing of motion, present in salamander retina, is the response to Motion Onset29, in which the 
initiation of movement within the RF of the RGC causes a higher response than does an object moving smoothly 
through it. While it has been shown that the retina is capable of advanced computations beyond standard pro-
cessing30, many capabilities remain unexplored31, for example, the fine tuning of retinal responses to motion in 
natural images.

In this study, using retinas from Octodon degus, a diurnal crepuscular rodent with a high proportion of cones 
(30%)32 and a relatively high density of RGCs, we focus on the properties of RGCs responses to motion in several 
scenarios. To overcome the limitations of working with simple, low-dimensional artificial stimuli, while at the 
same time avoiding the problems of working with natural images12, we used synthetic random textures called 
Motion Clouds (MC)33, which preserve some of the properties of natural images. The MCs mimic the spatiotem-
poral changes in luminance of natural scenes using a generative model for the geometric transformations of visual 
objects (translation, rotation, zoom)34. In contrast to a traditional drifting grating which has a single spatial and 
temporal frequency, a MC resembles a dynamic texture for which components (textons) may have different sizes 
and move at different speeds (see Fig. 1a for comparison of these two stimuli). While in general, natural images 
have their power distributed along a broad range of frequencies, MC can be parametrized to have a restricted 
range of frequencies to limit their information content or to have a broad spectrum to resemble natural images. 
As such, each generated texture corresponds to a compound of different moving gratings with random positions 
(phases) yet with spatiotemporal properties distributed along a parameterizable area in Fourier space. Here, we 

Figure 1.  Motion Cloud (MC) stimuli are characterized by the parameters of their spatio-temporal spectral 
envelope. (a) Bi-dimensional representation of the spatio-temporal frequency space. Points along the 
continuous line correspond to simple drifting grating stimuli moving at a given speed but with different spatial 
frequencies (blue dots). MC stimuli have their spectral energy distributed in an “ellipse” warped along a given 
speed plane. Interestingly, these can be parameterized with the same mean spatial (sf0) frequency and speed 
(V) as gratings, but with different levels of spatial frequency bandwidths (defined by the parameter Bsf, with 
Bsf = 0 for the grating) which will define the level of complexity of the sequence. The green ellipse represents a 
narrow bandwidth stimulus and the orange ellipse a broader bandwidth stimulus. (b) Examples of stimuli at 
different complexity levels. For simplicity, we plot the light intensity along a single row of the image (vertical 
axis) for the whole duration of the stimulation (horizontal axis). We show the drifting grating (top panel), 
which is constituted by a single spatial and temporal frequency (and thus a single speed, seen as the slope in this 
view), and the MCs (middle and lower panels), which have the same speed and central spatial frequency but 
with a narrow or wide bandwidth in spatial frequency space. (c) Contrast distribution of the stimuli. The three 
types of stimuli were built to have the same Michelson contrast, but their contrast distribution is different. By 
construction, sinusoidal gratings have a higher proportion of brightest and darkest pixels, while the rest of the 
values have uniform representation; on the other hand, MCs have a large proportion of pixels with intermediate 
luminance, with extreme values being rare, resulting in images where low contrast is more frequent than high 
contrast, as is the case of natural images.
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use the same distribution near the spatiotemporal speed plane, and control the amount of components by the 
bandwidth around the central spatial frequency. This defines a simple parameter to control the complexity of the 
input stimulus as the amount of compounded components in the texture (see Fig. 1b). This manipulation has 
previously been used successfully to study speed discrimination in humans17, where it was shown that additional 
information contained in the stimuli improves eye pursuit gain and precision.

To study such a property at the level of the retina, the activity recorded from a population of RGCs was com-
pared using simple moving stimuli (drifting gratings) vs. MC’s with the same speed and two levels of natural-
ness, regarding their spatial frequency spectrum (narrow and broad bandwidth). We found that for a significant 
fraction (66%) of RGCs responding to the motion, the cells’ tuning bandwidths become narrower when the 
spatiotemporal frequency content of the stimulus increased. The set of RGCs studied contains cells traditionally 
assigned to different types, indicating that this property is not exclusive of a single class, but instead is wide-
spread in the retina. At the population level, this change in tunning bandwidth results in sparser codes, which in 
turn reflects a more efficient coding of the motion information. Therefore, our findings show that fine-tuning of 
motion detection to natural image statistics already emerges at the level of the retina.

Results
We characterized the response from a population of speed responsive RGCs, recorded from retinal patches of 2 
young Octodon degus, a diurnal rodent, having a total of 308 RGCs (see Methods section and Fig. 2 for details).

Speed responsive cells in the retina as characterized using gratings.  We measured RGCs responses 
to a set of drifting gratings (artificial simple stimuli), with varying speed and spatial frequency (see Fig. 3a). For 
each spatial frequency, the response to speed averaged over trials was fitted to a skewed Gaussian. In Fig. 3b, we 
show how preference for certain speeds changes as a function of spatial frequency. As expected for RGCs, pre-
ferred speed decreases at higher spatial frequencies. In the example shown, the response is maximal at interme-
diate speeds and spatial frequencies, diminishing gradually as one moves away from that preferred combination 
of parameters. When looking at the fitted curves, it can be seen that the whole curve shifts towards lower speeds 
when increasing the spatial frequency.

A subset of the complete set of valid RGCs was separated and classified as speed responsive cells (SR), i.e. 
cells whose response is modulated by speed, by keeping only cells whose average firing rate correlated with the 
response strength, by estimating its correlation with the standardized component of the amplitude spectrum 
zF135; and then, cells whose speed response curve to the drifting gratings has a good fit to eq. 3 at every spatial 
frequency tested (χ2 < 0.05 for the normalized response). We analyzed retinal patches from two animals, where 
81 and 109 SR cells were found, respectively, representing ≈26% and ≈29% of the total RGCs recorded. Figure 4a 
shows the total number of RGCs found in a sample piece of retina, and their respective RF, of which the SR cells 
are highlighted in color (a second example is shown in Figure S1 in the Supplementary Information section).

To discriminate between SR and Non-SR cells, we analyzed the RF properties of each class. In terms of ON/
OFF RGCs distribution, and similar to previous studies performed in the same animal model36, a low ratio of ON/
OFF cells were found. The temporal profile of a cell’s response was characterized using the parameters indicated 
in Fig. 4b: zero-cross and peak-time. In Fig. 4c we show the distribution of these two parameters along the entire 
population of RGCs, separated by their speed responsive selectivity (SR cells are represented in red, while Non-SR 
in black). Interestingly, only the zero-cross parameter is significantly different between SR and Non-SR cell popu-
lations (p = 0.026 Kolmogorov-Smirnov test, p = 0.65 for the difference in peak time). Additionally, there was no 
direct match with other traditional criteria for classification of RGCs, such as Fast-Slow and Transient-Sustained 
using the latency and transience index37 of the response to a full-field flash, since our set of SR cells contained cells 
belonging to each class (24 Fast-Transient, 13 Fast-Sustained, 19 Slow-Transient and 25 Slow-Sustained from 81 
SR cells).

Speed selectivity changes with the complexity of the stimulus.  When presenting a stimulus with 
the similar basic properties as the drifting gratings but with energy distributed along a larger area in parameter 
space, the responses from RGCs differ significantly. Examining in detail the response at the preferred spatial 
frequency (Fig. 5a) reveals that the firing rate response to lower and higher speeds is much weaker for the MC 
stimuli compared to the grating, while the responses become equivalent only around the preferred, intermediate 
speeds. This effect is more evident when looking at the tuning curves (Fig. 5b), where the response decreases more 
sharply when moving away from the preferred parameters for the complex stimuli. The change in the shape of the 
curve is evidenced by a change in the σ value of the fit, which decreases progressively from 1.76 to 1.45 and 0.95 
as the complexity of the stimulus increases, while maintaining the same preferred speed (1.47;1.37;1.49 mm/s 
respectively). The firing rates are stable across repetitions, so the narrower tuning is not due to drifts or decay in 
cell activity. When considering all the conditions tested, the response profile to the MC stimuli cover a smaller 
area in parameter space along both axes, when viewing it as a two dimensional map of the response at each com-
bination of parameters (Fig. 5c). As expected, speed preference decreases with spatial frequency, as seen by the 
slanted response profile.

This change in the response results in tuning curves with narrower profiles, thus the tuning of the RGC 
becomes more specific for certain parameters of the stimulus. Besides this change in the shape of the tuning 
curve, for many RGCs, the response to the MC stimuli has lower firing rates, as is the case for the example shown 
in Fig. 5b, while for others, the responses are equivalent and even higher in some cases (see examples in Fig. 5d).

Another interesting and unexpected finding is that some of the RGCs with narrower tuning for speed also 
present changes in their preferred speed, mostly towards higher speeds (Fig. 5d, panels on the right). Low firing 
rates obtained for MCs compared to gratings could be explained by differences in the contrast stimuli, but not the 
sharpening of the speed-selective curve (see Box 1). The low contrast observed in MCs is due to an increase of the 
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spatial frequency bandwidth. In the grating analysis, we observe that for higher spatial frequency bandwidths, the 
peak activity for the central frequency gets smaller, and not narrower.

To quantify the change in the tuning bandwidth of the grating versus MC response, we measured the prop-
erties of the curve fitted to the response to speed (see Methods section for details). In Fig. 5d we show some 
examples of RGCs with narrower tuning in terms of lower response to the non-preferred speeds. At the popu-
lation level, a large proportion of the SR cells show a decrease in the bandwidth of the response to speed at their 
preferred spatial frequency, for the complex stimuli when compared to the response to drifting gratings. This is 
evident when looking at the comparison of σv in Fig. 5e; for both MC series, a large portion of the points falls 
below the line of identity, meaning that the values are lower than for the grating stimulus. The distributions of 
σv are skewed towards lower values (Fig. 5f), meaning that a large portion of the speed responsive RGCs have 

Figure 2.  Experimental multielectrode recording setup. (a) Schematic view of the retina over a Multielectrode 
Array, while light stimulation is projected from below. (b) Each blue line represents a voltage signal from 
an electrode, and the red dots indicate detected peaks. (c) The signal of each electrode is reconstructed by 
iteratively adding different templates. Each color represents a different template, indicating spikes coming 
from different cells. Each spike can be detected by many neighboring electrodes, but only one will be assigned 
to a single unit. (d) The raster plot indicates the times at which each RGC fired an action potential. (e) Spike 
Triggered Average (STA) of a representative cell, computed from the response to checkerboard stimulus. Each 
panel shows the average image at the corresponding frame before the spiking of the cell (time zero). Blue pixels 
represent points with negative contrast, while red represent those with positive contrast. The black bar is 0.2 mm 
long. (f) Spatial component of the STAs of all the RGCs recorded from a retinal patch, after discarding non-valid 
units (see Methods for details). Each ellipse corresponds to a 2-D Gaussian fit at 1 s.d. The background shows 
the frame from (e) of maximum response and the red ellipse its fit, while the blue ellipses show the fit for the 
rest of the cells. (g) Distribution of RF sizes from a retinal patch, measured as the radius of a circle with the same 
area as the ellipse fit. (h) Temporal components of the STA of the cells shown in (g). The crosses mark the STA 
of the cell shown in (e).
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narrower tunings when stimulated with the complex stimulus (T = 1009 p = 0.00216 for grating vs. narrow bw. 
MC, T = 843 p = 0.00012 for the broad bw. MC, Wilcoxon signed-rank test). With regard to the preferred speed, 
even though that for some RGCs the preferred speed increases (see the clusters at the lowest and highest speeds 
in Fig. 5g), overall, the differences are not highly significant (Fig. 5h T = 1159 p = 0.018 for grating vs. narrow bw. 
MC, T = 1632 p = 0.893 for the broad bw. MC, Wilcoxon signed-rank test).

Population responses becomes sparser for more naturalistic stimuli.  When pooling the response 
of many RGCs, as a motion sensing neuron in higher cortical areas would do14, the response profile of the 
recorded population also shows differences when stimulated with the complex, more naturalistic stimuli. As 
expected from the individual responses, the response profile to speed depends on the spatial frequency (Fig. 6a 
left panel). The curve not only shifts when changing the spatial frequency, but the peak response also decays as 
the spatial frequency increases.

When comparing the response to the simple vs complex stimuli, the preference for lower speeds at higher 
spatial frequencies is still observed, but with a significant decrease in response for almost every condition (Fig. 6a 
middle and right panels). However, this decrease in response is larger for the lower speeds at every spatial fre-
quency tested, to the point that for the two lowest speeds, the difference in response between spatial frequencies 
becomes non-significant (no significant difference at speeds 0.25 and 0.5 mm/s, p > 0.05 Wilcoxon signed-rank 
test), so the left part of all the tuning curves converge to the same values.

However, these lower firing rates elicited by the complex stimuli would not necessarily be detrimental to the 
coding properties of the retina. Instead, lower average firing rates could be associated with sparse coding. To see if 
this were the case, we computed the average population sparseness (eq. 5) for each stimulus condition (how many 

Figure 3.  Response to variations in speed and spatial frequency of the drifting grating stimulus. (a) Raster and 
PSTHs of the response of a representative RGC at each speed and spatial frequency tested. (b) The response 
to speed at each spatial frequency sf was fitted to a skewed Gaussian. Each point is the average of the PSTH, 
with the error bars showing SEM. (c) All cells that had a good fit (χ2 < 0.05) at every sf were classified as speed 
responsive cells. For all these cells, the preferred speed at each spatial frequency is determined from the fits to 
their distribution. Vertical red lines show the median of the distribution for each condition.
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RGCs and how much they are responding to each stimulus). When compared to the simple stimulus, there are 
significant increases in sparseness in 8 conditions for the MC with narrow bandwidth and 19 conditions for the 
broad bandwidth stimulus at each combination of speed and spatial frequency tested (Fig. 6b).

A sparse response encodes motion information efficiently.  To determine if the sparser retinal 
response is still encoding the motion information, we applied a reconstruction framework to decode the trajec-
tory of a moving stimulus from the response of a group of RGCs and then extract information derived from the 
trajectory. As can be seen in Fig. 7, we constructed retinal images from the spikes emitted by each RGCs and its 
respective RF. To assess the ability to extract motion information from the reconstruction, we applied a process 
analogous to the way velocity is computed in cortical visual areas38 (see Methods section for details). An example 
of this process is shown in Fig. 7. Even though that for some of the conditions the first stage of decoding was 
enough to get the correct speed (in the example, the lowest and the two highest speeds), in general the decoding 
improves at the Motion Energy and Opponent Motion stages, in the sense that the set of filters that produces the 
highest activation is the one that matches the presented speed.

The precision of speed decoding for the different conditions can be seen in Fig. 8. The motion traces obtained 
for all the stimuli can be seen in Fig. 8a. To measure the quality of the estimation, we computed the error rate as 1 
minus the number of trials for which the estimation is correct, over the total number of trials. As seen in Fig. 8b, 
some of the conditions have zero error rate, while for the lowest speed, the error rate is 1 for many of the spatial 
frequencies for the three types of stimulus. For the gratings, most values are either one or zero, while for the MCs 
some conditions show intermediate values, meaning that for some trials the decoding was correct and for others 
it failed. When looking at the cumulative error rate across spatial frequencies (Fig. 8c) it becomes apparent that 
the decoding error for gratings is very high at the lowest and highest spatial frequencies, decreasing gradually 
towards the intermediate spatial frequencies. The same pattern can be seen for the MCs, however, the difference 
in decoding error for different spatial frequencies is lower, and stays within an acceptable range for all conditions. 
For broad bandwidth stimuli, the error rate is distributed more evenly across spatial frequencies, with bad decod-
ing performance concentrated at the lowest speed.

While the distribution of the errors is different for the three types of stimuli, overall, the total error rate is 
slightly lower for the MC stimuli (Fig. 8c, rightmost plot, T = 0.0, p = 0.016 and T = 3.0, p = 0.034 Wilcoxon 
signed-rank test). Thus, it can be considered that there is a slight improvement in decoding performance. Since 
we were able to estimate the stimulus speed with an accuracy of ≈0.7 (1 - the total error rate) for the three types 
of stimuli, it could be argued from an information point of view, that the retina is transmitting at least enough 
information about the stimulus to encode speed under the three conditions. However, as shown in Fig. 5, MCs 
elicit responses with lower firing rates. So, if we quantify the cost of accuracy for each type of stimulus, in terms 
of the number of spikes used to successfully transmit the speed of the stimulus, we get that for the gratings the 

Figure 4.  Speed responsive retinal ganglion cells. (a) Left: Map of the RGCs RF present in the experiment 
analyzed. RF of speed responsive (SR) RGCs (see text) are represented in color. Right: Temporal profiles of the 
receptive field center of SR (in red) and Non-SR (in black) cells. (b) Sample of a temporal profile showing the 
parameters extracted to compare SR versus Non-SR cells, which in this case are zero-cross and peak-time. (c) 
Histograms representing the distribution of the zero-cross (left) and peak-time (right) parameters in the SR 
and Non-SR population cells. We only observe significant differences for the zero-cross parameter (D = 0.22 
p = 0.026 versus D = 0.11 p = 0.65 for the peak-time parameter, Kolmogorov-Smirnov test).
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value is ≈8.26 spikes/cell, while for the MC narrow and broad is 7.56 and 5.57 respectively, and these values are 
statistically significant (T = 0.0, p = 0.005 for the MC narrow and T = 0.0, p = 0.0050 for the MC broad, Wilcoxon 
signed-rank test).

Discussion
Our results strongly suggest that the tuning to naturalistic stimuli is already present at the level of the retina. 
For the first time, this showed that the tuning curves of response to motion become narrower under stimulation 
with increasingly more complex images, where we defined complexity as the number of compounded features of 
different spatial frequency but similar speed in the input texture. In particular, the bandwidth parameter controls 
complexity as it may generate a simple crystal-like stimulus (a grating component) with a very narrow bandwidth 
up to a smoke-like texture with a similar 1/f fall-off as natural images as the bandwidth grows to infinity. In the 
present work, the difference between each set of stimuli is the spatial frequency content, i.e. the variety in sizes for 

Figure 5.  A large part of the population of observed RGCs narrow down their tuning selectivity with higher 
complexity stimuli. (a) Raster and PSTHs of the response of a representative cell for each type of stimulus and to 
the different speeds (in mms−1) at its preferred sf0. (b) The change in tuning is evident when plotting the average 
response and its fit. Each point is the average of the PSTH, with the error bars showing s.d. The asterisks (for 
the Narrow bandwidth) and crosses (Broad bandwidth) mark the speeds at which the response to the MC is 
significantly different from the response to the grating (p < 0.05 Wilcoxon signed-rank test). The narrowing of 
the curve can be quantified by the decrease in the σv parameter, which in the case of this cell decreased with the 
complexity of the stimulus. (c) Spatiotemporal tuning of the cell for the different types of stimuli. The intensity 
at each square denotes the average firing rate for the corresponding stimulus parameters. The red cross indicates 
the point of maximum response, and corresponds to the spatial frequency plotted in panels a and b. (d) 
Additional examples of cells with narrower tuning for the naturalistic stimulus. (e) Joint distribution of speed 
tuning bandwidth coefficients σv of each Speed Responsive Cell. Empty circles show the relationship of grating 
against narrow bandwidth MC, filled squares show grating against broad bandwidth MC. In both conditions 
most of the points fall below the line of identity. (f) Histograms show the distribution of σv. Vertical red lines 
show the median of each distribution. The distribution for gratings is centered, while the distributions for both 
types of MC are skewed towards lower values with a significant difference (T = 1009 p = 0.00216 for grating vs. 
narrow bw. MC, T = 843 p = 0.00012 for the broad bw. MC, Wilcoxon signed-rank test). (g,h) same as (e,f) but 
for the preferred speed (peak of the fitted curve) with a less significant difference (T = 1159 p = 0.018 for grating 
vs. narrow bw. MC, T = 1632 p = 0.893 for the broad bw. MC, Wilcoxon signed-rank test).
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the elements that constitute the images; while the three classes of stimuli have the same average properties (spatial 
frequency and speed) for each set, the MC contain additional signals or components around this central value.

Additional signals in a stimulus can modulate the response of a RGC in different ways. It has been shown that 
isolated stimuli that fail to modify the activity of a RGC can alter the response to another stimulus when presented 
simultaneously39. The latter would stem from nonlinearities in the processing of the signal performed by the RGC, 
in the sense that the response to a complex stimulus is not merely the response to the sum of its components. In 
some cases, the presence of signals around the RF, product of an increased area of stimulation, is enough to trigger 
changes in the response15. One of the mechanisms responsible for this effect is surround suppression, in which 
the presence of a stimulus in an area surrounding the spatial RF will decrease the response to the stimulus in the 
center, which is partly explained by an increase in the amplitude of inhibitory post-synaptic potentials16.

In our experiments, all stimuli cover the same area, which exceeds the area of the RFs of the recorded RCGs, 
so the presence of a stimulus in the surround would not by itself be enough to explain the changes in the observed 
response. Surround suppression occurs under a variety of stimulation patterns, both spatially and temporally40. 
However, for simple stimuli it has been shown that the effect is most active when the parameters of the stimulus 
on the center and the surround are the same41, which would be the case for the gratings in our experiments; how-
ever, our data shows that this is not the case Fig. 5.

Seminal works in vision psychophysics established that spatial frequency sensitivity is dependent on contrast 
and overall luminance levels42. In general, sensitivity to high spatial and temporal frequency decreases at lower 
contrast levels. It could be argued then that our results reflect the effects of changes in contrast and not changes 
in spatial frequency. With our naturalistic stimulus, the relative contrast of each component of the images indeed 
scales with its spatial frequency, so components with higher spatial frequencies have lower contrast, following 

Figure 6.  Naturalistic stimuli and sparse code. (a) Changes in Tuning to Speed at the population level. The dots 
show the average response across trials for the whole population of Speed Responsive RGCs for each combination 
of speed and spatial frequency used; the lighter shades show increasing spatial frequency, the error bars show 
standard deviation. The encircled dots indicate all the conditions for which the response is significantly smaller 
than the response to the grating stimulus (p < 0.05 Wilcoxon signed-rank test). The response to speeds for each 
spatial frequency was fitted to an skewed Gaussian. As expected, at higher spatial frequencies the preferred 
speed shifts towards lower values, together with a decrease in maximum response, however, this decrease 
becomes more pronounced when the complexity of the stimulus increases, to the point where the response to 
lower speeds becomes very similar for different spatial frequencies (no significant difference at speeds 0.25 and 
0.5 mms (p > 0.05 Wilcoxon signed-rank test). (b) Sparseness in the code, calculated as population sparseness 
(eq. 5), is a measure of how many RGCs are responding and their relative level of activity. The 2-D plots show 
the difference in average sparseness between grating and MC for each condition tested. In general, it is higher 
for the extreme parameters, however, for the more complex stimulus, the area of high sparseness is larger. The 
asterisks indicate the conditions for which the sparseness is higher compared to that obtained using grating 
stimulus (Wilcoxon signed-rank test, p < 0.05).
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the same 1/f scaling characteristic of natural images. However, the contrast of the main components (those with 
the central spatial frequency sf0 or close to it) have the same contrast as the grating stimulus, while only the 
high-frequency components have lower contrast; this distribution of contrasts is stationary during the whole 
experiment, so the primary response drivers have the same contrast across the three types of stimuli. On the 
other hand, the effect of lower contrast on tuning curves is the opposite of what we report, as stimuli with lower 
contrast generate broader tuning curves43, at least in the visual cortex. Finally, it has been shown that adaptation 
can alter the relationship between spatio-temporal tuning curves and contrast44. Even though retinal adaptation -  
occurring at multiple stages - to luminance levels is relatively fast (in the order of seconds), the stimulation time 
necessary to generate spatial frequency adaptation is longer, so we explicitly designed the stimulation protocol to 
avoid adaptation by limiting the exposure time to 3 seconds and interspersing the images with 1 second of blank, 
average luminance stimulation. The stability in the response during stimulation and across trials for the three 
classes of moving stimulus (Fig. 5) shows that we can consider the effect of contrast, concerning the impact of 
spatial frequency bandwidth, to be negligible.

It has been shown that a non-linear interaction between the center and surround parts of the RF in RGCs 
modulates the response to spatial patterns in a context-dependent manner and that this effect is more significant 
during naturalistic stimulation45. We think that this effect can explain, at least in part, the results that we observe; 

Figure 7.  Reconstruction and decoding of motion stimuli. (a) The scheme shows the the stages of the 
motion decoding algorithm and the results of each step. (b) The leftmost column of each plot shows the 
reconstruction of the moving stimulus at different speeds, at a spatial frequency of 0.9cycles/mm. From the 
population response, the stimulus is reconstructed by convolution of the spike train with the RF of each RGC. 
The reconstructions are dominated by negative contrasts, due to the low number of ON type cells and their 
relatively low response. The mostly white row in each reconstruction corresponds to an area of the patch with 
no recorded units. The following columns show the response at each stage of decoding, for each corresponding 
reconstruction, averaged across trials. Vertical bars show s.d. The first stage is the response of each of the four 
filters that constitute the Reichardt detectors, the following column shows the Motion Energy in each direction 
and the rightmost column is the difference between the two. The color of each line corresponds to the respective 
panel of (a); For each reconstruction the decoding is considered correct if, in the final stage, the preferred speed 
of the most activated filter matches the stimulus speed.
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the additional signals contained in the complex stimulus would act as non-linear inhibitors, resulting in lower 
response when the parameters are farther from the preference of the RGC, producing narrower tuning curves. 
Moreover, the narrower speed selectivity tuning observed in RGCs, when stimulated with naturalistic-like stimuli 
such as MCs, seems to be a general property of many RGCs types in the retina and not related to a single RGC 
type. Recently, it has been reported the relevance of gap-junction connections between BCs in motion computa-
tion46,47. This early mechanism, together with nonlinearity computations at the output of BCs48, increases RGCs 
motion sensitivity to correlated spatio-temporal input, such as the case of MCs.

Interestingly, together with this narrower bandwidth, approximately a third of the RGCs show an increase 
in preferred speed (see two examples in Fig. 5, right panels), while others preserve their preference (Fig. 5, left 
panels). The change in the speed preference cannot be attributed to changes in the spatial frequency content of 
the stimulus. Due to the bandwidth of the stimuli, the images will include additional spatial frequencies, but the 
shape of the spectrum (see Methods: Naturalistic stimuli) determines that most of the additional frequencies will 
be higher than the central frequency (sf0). If the RGC processed these higher spatial frequencies linearly, they 
should shift preference towards lower speeds - but our results show the opposite. From our analysis, it is difficult 
to relate or predict this behavior from other properties of the RGC’s response, since the shift in the preferred 
speed appears not to correlate with any of the RF’s characteristics.

Which are the possible implications or consequences of having these narrower tunings for naturalistic stimuli? 
At the level of individual RGCs, each RGC will only respond when the stimulus is near the preferred parameters. 
But this does not mean that a RGC will encode its preferred stimulus. Indeed, it has been shown that steeper 
tuning curves will encode more efficiently because stimuli will be more readily discriminated in the high slope 
range49. As such, these results mean that for speed-selective RGCs an input with a broader spectrum of spatial 

Figure 8.  Precision of the estimation of stimulus speed. (a) Reconstruction of every motion stimulus tested. 
The representation is the same as in Fig. 7. For the three types of stimulus, the motion traces (and their slopes) 
are easily seen for all conditions, except at the lower speeds and higher spatial frequencies, which is consistent 
with lower responses under those conditions (Fig. 6). (b) Error rate in the decoding of the speed estimation 
(number of times that the algorithm estimated the correct speed over the total number of trials). The 2-D 
plots show the error rate at each spatial frequency and speed, for each type of stimulus. (c) Error rate for each 
spatial frequency and total error rate. Error lines show standard deviation between trials. Bars with no error 
mean that speed decoding was successfully performed between stimulus repetitions, for a given condition. In 
the rightmost plot, solid columns show total error rate and open bars show the Accuracy cost. Accuracy cost is 
computed as the success rate multiplied by the average firing (total number of spikes/number of cells); asterisks 
indicate significant difference with respect to the Grating (p < 0.05 Wilcoxon signed-rank test).
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frequencies will have a higher precision in speed, independently of the local scale (spatial frequency) of the stim-
ulus. This mechanism speaks to the dual mechanisms at the origin of selective responses (here speed) and of the 
invariance to other features (here scale). In addition to this effect at the individual RGC level, when looking at 
the population code, narrower tuning curves can lead to less overlap between RCGS, so in conjunction, the code 
will contain less redundancy, an essential aspect of the efficient coding theory50–52. In support of this, we showed 
that population sparseness increases for the naturalistic stimuli, so in this respect, the retina is performing better 
under these types of stimulation, in the sense that a sparse code is more efficient from an information transmis-
sion point of view.

To see if these changes in tuning curves affect the coding of the motion signal, we implemented the stimulus 
reconstruction and speed decoding method. We chose speed as the relevant parameter for motion estimation, 
but we expect that with the proper adjustment, any property of the stimulus could be recovered, provided one 
can obtain a sufficiently good reconstruction53. Another simplification that we took advantage of, is that our 
experimental design is based on the independent presentation of a single speed for each stimulus set (with slight 
variations around an average value for the MCs); this means that for the duration of each segment of stimulation, 
the whole population of RGCs is “seeing” the same speed. Thus, to recover the speed of the stimulus from the 
reconstruction, we only need to get a single value from the whole population and for the entire presentation of 
each sequence.

Our reconstruction method could be improved by varying some of the parameters, such as the weights of the 
sum, to minimize the error of the results, as is usually done in this type of work. However, even though when 
the models obtained by those methods are biologically plausible, the process of a posteriori maximization of the 
quality of decoding is hardly naturalistic, because no biological sensory system has access to the “real” value of the 
signal to perform the minimization step that is essential to this kind of approach.

Another possible improvement would be to incorporate nonlinearities in the decoding process, possibly by 
taking into account the history of the firing of a RGC instead taking every spike with the same value. Nonlinear 
models have been reported to give better stimulus reconstruction, especially for complex images54.

In any case, even though our reconstructions have a relatively low degree of fidelity, they contain enough 
information to compute the speed of moving features in the images successfully. The latter is crucial because it 
means that even though these complex stimuli elicit lower retinal responses, the relevant information is still con-
tained in these lower responses. In this regime of lower firing rates, energy expenditure would be lower, and the 
cost of information would be lower55. Thus, this simplified approach is good enough to support the hypothesis 
that the retina would efficiently encode naturalistic stimuli.

In conclusion, we have shown that the retina, of a diurnal rodent, would be adapted to at least some of the 
characteristics of natural images, specifically those related to motion and the spatio-temporal information con-
tent and correlations used in this study. This adaptability is expressed in the narrower shapes of the tuning curves 
responses, which would lead to less overlap between RGCs in the feature space and thus less redundant and 
sparser population code, with smaller firing rates, which translates into less energy expenditure and less channel 
saturation. One limit of the stimuli that we used here is that they are densely packing the image space. However, 
natural images may exhibit some skewness and positive kurtosis in the distribution of luminance, reflecting the 
fact that the visual images are in general generated using a sparse number of components. This may introduce 
a different level of hierarchy in our definition of complexity: sparser textures may introduce spatial structures 
compared to the stationary nature of the MC textures used in this study. An interesting perspective is, therefore, 
to extend such stimulations in the retina to different levels of sparseness and to challenge the hypothesis that the 
processing in the retina could be differentially adapted to these different levels.

Methods
Animals.  Young Octodon degus born in captivity are maintained in a controlled facility. Prior to each exper-
iment, animals were put in darkness for 30 minutes, then deeply anesthetized with halothane and beheaded. 
Eyes were removed and dissected at room temperature under red illumination. Experimental procedures were 
approved by the Institutional Committee on Bioethics for Animal Research from the University and in accord-
ance with the bioethics regulation of the Chilean Research Council (CONICYT).

Degus are diurnal rodents with 30% of their photoreceptors being cones and a comparatively high number of 
RGCs, qualities that makes them a good model for studying vision. In addition, the large area of the retina makes 
degus especially suitable for Multi Electrode array recordings as good coverage of all the electrodes in the matrix 
can be obtained. For a complete description of the model see32,56.

Electrophysiological recordings.  The experimental protocol was described before and follows36. Briefly, 
the physiological response of degu RGCs to different types of visual stimuli was measured using a Multi Electrode 
Array557,58 (USB MEA256, Multichannel Systems GmbH, Reutlingen, Germany) using 256MEA100/30iR-ITO 
matrices and sampling at 20 kHz. After removing the eyes, the posterior hemisphere was dissected in quadrants 
and the pigmented epithelium separated from the retina. Finally, a piece of retina was mounted on a dialysis 
membrane and mounted on a perfusion chamber, which was then lowered onto the electrode array with the 
RGCs side down. Recording commenced under perfusion with AMES medium bubbled with 95% O2 5% CO2 at 
33 °C and the pH adjusted to 7.4.

Visual Stimulus Presentation.  Stimulus display was performed with a conventional DLP projector using 
custom optics to reduce and focus the image onto the photoreceptor layer, projecting from the RGC side. The pro-
jected size of a pixel is ≈4 µm, maintaining an average irradiance of 70 nWmm−2, covering an area of ≈2 × 2 mm, 
exceeding the area covered by the electrodes. Regarding the spectral emission of the DLP used here, the LEDs 
with peak emission at 460 nm and 520 nm (USB4000 Fiber Optic Spectrometer, Ocean Optics) covers the main 
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green-cones with peak at 510 nm and barely, to −2 log maximal peak sensitivity of, the 370 nm UV-cones present 
in the dichromatic visual system of Octodon degus56. Cones in degus are close to a 30% of total number of pho-
toreceptors where green-cones (or M-pigment) represent 85% and UV-cones 15% (or UV-pigment)32. In that 
respect our main results and conclusions, at photopic conditions, are extracted from the response of M-pigment 
cones. Stimuli were generated using the code available at https://github.com/NeuralEnsemble/MotionClouds. 
Timing of the images was controlled using a custom-built software based on Psychtoolbox for MATLAB. Spike 
sorting analysis was performed using Spyking-Circus59. Data was analyzed via redistributable Jupyter notebooks 
using SciPy and running Python 3 kernels. All data fitting procedures were performed with LMFIT. Figures were 
generated with Matplotlib.

Maximal speed projection is given by the time needed for a point to cross half of the projected image in 
one frame time, i.e., 200 px/frame. As the projector works at 60 frames, it gives us an estimation of 12000 px/s. 
Considering that one pixel covers 4 μm (4 μm/px), it generates a maximal speed of 48 mm/s, which is higher than 
the highest rate used in our study (4 mm/s).

Characterization of spatiotemporal tuning of RGCs.  To produce a standard characterization of RGCs 
responses to different stimulations, we measured the response to a white noise checkerboard pattern (block 
size = 0.05 mm, 35 × 35 blocks) for 1200 s at 60 Hz and to sinusoidal drifting gratings at maximum contrast (min-
imum and maximum Weber contrast of ≈−94 and ≈129 respectively), with spatial frequencies of 0.66, 0.9, 1.26, 
1.8, 2.52 and 3.6 cycles/mm, and speeds of 0.25, 0.5, 1.0, 2.0 and 4.0 mm/s in sequences of three seconds with 10 
repetitions of each. Due to the constraints in recording length stemming from tissue viability, we focused only on 
changes in response to the speed of the moving stimulus and not to its direction, so the present protocol uses a 
single direction for all sets of stimuli.

RFs were estimated from the response to the checkerboard stimulus by reverse correlation, yielding the 
Spike-Triggered Average (STA)60 as a three-dimensional spatiotemporal impulse response (Fig. 2e). The spatial 
characterization was performed by fitting a bi-dimensional Gaussian function at the time point of maximum 
amplitude, then drawing an ellipse at one standard deviation. The size of each RF was calculated as the radius of 
the circle with the same area as the ellipse fit61. The shape was quantified by the ellipse-eccentricity ε defined as 
ε = − b a1 ( / )2  where a and b are respectively the radius of the major and minor axis; since noisy STAs generate 
fittings with high ellipse-eccentricities, cells with ε > 0.9 were discarded. The temporal profile was computed as 
the time course of the intensity at the point with the largest variance, and then fitted to a difference of two cas-
cades of low-pass filters62. Basal activity was set to zero and amplitude normalized, such that it follows the form
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where t represents time in number of image frames before the spike, τ1 and τ2 describe the temporal decay of the 
response of each filter; scalars p1 and p2 are amplitude responses of each filter, and n is a free parameter.

RGCs sensitive to motion.  Tuning to motion was evaluated from the response to the drifting gratings; the 
response to each set of speeds and spatial frequencies was measured by Peristimulus Time Histogram (PSTH) and 
Fourier analysis for 10 repetitions of each sequence. The beginning of the PSTH is set to 200 ms after stimulus 
start to discard the response to stimulus onset. To select the cells responsive to motion, first we selected RGCs 
with response modulated by the stimulus. As a measure of the strength of the modulation of the response by the 
stimulus, we computed the standarized F1 (zF1)35, defined as:
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where F1 is the amplitude component at the temporal frequency of the stimulus, mean(FFT) is the mean ampli-
tude of the spectrum over the range of frequencies from 1/T to the Nyquist frequency, and SD(FFT) is the stand-
ard deviation of amplitudes in the frequency spectrum over the same range of frequencies. We discarded all 
the cells whose zF1 values were not correlated with the corresponding average firing rate (Pearson correlation, 
p > 0.05).

Tuning to speed v was fitted to a skewed Gaussian in which the response to speed R(v) takes the form
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where V is the preferred speed, σv the curve width, ζ represents the skew of the curve and A a scaling factor14. 
Since σv is highly correlated with tuning bandwidth (width of the function at half-height)63, we used σv for all 
bandwidth related functions. Changes in tuning bandwidth were measured as the normalized difference in σv as
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From eq. 3, we define Speed Responsive (SR) RGCs as those whose response to the drifting gratings has a good 
fit to the equation at every spatial frequency tested (χ2 < 0.05).

https://github.com/NeuralEnsemble/MotionClouds
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The selection criteria for SR RGCs did not elicit direction or orientation selective responses. Moreover, com-
puting the Direction Selectivity Index for all the SR RGCs, we observe practically no cell with a DSI larger than 
0.5, the value that is usually considered the minimum to classify a cell as Direction Selective.

Population coding.  Population response was evaluated as the average of the PSTH of all speed responsive 
RGCs. Sparseness of the response to each stimulus was measured as Population Sparseness (Sp), defined in64 as
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where Ai is the average response of cell i to the stimulus.

Naturalistic stimuli.  We used Motion Clouds (MCs)33, with an image size of 400 × 400 px (projected size 
≈1.6 × 1, 6 mm) for 3 s, to measure the response of the retina to the motion of stimuli with different levels of nat-
uralness (in terms of their spatio-temporal correlations). MCs are synthetic dynamical textures that mimic some 
key properties of natural images34, while allowing for the precise control over the signals that are being presented, 
which is a highly desirable property for the study of sensory systems under naturalistic conditions12. The traits of 
these textures are determined by three parameters for the center of the envelope (size, speed, and orientation), 
along with their respective bandwidths. These bandwidths control the area (in parameter space) in which the 
power of the stimulus will be spread.

Our protocols consisted of a set of different sequences with the same motion information (mean speed and 
spatial frequency), but in which we progressively varied the spatial frequency bandwidth (i.e. the range of sizes), 
as this was reported to influence visual motion detection17. These match the parameters of the drifting grat-
ing stimuli (equivalent to an MC with infinitely narrow bandwidth), and textures with a narrow and a wide 

sf (cycles/mm) tf (cycles/sec) V (mm/sec) Bsf Narrow Bsf Broad

0.66

0.165 0.25

0.24 0.66

0.33 0.5

0.66 1.0

1.32 2.0

2.64 4.0

0.9

0.225 0.25

0.36 0.9

0.45 0.5

0.9 1.0

1.8 2.0

3.6 4.0

1.26

0.315 0.25

0.54 1.26

0.63 0.5

1.26 1.0

2.52 2.0

5.04 4.0

1.8

0.45 0.25

0.72 1.8

0.9 0.5

1.8 1.0

3.6 2.0

7.2 4.0

2.52

0.63 0.25

1.08 2.52

1.26 0.5

2.52 1.0

5.04 2.0

10.08 4.0

3.6

0.9 0.25

1.5 3.6

1.8 0.5

3.6 1.0

7.2 2.0

14.4 4.0

Table 1.  Parameters used to build each set of motion stimuli. For the gratings, the temporal frequency tf is 
modulated to obtain the same speeds at every spatial frequency sf. Motion Clouds (MCs) do not have a tf 
parameter, they are controlled directly by the speed parameter V. Note that the MCs software works in pixel 
units, so a proper scaling has to be applied. In our case, the conversion factor between pixels and mm is 240:1.
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bandwidth of spatial frequencies (Fig. 1a blue, green and orange ellipses respectively). For narrow and broad 
bandwidth textures, amplitude scales with spatial frequency: for the narrow bandwidth stimuli, the scaling fac-
tor is chosen for the spectra to not overlap, while for the broad band stimuli the scaling factor is 1 resulting in 
Bsf = sf0, so that each spectrum overlaps with the adjacent one along the line of equal speed, see Table 1 for the 
specific parameters. Figure 1b shows an example stimulus, comparing the spatiotemporal image of a drifting grat-
ing and MCs with narrow and broad bandwidth, illustrating the smooth transition from a “crystal-like” pattern 
(the grating) to progressively more complex and naturalistic stimuli using a single parameter (Bsf). Under this 
characterization, a collection of well-sampled natural images would correspond to MCs with infinite bandwidth, 
i.e. it would contain every spatial frequency, so drifting gratings and natural images would be on opposite ends of 
the complexity scale, with our MCs constituting a gradual transition between them. The responses for the three 
types of stimuli were constructed to obtain a similar Michelson contrast (that is, their intensity values vary from 
0 to 1). However, the intensity distribution was different, as seen in Fig. 1c. Intensity was quantified by measuring 
the Weber contrasts distribution: for each intensity value the average intensity was subtracted and divided by the 
average intensity. Because of their design, sinusoidal grids have a higher proportion of brightest and darkest pix-
els, while the rest of the values have a uniform representation. On the other hand, the MCs have a large portion of 
pixels with intermediate luminance, with extreme values being rare, which resembles natural images.

Trajectory Reconstruction and velocity estimation.  The first step is the reconstruction of the trajec-
tory of a moving stimulus from the response of a population of RGCs. As recently demonstrated in54, the Decoding 
Fields obtained by maximum likelihood are very similar to the RFs obtained by traditional methods of reverse 
correlation. Based on this, we made a spatiotemporal reconstruction of the stimulus by convolving the response 
vectors of each RGCs with its respective RF and then performing a weighted sum across the whole population. 
The response ri

c is the number of spikes at each interval i with Δt = 16.66 ms. The RF is computed by reverse cor-
relation from the response to a checkerboard stimulus. Since we are interested in stimuli moving only in one 
direction, we collapse the tridimensional spatiotemporal RF to a bidimensional representation RFx t

c
,  containing 

only time and one spatial dimension. Thus, the intensity of the reconstructed stimulus at each point in space and 
time, I(x, i), is given by
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where a is a constant offset, ωc is the weighting factor for each cell, RFx j
c

,  is the value of the receptive field at point 
x at time jΔt before the spike, and NΔt is the length of the RF estimation.

Speed of the moving stimulus is assessed by a multi-stage process following standard motion processing models38.  
The first step is the convolution of the reconstructed stimulus with sets of filters resembling Reichardt detectors, 
approximated by slanted Gabor filters oriented in space time with preference for different speeds (given by the 
slope in the space/time plane, thus the speed tuning is given by the angle of the Gabor kernel). Each kernel is 
paired with another of the same properties, but with its phase shifted, forming a quadrature pair. The response of 
each quadrature pair is rectified and added to obtain the Motion Energy for each speed. The process is repeated 
to compute the Motion Energy in the opposite direction, and finally, both are subtracted to obtain the net motion 
signal for each speed. The estimated speed is determined by the set of filters with the highest activation in a 
winner-takes-all approach. An example of the process is shown in Fig. 7.
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