
HAL Id: hal-02018634
https://amu.hal.science/hal-02018634

Preprint submitted on 14 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Fault Diagnosis of Discrete Event Systems
Modeled With Labeled Petri Nets Using an Overall

Fault Status
Guanghui Zhu, Lei Feng, Zhiwu Li, Naiqi Wu

To cite this version:
Guanghui Zhu, Lei Feng, Zhiwu Li, Naiqi Wu. Online Fault Diagnosis of Discrete Event Systems
Modeled With Labeled Petri Nets Using an Overall Fault Status. 2018. �hal-02018634�

https://amu.hal.science/hal-02018634
https://hal.archives-ouvertes.fr

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 1

Online Fault Diagnosis of Discrete Event Systems
Modeled With Labeled Petri Nets Using an Overall

Fault Status
Guanghui Zhu, Student Member, IEEE, Lei Feng, Zhiwu Li, Fellow, IEEE, Naiqi Wu, Senior Member, IEEE

Abstract—In this paper we present a fault diagnosis approach
using labeled Petri nets, where the faults are modeled by
unobservable transitions and the unobservable subnet is acyclic.
In contrast to detecting the individual faults separately, a new
specification called an overall fault status is introduced, which in-
dicates the occurrence of faults from a global system perspective.
Due to the introduction of the overall fault status, a more precise
and informative diagnosis result can be provided and in some
cases, the occurrence of some faults in a system can be detected
before the actual faults are isolated, i.e., we are certain about the
occurrence of faults but which faults have not been ascertained.
An integer linear programming (ILP) problem is built according
to the observed word. We prove that all transition sequences
determined by solutions to the ILP problem constitute the set
of sequences consistent with the observed word. By specifying
different objective functions to the ILP problem, the diagnosis
results of each individual fault and the overall fault status
can be obtained. An online diagnosis algorithm is developed
to implement the proposed diagnosis process, which reports the
diagnosis results after the occurrence of every observable event.

Index Terms—Fault diagnosis, discrete event system, Petri net,
integer linear programming, overall fault status.

I. INTRODUCTION

A. Position of the paper

With the development of contemporary information technol-
ogy, the man-made mechanical and electronic systems that can
be characterized as discrete event systems (DES) are becoming
more and more complicated. To ensure their stable and correct
operations, fault diagnosis has been an active research area
in recent decades. A fault is a kind of event that causes a
deviation in system’s behavior such that the performance or
throughput of the system is degraded. Fault diagnosis aims to
detect and isolate a fault when it occurs such that it can be
fixed and the system can recover from it.

This work was supported in part by the National Natural Science Foundation
of China under Grant Nos. 61873342 and 61703321, in part by the Science
and Technology Development Fund, MSAR, under Grant Nos. 122/2017/A3
and 106/2016/A3, and in part by the 2017 Sino-French Cai Yuanpei Program.
(Corresponding author: Zhiwu Li.)

G. Zhu is with the School of Electro-Mechanical Engineering, Xidian Uni-
versity, Xi’an 710071, China, and with Aix Marseille University, Universite de
Toulon, CNRS, LIS, Marseille, France (e-mail: zhuguanghui86@gmail.com).

L. Feng is with the Department of Machine Design, KTH Royal Institute
of Technology, 100 44 Stockholm, Sweden (e-mail: lfeng@kth.se).

Z. Li is with the School of Electro-Mechanical Engineering, Xidian
University, Xi’an 710071, China, and also with the Institute of Systems
Engineering, Macau University of Science and Technology, Taipa, Macau (e-
mail: zhwli@xidian.edu.cn).

N. Wu is with the Institute of Systems Engineering, Macau University of
Science and Technology, Taipa, Macau (e-mail: nqwu@must.edu.mo).

The diagnosis of discrete event systems was originally
discussed in [1], [2] using an automaton model with faulty
(unobservable) events, where a diagnoser, i.e., a deterministic
finite automaton (DFA), is first built and then based on
the observed sequence the diagnosis result can be directly
obtained by checking the diagnoser. The authors also define
the diagnosability of an automation model and provide a
necessary and sufficient condition for diagnosability.

An alternative to automata for modeling DES is provided by
Petri nets. Their structural properties offer a new perspective
for supervisory control [3], [4], model identification [5], [6],
performance optimization [7], and knowledge discovery [8],
[9]. In addition, the state equation of a Petri net provides
a linear algebraic technique to deal with the issue of state
estimation [10]–[14], which is always more efficient than
exhaustively enumerating the reachability graph. In particular,
we in this paper deal with the fault diagnosis issue using Petri
nets.

In the context of Petri nets, Prock [15] proposed a diagnosis
approach for a nuclear power plant by monitoring the number
of tokens residing in places associated with P-invariants in
a Petri net. Wu and Hadjicostis [16] developed an algebraic
approach for fault diagnosis, where both place and transition
faults are defined. By introducing additional places into a
net, a redundant Petri net can be obtained. The place and/or
transition faults can be detected by inspecting the current
marking of the redundant net. Ramı́rez-Treviño et al. [17]
proposed a modeling methodology to build an interpreted
Petri net (IPN) model of a system and then a fault detection
algorithm based on the built IPN is provided. Benveniste et al.
[18] reported a net unfolding approach to explore the diagnosis
of asynchronous systems, which can be used in a distributed
environment.

On the other hand, there is a deluge of studies that use
Petri nets by explicitly modeling faults of a system as un-
observable transitions [19], i.e, Petri nets, called faulty Petri
nets, that contain not only regular but faulty behavior of a
system. Genc et al. [20] originally extended the event-based
diagnosis using automata to the case of faulty Petri nets. They
construct a diagnoser, i.e., a labeled Petri net, according to
the original net model of a system and a diagnosis result
can be provided online when observing an event. The main
drawback of this approach is the computational complexity
due to the reachability analysis at each step. Giua and Seatzu
[21] proposed a basis-marking-based approach. By means
of basis markings and the corresponding justifications, the

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 2

enumeration of paths in a reachability graph can be avoided.
Cabasino et al. [22]–[24] extended this approach to the case
of labeled Petri nets, i.e., nets where two or more transitions
can share the same label. They develop a basis reachability
graph (BRG), which can be built off-line and provides an
efficient method for online diagnosis. In [25], Basile et al.
defined a new type of marking with negative elements, called
g-marking, and proposed an online diagnosis algorithm based
on it. Integer linear programming (ILP) is a typical technique
to deal with the issue of state estimation in a Petri net.
An online diagnosis approach using ILP is reported in [26].
More specifically, the authors first build an integer linear
programming model without objective function according to
the observed transition sequence. Then, by assigning different
objective functions to it, the occurrence of a fault can be
detected. Ru et al. [27] addressed the issue of fault diagnosis
using a partially observed Petri net (POPN), where a POPN is
first converted into a labeled net and then an algorithm based
on the reachability graph is proposed.

t1(a)

t3p1
p3

p2

p5

p4

p7

p6t2

t5(b) t6

2

2

p8

t9
t11(c)

f1

f2

t8(a)

t7(b)

t10(b)

t4(c)

p9
p10 p11

3
f3

t12(d)

Fig. 1. A plant model producing bolts and nuts.

B. Motivation

In a faulty Petri net model, faults are explicitly modeled
as unobservable transitions and the transition set T is divided
into two disjoint subsets To and Tu with T = To ∪ Tu, where
To denotes the set of observable transitions and Tu the set of
unobservable transitions. Transitions t1 ∈ To and t2 ∈ Tu are
assigned a label from the event set E and an empty string
ε, respectively. In general, the diagnosis result provided by
approaches based on faulty Petri nets [12], [21]–[23], [25],
[28] can be represented by a function ∆: E∗×Tf → {0, 1, 2},
where E is the set of events associated with a faulty net,
Tf = {f1, . . . , fnf } ⊆ Tu is the set of nf fault transitions,
and 0, 1 and 2 denote that fault transition fi ∈ Tf does not
occur for sure, fi may occur and fi occurs with certainty, re-
spectively. For example, assuming that the observed sequence
is ω, ∆(ω, f1) = 1 indicates that f1 may (possibly) occur till
the observation of ω.

We next provide an example to show the motivation of
introducing an overall fault status. Consider the net in Fig. 1
that models a plant producing bolts and nuts. This plant has
two production lines: one (upper part) produces mini-size
bolts and nuts and the other (lower part) produces medium-
size ones. In Fig. 1, we have E = {a, b, c, d}, Tu =
{t2, t3, t6, t9, f1, f2, f3}, Tf = {f1, f2, f3}, Ta = {t1, t8},

Tb = {t5, t7, t10}, Tc = {t4, t11}, and Td = {t12}. The
unobservable transitions are represented as gray bars (fault
transitions f1, f2 and f3 are colored red), and Tx denotes
the set of transitions labeled x with x ∈ {a, b, c, d}. It
is significant to design an algorithm to solve the following
problem.

Problem 1. Consider the net shown in Fig. 1 and assume that
the observed sequence is ω = abb. Does the plant modeled
by this net run normally till the observation of ω? (i.e., have
some faults occurred in the plant?)

The existing approaches for fault diagnosis, such as those
in [12], [21], [23], [25], [28], provide an ambiguous answer
to Problem 1 only. The procedure in [23], [25], [28] to solve
Problem 1 can be summarized as follows.

Step 1: Compute the diagnosis results of f1, f2 and f3, re-
spectively, and obtain that ∆(ω, f1) = 1, ∆(ω, f2) =
1, and ∆(ω, f3) = 0.

Step 2: Because of the ambiguous diagnoses of f1 and f2,
one cannot unambiguously determine the occurrence
of faults and only an answer that the plant may run
abnormally can be provided.

In fact, the exact answer is that the plant runs abnormally
and one of f1 and f2 necessarily occurs. This situation can
be explained by Fig. 2(a), where the symbol ε denotes an
empty string. As a part of reachability graph of the net shown
in Fig. 1, it shows all transition sequences consistent with ω.
In Fig. 2(a), M0 is the initial marking, and Mω1 and Mω2

are the markings reachable by firing the sequences consistent
with ω = abb. We observe that each path from M0 to Mω1 or
Mω2 either goes through f1 or f2, i.e., there is no path that
passes none of faults. Fig. 2(a) can be condensed as Fig. 2(b)
which shows all the paths more intuitively. By considering all
possible evolutions of the plant consistent with the observation
abb, there does not exist a possibility that no fault occurs since
each path contains a fault transition. This implies that a fault
must occur till the observation of abb and the plant does not
run normally.

t1(a
)

t
8 (a)

t 2
(e
)

t
3 (e)

t3(e)

f1

t2(e
)

t5(b) t2(e)
f 1

t3(e)

t5(b)

t3(e)

f1
t5(b)

t5(b)

t5(b)

t9(e) t10(b) f2 t7(b)

M0

Mw1

Mw2

f1

f1

f1

f2

M0

Mw1

Mw2

(a)

(b)

Fig. 2. (a) All paths consistent with abb and (b) an intuitive representation
of (a).

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 3

This paper will provide a more precise and informative
solution to Problem 1 by extending the existing diagnosis
function. The new diagnosis function is defined as ∆: E∗ ×
TfS → {0, 1, 2}, where TfS = Tf ∪ {F} and F stands for
the overall fault status. In contrast to detecting the individual
fault separately, the overall fault status indicates the occurrence
of faults from a global system perspective. In particular,
∆(ω,F) = 0 denotes that a system is running normally,
∆(ω,F) = 1 some faults may occur in the system, and 2
some faults must have occurred. Note that, in some cases, the
diagnosis of F , i.e., ∆(ω,F), can be directly inferred from
∆(ω, fi) with i = 1 . . . nf . However, in other cases, novel
methodologies have to be proposed to compute ∆(ω,F).

Due to the use of the overall fault status, in some cases, one
can detect the occurrence of faults before the actual faults are
isolated. Let us consider the net in Fig. 1 again. The diagnosis
results for observed words ω’s are listed in Table I, where
∆(ω,F) denotes the diagnosis of the overall fault status.
We observe that for ω = a, both f1 and f2 do not occur.
For ω = abb, both f1 and f2 may occur, as indicated by
∆(abb, f1) = 1 and ∆(abb, f2) = 1. However, ∆(abb,F) = 2
implies that at least one fault must occur in the plant even if
the diagnoses of f1 and f2 are ambiguous, i.e., we detect the
occurrence of faults before the definite diagnosis of individual
fault transition.

TABLE I
DIAGNOSIS RESULTS FOR OBSERVED WORD ω.

f

∆(ω, f) ω
a ab abb . . . abbacba

f1 0 1 1 . . . 2
f2 0 0 1 . . . 0
f3 0 0 0 . . . 0
F 0 1 2 . . . 2

This is particularly meaningful for a system that needs
to respond to failures in time. For example, consider an
aircraft with five faults from f1 to f5. If we detect that
∆(ω, f1) = 1, ∆(ω, f2) = 1, ∆(ω, fi) = 0 for i = 3, . . . , 5,
and ∆(ω,F) = 2, some faults must occur in the aircraft
though we cannot determine which faults occur at present. The
captain of the aircraft can deal with this situation immediately
before an unambiguous fault is reported.

However, for systems that can tolerate failures, we can
wait for a longer observation of an event sequence in order
to exactly find the faults with less cost. For example, some
components of a system are hard to access and one should
exactly identify the location of a fault before taking any
corrective action that may involve component inspection and
replacement [2]. If the occurrence of faults in a system is
detected according to the overall fault status F and the exact
faults cannot be currently ascertained, we can consider the
following two ways to find the exact faults:

(1) Observe continuously the output of a net till a sufficiently
long sequence is observed if the net is diagnosable (see
Section V);

(2) Stop the real-world system and inspect all the faults f ’s
with ∆(ω, f) = 1 one by one.

The first way provides exact fault locations such that they can
be fixed in a short time. But a long wait may be needed to
precisely identify the faults. For example, considering Fig. 1
and Table I, we detect the occurrence of faults (∆(abb,F) =
2) but cannot determine that the fault is f1 or f2 when ω =
abb. If the plant continues to run and the observed word is
ω = abbacba, we then conclude that fault f1 must happen
(∆(ω, f1) = 2) and f2 not (∆(ω, f2) = 0). On the other
hand, for the second way, one has to stop (part of) the plant
and further test it to find the faulty components. This will
possibly reduce the throughput of the plant and increase the
cost of isolating faults.

When performing diagnosis in a system, we will first try
to detect any abnormal behavior of the system based on the
observation. If the behavior is found to be abnormal, we will
refine the diagnosis by using new observations and possibly
further testing the system until the faulty components are
found [29]. In this paper, a framework to isolate and fix faults
in a system is proposed based on the overall fault status F .
This framework is appropriate for faults that cause significant
changes in the system state but do not bring the system to a
halt. In a real-world system, the overall fault status F can
be viewed as a fault indicator light that has three colors
of green (∆(ω,F) = 0), yellow (∆(ω,F) = 1), and red
(∆(ω,F) = 2). If the light is green, it implies that the system
is running normally and no fault is detected. Whereas a red
light indicates that one or more faults have occurred and then
one can check ∆(ω, fi) with i = 1, . . . , nf to localize and fix
the faults. Graphically, the diagnosis flow can be described by
Fig. 3.

Start

Set light to
green,
w = e

Wait for
observation of

event e

w=we, compute D(w, fi)
and D(w, F) and write to
running log, set color of

light by D(w, F)

Running log
example:

 a b c
f1 0 0 1
f2 0 1 1
F 0 1 2

Start

Reset and start
system

Light is red?

Wait for some
time

Fix faults?

Stop and test
system

Find and fix
faults

N N

Y

Y

(a) (b)

Find exact
faults by log

Fig. 3. (a) Diagnosis process and (b) supervision process

As shown in Fig. 3, there are two processes in the system:
diagnosis process and supervision process. The diagnosis
process makes a diagnosis when observing an event and enters
the diagnosis result into a log file (see Fig. 3(a)). Note that a
plant may continue to run and record the diagnosis result even
if some faults have occurred. The supervision process monitors

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 4

the operation of the plant and decides whether to stop it to fix
faults when the indicator light is red (see Fig. 3(b)).

C. Contribution

In this paper, we extend the approach in [26] to explore an
improved diagnosis algorithm based on labeled Petri nets and
the overall fault status. As done in the literature [22], [25],
the approach in [26] can only be used for a special class of
labeled Petri nets, i.e., nets in which each observable transition
is assigned a unique label. We first extend the approach in [26]
to the case of a labeled Petri net with an arbitrary labeling
function, i.e., two or more transitions can share the same label,
and then propose some new theoretical results to compute
∆(ω,F). An online diagnosis approach is presented, which
implements the diagnosis process described in Fig. 3(a).

Note that Fanti et al. [30] also extend the approach in [26] to
the case of a labeled Petri net. They first build an ILP problem
based on a transition sequence σo ∈ T ∗o using a special class
of labeled Petri net where an observable transition is assigned
a unique label. Then, for an observed word ω ∈ E∗, they
exhaustively enumerate all possible sequences σo’s with σo ∈
T ∗o whose projections on E are ω and, for each sequence
σo, solve a number of ILP problems built from it to perform
online diagnosis. For an observed word ω, there may exist a
lot of transition sequences σo’s whose projection on E are
ω. Thus, a large number of ILP problems may need to be
solved according to the approach in [30], which is infeasible
in general due to prohibitive computational cost.

Different from the work in [30], we in this paper extend
and improve the approach in [26] from a different perspective.
Specifically, our extension is completely based on labeled Petri
nets and an ILP problem is constructed based on the observed
word ω not a transition sequence σo ∈ T ∗o . Compared with
the approach in [30], the number of times of solving ILP
problems of our approach is usually considerably small when
perform diagnosis for an observed word (see Section VI for
an example).

The main contributions of the paper can be summarized as
follows.
(1) We introduce a new diagnosis specification called an

overall fault status and extend the diagnosis function such
that a more precise and informative diagnosis result can
be provided.

(2) We extend and improve the approach in [26] to the case
of general labeled Petri nets, i.e., nets where two or more
transitions can share the same label. Different from the
extension in [30], we do not need to enumerate all possible
sequences of observable transitions consistent with an
observed word ω ∈ E∗ and just solve an ILP problem
built according to ω to perform diagnosis.

(3) In contrast to the work in [30], our approach is usually
more efficient, demonstrated by extensive experimental
studies (see Section VI).

This paper is organized in seven sections. We in Sec-
tion I review the related literature and show the motivation
of introducing the overall fault status. The basic definitions
and preliminaries on Petri nets are recalled in Section II.

Section III defines the problem on which this paper focuses.
In Section IV, a solution based on integer linear programming
is proposed. Section V discusses the relationship between
the diagnosability and the overall fault status. We present
an example to compare the proposed approach with the one
in [30] in Section VI. Finally, we conclude the paper in
Section VII.

II. PRELIMINARIES

This section recalls the Petri net formalism and some
preliminary results used throughout the paper. The readers can
refer to [31] and [32] for more details on Petri nets. We denote
by N the set of non-negative integers.

A. Basics of Petri nets

A Petri net is a four-tuple N = (P, T, Pre, Post), where
P = {p1, . . . , pm} is a set of m places, T = {t1, . . . , tn}
is a set of n transitions with P ∪ T 6= ∅ and P ∩ T = ∅,
Pre : P × T → N and Post : P × T → N are the pre-
and post-incidence matrices, respectively, which specify the
structure of the net. Graphically, places and transitions are
represented by circles and bars, respectively. For each arc with
weight γ from place p (transition t) to transition t (place p), it
holds Pre(p, t) = γ (Post(p, t) = γ). The other elements of
Pre and Post are 0. The incidence matrix of a net is denoted
by C = Post−Pre. A Petri net is said to be acyclic if there
is no directed cycle.

For a transition t ∈ T , its preset is defined as •t = {p ∈
P | Pre(p, t) > 0}, and its postset is defined as t• = {p ∈
P | Post(p, t) > 0}. A transition t is said to be a source
transition if •t = ∅.

A marking of a Petri net is a vector M : P → N, and M(p)
indicates the number of tokens, pictorially denoted by black
dots, in place p. We use x1p1 + · · · + xmpm to denote the
marking [x1, . . . , xm]T for economy of space. A net system
〈N,M0〉 is a Petri net N with an initial marking M0.

A transition t ∈ T is enabled at marking M if for all p ∈
•t,M(p) ≥ Pre(p, t), which is denoted by M [t〉. An enabled
transition t at M can fire yielding a new marking M ′ such
that M ′ = M + C(·, t), which is denoted by M [t〉M ′.

For a transition sequence σ ∈ T ∗ and a marking M , M [σ〉
denotes that σ is enabled at marking M and M [σ〉M ′ denotes
that a new marking M ′ is reachable from M after firing σ.
The set of all the markings reachable from M0 is denoted by
R(N,M0), called the reachability set of a Petri net. The set
of transition sequences enabled at the initial marking M0 is
defined as

L(N,M0) = {σ ∈ T ∗ |M0[σ〉}

which is called the language of Petri net system 〈N,M0〉.
We define a function π : T ∗ → Nn that maps a transition

sequence σ ∈ T ∗ to n-dimensional column vector y = π(σ),
called firing vector, such that y(t) = k if transition t appears
k times in σ. Write t ∈ σ to denote that t is contained in σ.

Given M0[σ〉M , we have

M = M0 + C · π(σ). (1)

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 5

Eq. (1), called the state equation, shows that there exists a
non-negative integer vector y such that M = M0 + C · y
if M is reachable from M0, which is a necessary but not
sufficient condition for the reachability of marking M from
M0. However, for an acyclic net, it is necessary and sufficient,
as verified by the following result.

Theorem 1. [31] Let 〈N,M0〉 be an acyclic Petri net. A
marking M ≥ 0 is reachable from M0 if and only if (iff)
there exists a non-negative integer vector y satisfying M =
M0 + C · y.

B. Labeled Petri net
Given a Petri net N = (P, T, Pre, Post) and the event

set E, a labeling function λ : T → E ∪ {ε} assigns to each
transition t ∈ T either a symbol from the event set E or an
empty string ε. In the case of no confusion, a labeled Petri net
in this paper refers to a net with an arbitrary labeling function,
i.e., two or more transitions can share the same label. A Petri
net system 〈N,M0〉 with a labeling function λ : T → E∪{ε}
is called a labeled Petri net system, denoted by 〈N,M0, E, λ〉.

A transition t is said to be unobservable or silent if it is
associated with the label ε, i.e., λ(t) = ε. The set of unob-
servable transitions is denoted by Tu = {t ∈ T | λ(t) = ε}
with cardinality nu. All other transitions whose labels come
from event set E constitute the set of observable transitions
To = {t ∈ T | λ(t) 6= ε} with cardinality no. Thus,
set T is divided into two disjoint subsets To and Tu with
T = To ∪ Tu. For a faulty Petri net, the faults are always
modeled by unobservable transitions and accordingly the set
of unobservable transitions is also divided into two disjoint
subsets Treg and Tf , i.e., Tu = Treg∪Tf , where Treg denotes
the set of regular unobservable transitions and Tf the set of nf
fault transitions. We use Te = {t ∈ T | λ(t) = e} to represent
the set of transitions with the same label e ∈ E.

Analogous to the definition of function π, for each sequence
σo ∈ T ∗o , we define a function πo : T ∗o → Nno such that
y = πo(σo) and y(t) = k if t ∈ To appears k times in σo.
Similarly, the function πu : T ∗u → Nnu associates a sequence
σu ∈ T ∗u with an nu-dimensional vector πu(σu).

We extend the definition of labeling function λ to a sequence
σt ∈ T ∗ such that λ(σt) = λ(σ)λ(t), i.e., for a sequence
σ ∈ T ∗, ω = λ(σ) is an observed word composed of the labels
of observable transitions contained in σ. The set of observed
words in a labeled Petri net system 〈N,M0, E, λ〉 is defined
as

LE(N,M0) = {ω ∈ E∗ | σ ∈ L(N,M0), ω = λ(σ)}.

Given a transition sequence σ, we use ←−σ to denote the last
transition in σ. For example, if σ = t1t2t3, we have ←−σ = t3.
For an observed word ω ∈ LE(N,M0), the set

C(ω) = {σ ∈ T ∗ | σ ∈ L(N,M0), λ(σ) = ω}

denotes all sequences that are consistent with ω and
←−
C (ω) = {σ ∈ T ∗ | σ ∈ C(ω),←−σ ∈ To}

stands for the consistent transition sequences whose last tran-
sitions are observable, i.e., the sequences with observable tails.

Accordingly, the set of markings that are reachable by firing
the consistent transition sequences with observable tails is
defined as

←−
D (ω) = {M ∈ Nm | σ ∈

←−
C (ω),M0[σ〉M}.

Example 1. Consider the net shown in Fig. 1 and a
part of its reachability graph shown in Fig. 2. If the
observed word is ω = a, then it is readily verified
that C(ω) = {t1, t1t2, t1t2f1, t1t2f1t3, t1t2t3, t1t2t3f1, t1t3,
t1t3t2, t1t3t2f1, t8, t8t9} and

←−
C (ω) = {t1, t8}. On the other

hand, for ω = abb, we have
←−
D (ω) = {Mω1 ,Mω2}.

Definition 1. Given a net N = (P, T, Pre, Post) and a subset
of transitions T ′ ⊆ T , the T ′-induced subnet of N is a Petri
net N ′ = (P, T ′, P re′, Post′), where Pre′ and Post′ are the
restrictions of Pre and Post to P × T ′, respectively, i.e., the
net N ′ is obtained by removing all transitions in T \ T ′ from
N .

Given a net N = (P, T, Pre, Post) with T = To ∪ Tu,
according to Definition 1, one can readily obtain from N
the observable subnet No = (P, To, P reo, Posto) and the
unobservable subnet Nu = (P, Tu, P reu, Postu). Moreover,
the incidence matrices of nets No and Nu are denoted by
Co = Posto − Preo and Cu = Postu − Preu, respectively.
Note that, as in the literature [22], [25], [26], this paper
assumes that the unobservable subnet is acyclic.

III. PROBLEM STATEMENT

Fault diagnosis consists in determining if faults have oc-
curred in a system according to the observed system output,
such as the observed word ω in a Petri net. As done in the
literature, we can design a diagnoser, i.e., a diagnosis function,
to show the diagnosis result. For a labeled Petri net with event
set E, a diagnoser is a function ∆: E∗×Tf → {0, 1, 2} such
that a fault f ∈ Tf does not occur if ∆(ω, f) = 0, may occur
if 1, and necessarily occurs if 2. Next, we provide the formal
definition of diagnosis function ∆.

Definition 2. Let 〈N,M0, E, λ〉 be a labeled Petri net system.
The diagnosis function ∆: E∗×Tf → {0, 1, 2} associates an
observed word ω ∈ LE(N,M0) and a fault f ∈ Tf with a
diagnosis state such that

(1) ∆(ω, f) = 0 if for all σ ∈
←−
C (ω), f /∈ σ, i.e., each path

consistent with ω in the reachability graph does not pass
fault transition f .

(2) ∆(ω, f) = 1 if there exist σ1, σ2 ∈
←−
C (ω) such that f /∈

σ1 and f ∈ σ2, i.e., there exist two paths, one of which
passes f and the other does not.

(3) ∆(ω, f) = 2 if for all σ ∈
←−
C (ω), f ∈ σ.

Note that some existing studies [21], [22] additionally
consider the possible fault transitions after the last observed
event of ω when performing diagnosis, i.e., the definition of
∆ is based on C(ω) not

←−
C (ω). However, we in this paper

do not adopt this setting and detect only the fault transitions
occurring before the last event of ω in order to be consistent
with the seminal work in [1].

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 6

From Definition 2, we observe that the diagnoser ∆ only
concerns if an individual fault f ∈ Tf has occurred during
the system evolution and there is no information to indicate
the overall system fault state, i.e., the diagnosis results of all
fault transitions cannot completely describe the fault state of
the system. To overcome this, we introduce the notion of the
overall fault status F in Subsection I-B.

A diagnostic Petri net system 〈N,M0, E, λ,F〉 is a labeled
Petri net system 〈N,M0, E, λ〉 with an overall fault status F .
For 〈N,M0, E, λ,F〉, the diagnosis function is extended as
∆: E∗ × TfS → {0, 1, 2}, where TfS = Tf ∪ {F}. The
diagnosis of F is defined as follows.

Definition 3. Let 〈N,M0, E, λ,F〉 be a diagnostic Petri net
system. For an observed word ω ∈ LE(N,M0), the diagnosis
of F is represented by a diagnosis function ∆: E∗ × TfS →
{0, 1, 2} such that

(1) ∆(ω,F) = 0 if for all σ ∈
←−
C (ω) and for all f ∈ Tf ,

f /∈ σ.
(2) ∆(ω,F) = 1 if there exist σ1, σ2 ∈

←−
C (ω) such that (i) for

all f ∈ Tf , f /∈ σ1 and (ii) there exists f ∈ Tf , f ∈ σ2.
(3) ∆(ω,F) = 2 if for all σ ∈

←−
C (ω), there exists f ∈ Tf

such that f ∈ σ.

In some cases, the value of ∆(ω,F) can be directly de-
duced from ∆(ω, fi). We provide the following proposition
to formalize this situation. However, when there exist two or
more f ’s such that ∆(ω, f) = 1, we have to figure out a new
method to compute ∆(ω,F).

Proposition 1. Given a diagnostic Petri net system
〈N,M0, E, λ,F〉 and an observed word ω ∈ LE(N,M0), the
following statements hold:
(1) ∆(ω,F) = 0 if for all f ∈ Tf , ∆(ω, f) = 0,
(2) ∆(ω,F) = 2 if there exists f ∈ Tf such that ∆(ω, f) = 2,
(3) ∆(ω,F) = 1 if there exists only one f ∈ Tf such that

∆(ω, f) = 1 and ∆(ω, f ′) = 0 for other faults f ′ ∈ Tf .

Proof. The conclusions (1) and (2) can be directly derived
from Definitions 2 and 3. For (3), since there is one f ∈ Tf
such that ∆(ω, f) = 1, there exist two paths σ1, σ2 ∈

←−
C (ω)

satisfying f ∈ σ1 and f /∈ σ2. Moreover, for any other fault
transition f ′, it holds ∆(ω, f ′) = 0. Thus, we have f /∈ σ2
for each f ∈ Tf , i.e., ∆(ω,F) = 1.

The conclusion (3) in Proposition 1 provides a straightfor-
ward method to compute ∆(ω,F) in the case that there is only
one f ∈ Tf satisfying ∆(ω, f) = 1 (for all f ′ ∈ Tf \ {f},
∆(ω, f ′) = 0). However, for the case that there are two or
more f ’s such that ∆(ω, f) = 1, Corollary 3 has to be em-
ployed to compute ∆(ω,F). The Lines 14–19 of Algorithm 1
show the use of Proposition 1 when performing diagnosis of
F .

Next, we formally define the problem considered in this
paper. In Section IV, an algorithm based on integer linear
programming is provided to solve this problem.

Problem 2 (Online diagnosis). Given a diagnostic Petri net
system 〈N,M0, E, λ,F〉 with T = To ∪ Tu and Tu = Treg ∪
Tf , let the observed word ω be null initially. The diagnosis

problem consists in computing ∆(ω, f) and ∆(ω,F) for each
observed event e during the evolution of the system, where
ω = ωe, f ∈ Tf , and F is the overall fault status.

By Definitions 2 and 3, we know that an intuitive method to
solve Problem 2 is to analyze the reachability graph of a net.
However, this is usually infeasible because of its huge size.
In order to avoid analyzing the reachability graph, an integer
linear programming technique is often used for a Petri net. We
next present an ILP-based solution to Problem 2.

IV. ILP-BASED SOLUTION

In [26], an approach based on ILP is proposed for fault
diagnosis using Petri nets in which each observable transition
is associated with a unique label. In this paper, we introduce
the overall fault status and extend this approach to the case
of a labeled Petri net. First, we give a theorem that is the
cornerstone of the proposed ILP-based approach.

Theorem 2. Given a labeled Petri net 〈N,M0, E, λ〉 and an
observed word ω = e1e2 . . . eh ∈ LE(N,M0), there exists a
sequence σ = σu1

tα1
. . . σuhtαh ∈

←−
C (ω) if and only if there

exist vectors yi and binary variables zeij with i = 1, . . . , h and
j = 1, . . . , nei satisfying the following equation

M0 + Cu ·
i∑

γ=1

yγ +

i−1∑
γ=1

neγ∑
δ=1

C(·, teγδ) · (1− zeγδ)

− Pre(·, tei1) ≥ −zei1 ·K
...

M0 + Cu ·
i∑

γ=1

yγ +

i−1∑
γ=1

neγ∑
δ=1

C(·, teγδ) · (1− zeγδ)

− Pre(·, teinei) ≥ −z
ei
nei
·K

zei1 + . . .+ zeinei
= nei − 1

Tei = {tei1 , . . . , teinei}
yi ∈ Nnu
zei1 , . . . , z

ei
nei
∈ {0, 1}

i = 1, . . . , h,
(2)

where h ∈ N is the length of the observed word, nei is the
cardinality of set Tei , σui ∈ T ∗u , tαi ∈ Tei , yi = πu(σui) is a
firing vector, and K is a sufficiently large positive integer.

Proof. For i = 1, . . . , h, Eq. (2) contains h groups of con-
straints.
(if) For i = 1, we obtain the first group of constraints shown
as follows:

M0 + Cu · y1 − Pre(·, te11) ≥ −ze11 ·K
...
M0 + Cu · y1 − Pre(·, te1ne1) ≥ −ze1ne1 ·K
ze11 + . . .+ ze1ne1 = ne1 − 1

Since ze1k with k = 1, . . . , ne1 are binary variables, there must
exist a variable with value 0 among them. Without loss of
generality, we assume ze11 = 0. Then we have M0 + Cu ·
y1 ≥ Pre(·, te11). Considering that the unobservable subnet is
acyclic, there exists a transition sequence σu1 ∈ T ∗u such that

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 7

y1 = πu(σu1
) and M0[σu1

te11 〉. It is clear that σu1
te11 ∈

←−
C (e1)

holds.
For i = 2, we obtain the second group of constraints:

M0+Cu · (y1 + y2) + C(·, te11)(1− ze11) + . . .

+ C(·, te1ne1)(1− ze1ne1)− Pre(·, te21) ≥ −ze21 ·K
...
M0+Cu · (y1 + y2) + C(·, te11)(1− ze11) + . . .

+ C(·, te1ne1)(1− ze1ne1)− Pre(·, te2ne2) ≥ −ze2ne2 ·K
ze21 + . . .+ ze2ne2 = ne2 − 1

We know that ze11 = 0 and ze1k = 1 with k = 2, . . . , ne1 . More-
over, analogous to the situation of i = 1, we assume ze21 = 0.
Thus, we have M0+Cu ·y1+C(·, te11)+Cu ·y2 ≥ Pre(·, te21).
Since there exists a sequence σu1

satisfying M0[σu1
te11 〉M1

and y1 = πu(σu1
), M1+Cu ·y2 ≥ Pre(·, te21) holds. Being the

unobservable subnet acyclic, there exists σu2 ∈ T ∗u such that
M1[σu2t

e2
1 〉 and y2 = πu(σu2). Thus we conclude that there

exists σ = σu1
te11 σu2

te21 satisfying M0[σ〉 and σ ∈
←−
C (e1e2).

If the theorem is true for i = k − 1 with 2 ≤ k ≤ h, we
next prove that it holds for i = k. For i = k, without loss
of generality, we assume zej1 = 0 with j = 1, . . . , k. Then, it
holds

M0 + Cu ·
k∑
γ=1

yγ +

k−1∑
γ=1

C(·, teγ1) ≥ Pre(·, tek1).

Moreover, we have already known that yi = πu(σui)
with i = 1, . . . , k − 1 and M0[σu1

tα1
. . . σuk−1

tαk−1
〉Mk−1.

Thus, Mk−1 + Cu · yk ≥ Pre(·, tek1) ≥ 0 holds. S-
ince the unobservable subnet is acyclic, there exists a se-
quence σuk ∈ T ∗u such that Mk−1[σukt

ek
1 〉Mk. Thus, it

holds σu1
tα1

. . . σuk−1
tαk−1

σuktαk ∈
←−
C (e1 . . . ek), i.e., we

prove by induction that there exists a sequence σ =

σu1
tα1

. . . σuhtαh ∈
←−
C (ω).

(only if) For the observed word ω = e1e2 . . . eh, if there
exists a sequence σ = σu1

tα1
. . . σuhtαh ∈

←−
C (ω), a solution

to Eq. (2) can be found as follows. First, we set yi = πu(σui)
for i = 1, . . . , h. Second, since tαi ∈ Tei , without loss of
generality, we assume tei1 = tαi and then it holds zei1 = 0 and
zeii = 1 for i = 2, . . . , nei . Thus, there exist yi and zeij with
i = 1, . . . , h and j = 1, . . . , nei satisfying Eq. (2).

On the basis of Theorem 2, we can infer that all sequences
σ’s corresponding to the solutions to Eq. (2) constitute the
set
←−
C (ω). Thus, by associating an objective function with

Eq. (2), we can determine if a fault has occurred or not. In the
following, three corollaries based on Theorem 2 are provided
to describe this.

Corollary 1. Given a labeled Petri net 〈N,M0, E, λ〉 and
an observed word ω = e1e2 . . . eh, then for each f ∈ Tf ,
∆(ω, f) = 0 if ILPP 1 admits a solution γ = 0.

ILPP 1:

 γ = max
h∑
i=1

yi(f)

s.t. Eq. (2)

Proof. If γ = 0, by checking all possible solutions to Eq. (2),
there does not exist yi such that yi(f) > 0. By Theorem 2,

each σui in σ = σu1
tα1

. . . σuhtαh ∈
←−
C (ω) does not contain

f , i.e., for all σ ∈
←−
C (ω), f /∈ σ, which implies ∆(ω, f) =

0.

Corollary 2. Given a labeled Petri net 〈N,M0, E, λ〉 and an
observed word ω = e1e2 . . . eh, for each f ∈ Tf , ∆(ω, f) = 2
if ILPP 2 admits a solution γ > 0.

ILPP 2:

 γ = min
h∑
i=1

yi(f)

s.t. Eq. (2)

Proof. If γ > 0, then there exists at least one yi in solutions
to Eq. (2) such that yi(f) > 0, i.e., for all σ ∈

←−
C (ω), f ∈ σ,

which indicates ∆(ω, f) = 2.

For an observed word ω and each f ∈ Tf , Corollaries 1 and
2 are devoted to computing the value of ∆(ω, f). On the other
hand, for the overall fault status F , we can compute ∆(ω,F)
according to Proposition 1 and the following corollary.

Corollary 3. Given a diagnostic Petri net system
〈N,M0, E, λ,F〉 and an observed word ω = e1e2 . . . eh,
∆(ω,F) = 2 if ILPP 3 admits γ > 0 and ∆(ω,F) = 0 or 1
if γ = 0.

ILPP 3:

 γ = min ~11×nf ·
h∑
i=1

yi(Tf)

s.t. Eq. (2)

Proof. Note that objective function
∑h
i=1 yi(Tf) denotes the

sum of projections of nu-dimensional column vectors yi’s over
the set Tf . If γ = 0, there exists a group of unobservable
sequences σui corresponding to yi with i = 1 . . . h such that
σ = σu1

tα1
. . . σuhtαh and f /∈ σ for each f ∈ Tf , i.e., there

exists at least one path which passes none of fault transitions
in the reachability graph from M0 to

←−
D (ω). Thus, in this

case, ∆(ω,F) = 0 or 1 according to Definition 3. On the
contrary, if γ > 0, there does not exist such a path, i.e., each
path must pass one or more fault transitions. Thus, we have
∆(ω,F) = 2.

Now, an online algorithm to Problem 2 can be provided.
Algorithm 1 describes the basic steps of how to perform diag-
nosis in a labeled Petri net by using the ILP technique only.
The correctness of this algorithm is ensured by Proposition 1
and Corollaries 1, 2 and 3.

We briefly illustrate how Algorithm 1 works. It is described
in C-like syntax. For example, we use the symbol “=” to
represent an assignment operation and “==” to indicate that
two variables are equal. In Line 1, R = ~0nf is an nf -
dimensional column vector that records the diagnosis result of
each f ∈ Tf . For a fault f , its diagnosis is denoted by R(f).
Note that nf is the cardinality of set Tf . Variable s represents
the diagnosis of the overall fault status F , i.e., ∆(ω,F). The
diagnosis results R and s are written into a log file in Line 26.
We in Section I discuss how to use the log file to refine the
diagnosis result (see Fig. 3(b)). The value of ∆(ω, f) with
f ∈ Tf , i.e., R(f), is first computed by Lines 4–13 according
to Corollaries 1 and 2. In some cases, ∆(ω,F) can be directly
derived from R (see Proposition 1 for details). Thus by Lines

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 8

Algorithm 1: Online fault diagnosis using a diagnostic
Petri net system

Input: A diagnostic Petri net system 〈N,M0, E, λ,F〉
Output: The diagnosis result for each observed event

e ∈ E
1 ω = ε, R = ~0nf , s = 0;
2 Wait until a new event e is observed;
3 ω = ωe;
4 for each f ∈ Tf do
5 Set γ1 be the maximal objective value of ILPP 1;
6 if γ1 == 0 then
7 R(f) = ∆(ω, f) = 0;
8 else
9 Set γ2 be the minimal objective value of ILPP 2;

10 if γ2 > 0 then
11 R(f) = ∆(ω, f) = 2;
12 else
13 R(f) = ∆(ω, f) = 1;

14 if R == ~0 then
15 s = ∆(ω,F) = 0;
16 else if there exists an entry r in vector R such that
r == 2 then

17 s = ∆(ω,F) = 2;
18 else if there exists only an entry r in vector R such that
r == 1 then

19 s = ∆(ω,F) = 1;
20 else
21 Set γ3 be the minimal objective value of ILPP 3;
22 if γ3 > 0 then
23 s = ∆(ω,F) = 2;
24 else
25 s = ∆(ω,F) = 1;

26 Output R and s and write them into log file; Goto 2;

14–19, we compute ∆(ω,F) according to the diagnosis of
each f ∈ Tf , i.e.,R. If ∆(ω,F) cannot be directly obtained by
R, we have to solve ILPP 3 to determine ∆(ω,F) according
to Corollary 3 (Lines 21–25). When the algorithm completes
the diagnosis of the current step, it returns to Line 2 to wait
for a new observed event.

The main computational cost of Algorithm 1 stems from the
solutions of ILPPs 1, 2, 3. As known, solving an integer linear
programming problem is NP-hard. Further, the computational
cost mainly depends on its size,, i.e., the number of integer
variables and constraints. We next analyze the size of the
programming problem Eq. (2).

For ω = e1 . . . eh, it is readily to verify that the number of
variables in Eq. (2) can be represented as

I = (nu + ne1) + (nu + ne2) + . . .+ (nu + neh)

= h · nu + (ne1 + . . .+ neh) ≈ h · (nu + nf),

where nu = |Tu|1, nf = |Tf |, nei = |Tei |. Eq. (2) contains h

1| · | denotes the cardinality of a set.

groups of constraints and (nu + nei) denotes the number of
variables in the ith group. Specifically, nu denotes the length
of vector yi and nei the number of binary variables, i.e.,
zei1 , . . . , z

ei
nei

. At the same time, the number of constraints is
represented as

J = (m · ne1 + 1) + . . .+ (m · neh + 1)

= m · (ne1 + . . .+ neh) + h ≈ h · (m · nf + 1),

where m is the number of places in a labeled Petri net. For
ei ∈ ω, there are nei transitions whose labels are ei. Thus for
the ith group of constraints, it contains m·nei+1 constraints in
scalar form, where “1” denotes the constraint zei1 +. . .+zeinei

=
nei − 1.

In summary, the number of variables and constraints in
Eq. (2) is linear in the length of the observed word. If the
observed word is very long, we may not be able to obtain the
diagnosis result in real time. However, the approach based on
ILP is straightforward and easy to implement, and can be used
as a basis to develop more efficient approaches.

TABLE II
DIAGNOSIS RESULT AND RUNNING TIME FOR EXAMPLE 2.

e1 e2 e3 e4
a b b a

f1 0 1 1 1
f2 0 0 1 1
f3 0 0 0 0
F 0 1 2 2

Time (s) 0.0115 0.0107 0.0209 0.0233

Example 2. Let us consider the net shown in Fig. 1. Assume
that the observed word is ω = abba. The diagnosis result and
running time are shown in Table II, where, for each event
ei, there is a column which lists the diagnosis result and
running time corresponding to ei. For example, considering
e3 = b (i.e., ω = e1e2e3 = abb), the diagnosis results are
∆(ω, f1) = 1, ∆(ω, f2) = 1, ∆(ω, f3) = 0, and ∆(ω,F) = 2
and the running time is 0.0209s. Note that the time is obtained
by executing a MATLAB procedure with GUROBI solver
(academic license) [33] on a laptop computer with Intel i5-
4200M 2.5GHz processor and 8G DDR3 1600Hz RAM.

V. DIAGNOSABILITY AND OVERALL FAULT STATUS

The diagnosability of a Petri net is discussed in [34]–[36].
If a fault f is diagnosable, then the occurrence of f can
be detected in a finite number of steps. Given a Petri net
language L, its post-language after a transition sequence σ ∈ L
is defined as L/σ = {τ ∈ T ∗ | στ ∈ L}. Formally, the
diagnosability of f is defined as follows.

Definition 4. [35] Given a labeled net 〈N,M0, E, λ〉, a fault
transition f is diagnosable if there exists an integer K ∈ N
such that

∀σ = σ̃f ∈ L(N,M0),∀τ ∈ L(N,M0)/σ with |τ | > K

⇒ ∀σ′ ∈
←−
C (λ(στ)), f ∈ σ′, where σ̃ ∈ L(N,M0).

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 9

If all fault transitions of a Petri net system are diagnosable,
then the Petri net system is said to be diagnosable. For a diag-
nosable labeled Petri net, we have the following proposition.

Proposition 2. Consider a diagnosable labeled Petri net sys-
tem 〈N,M0, E, λ〉 with an overall fault status F . For each
sequence σfσ′ ∈ L(N,M0), it holds ∆(ω,F) = 2, where
σ ∈ T ∗, f ∈ Tf , σ′ ∈ T ∗ with |σ′| > K, and ω = λ(σfσ′).

Proof. Since f is diagnosable, for each σ1 ∈
←−
C (ω), it holds

f ∈ σ1. Thus, we have ∆(ω,F) = 2 by Definition 3.

In plain words, when a system is running, a fault f ∈ Tf
occurs and the process continues. After K steps, we are sure
that f has occurred according to the observation ω. Thus,
∆(ω, f) = 2 is true, which implies ∆(ω,F) = 2.

Only when the Petri net model of a system is diagnosable
(or I-diagnosable [1]), can the diagnosis algorithms detect
unambiguously which faults have occurred. However, due
to the use of overall fault status F , even if a net model
of a system is not diagnosable, it is possible to detect the
occurrence of faults in the system though we do not know
exactly which fault occurs. An example is provided to clarify
this.

t1(a)

p1

p2 p3 p4

t6(e)
t8(c)

f1
f2

t5(a)

t4(b)

t7(b)

t3(b)

p5 p6
p7

t2(c)

Fig. 4. A Petri net that is not diagnosable.

Example 3. Consider the net shown in Fig. 4, where Tu =
{t6, f1, f2} and Tf = {f1, f2}. According to Definition 4,
both f1 and f2 are not diagnosable. Assume that the observed
word is ω = (abb)(abb) · · · . Then it holds ∆(ω, f1) =
∆(ω, f2) = 1, i.e., the diagnosis results of f1 and f2 are
ambiguous for infinite ω. However, for ω′ = abb, it holds
∆(ω′,F) = 2, i.e., when observing only abb, we have already
known that some faults occur in the system. In this case,
although we are sure that at least a fault has occurred, we
are unable to exactly identify which faults have occurred. In
real-world systems, a possible strategy is to stop the plant and
inspect the faults one by one.

VI. CASE STUDY

We in this section explore the computational overhead of
the proposed algorithm and compare its efficiency with the one
shown in [30] by an example. Consider the labeled Petri net
shown in Fig. 5 that is originally introduced in [20] and slightly
modified in this paper, where Tu = {t1, f1, t4, t11, f2}, Tf =
{f1, f2}, Ta = {t3, t5, t6, t8}, Te = {t7, t9, t10, t12}, Th =
{t16}, Tg = {t14, t15, t17}. The initial marking is M0 = p1 +
αp2 + βp3, where α and β are two variables denoting the
numbers of tokens in p2 and p3, respectively.

a

b

t1

t4 t8(a) t12(e) t16(h)

t5(a) t9(e)

t17(g)
t6(a) t10(e) t14(g)

t3(a) t7(e) t15(g)t11

f1

f2p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

Fig. 5. A Petri net for case study.

Let α = 10 and β = 10, and assume that the observed
word is ω = ae(aeg)10gggg, where (aeg)10 represents that
the sequence aeg repeats 10 times. When observing an event,
we make a diagnosis using Algorithm 1. The running time of
Algorithm 1 for each observed event is shown in Fig. 6, where
the x-axis represents the index of each event in sequence ω.

0 5 10 15 20 25 30 35 40

Index of each observed event

0

0.5

1

1.5

2

2.5

3

3.5

4

R
un

ni
ng

 ti
m

e
(s

)

Fig. 6. Running time for each observed event.

We have shown in Section IV that the size of programming
model Eq. (2) is linear with respect to the length of the
observed word. However, the difficulty of a generic ILP
problem always increases exponentially with respect to its size,
which is verified by Fig. 6. This implies that one probably
cannot obtain the diagnosis result in real time if the observed
sequence is very long. However, integer linear programming is
a standard mathematical tool for diagnosis of Petri nets based
on which some new approaches can be developed to overcome
the complexity issue, which will be done in our subsequent
work.

Fanti et al. [30] also proposed an algorithm for fault diag-
nosis using labeled Petri nets and integer linear programming.
However, the key idea is different from us. They first build
an integer programming problem according to a transition
sequence σ ∈ T ∗o not an observed word ω ∈ E∗. Then, for
an observed word ω, they explore all possible sequences of
observable transitions whose projections over E are equal to
ω. The size of the programming problem in [30] is smaller

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 10

than the one in this paper. However, it has to be solved more
times to obtain the diagnosis result.

The output and computational process of the algorithm
proposed by Fanti et al. [30] are different from ours. In order
to compare the efficiency of these two algorithms, we have to
modify one of them to make them have the same input and
output. We here choose to modify Fanti’s algorithm, though
it is completely feasible to modify our algorithm (note that
modifying our algorithm will lose some diagnostic informa-
tion). The details of the modification of Fanti’s algorithm is
discussed in Appendix A and this section mainly focuses on
the comparison of these two algorithms. On the other hand,
our algorithm, i.e., Algorithm 1, and the modified version of
Fanti’s algorithm are both implemented in MATLAB language.
The readers can refer to [37] for the source code.

Consider the net in Fig. 5 again and assume that α = β = 7.
If the observed word is ω = ae(aeg)7gggg, the comparison of
these two algorithms is shown in Table III. The first row lists
all events in ω. The second row shows the number of times to
solve the programming problems defined in this paper when
performing diagnosis using the proposed algorithm. The third
row shows the number of times to solve the programming
problems defined in [30] when dealing with the diagnosis
issue using the algorithm (modified version) developed in [30].
The fourth and fifth rows demonstrate the running time of
diagnosis algorithms proposed by us and Fanti et al. [30],
respectively. The running time is tested using GUROBI solver
[33] on a laptop computer with Intel i5-4200M 2.5GHz
processor and 8G DDR3 1600Hz RAM. The sixth row lists
the diagnosis result for each event, which is represented as
a row vector [a b c] such that ∆(ω, f1) = a, ∆(ω, f2) = b,
and ∆(ω,F) = c. Note that the diagnosis of the fourth event
from the last is [1 1 2], i.e., we detect the occurrence of
faults (∆(ω,F) = 2) before the exact faults are ascertained.
The detailed comparison of running time is also illustrated by
Fig. 7. We observe that our approach is more efficient in this
example.

0 5 10 15 20 25 30

Index of each observed event

0

20

40

60

80

100

R
un

ni
ng

 ti
m

e
(s

)

Our approach
Approach proposed by Fanti et al.

Fig. 7. Comparison of our approach with the one in [30].

VII. CONCLUSION

This paper addresses the problem of fault diagnosis by
formulating and solving ILP problems. The main contributions
consist in introducing the overall fault status and proposing

an online diagnosis algorithm based on labeled Petri nets,
in which two or more transitions can share the same label.
The overall fault status provides a more informative diagnosis
result, i.e., not only every fault but also the global system fault
status can be detected. In addition, we show that, in some
cases, a definite conclusion on the occurrence of faults in a
system can be given even if the system is not diagnosable. We
also compare the efficiency of the proposed approach with the
one in [30] by a case study and the result shows that our
approach is usually more efficient.

In future work, we plan to extend and modify the other
diagnosis approaches, such as those in [25] and [21], to
make them have a uniform interface. Then, we will develop
a software package to compare their efficiency. On the other
hand, we will explore the use of an overall fault status in a
distributed environment.

REFERENCES

[1] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans-
actions on Automatic Control, vol. 40, no. 9, pp. 1555–1575, 1995.

[2] ——, “Failure diagnosis using discrete-event models,” IEEE Transac-
tions on Control Systems Technology, vol. 4, no. 2, pp. 105–124, 1996.

[3] Y. F. Chen, Z. W. Li, K. Barkaoui, N. Q. Wu, and M. C. Zhou, “Compact
supervisory control of discrete event systems by Petri nets with data
inhibitor arcs,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 47, no. 2, pp. 364–379, 2017.

[4] Y. F. Chen, Z. W. Li, K. Barkaoui, and A. Giua, “On the enforcement
of a class of nonlinear constraints on Petri nets,” Automatica, vol. 55,
pp. 116–124, 2015.

[5] G. H. Zhu, Z. W. Li, and N. Q. Wu, “Model-based fault identification of
discrete event systems using partially observed Petri nets,” Automatica,
vol. 96, pp. 201–212, 2018.

[6] A. Giua and C. Seatzu, “Identification of free-labeled Petri nets via
integer programming,” in Proceedings of the 44th IEEE Conference on
Decision and Control, Seville, Spain, 2005, pp. 7639–7644.

[7] Z. He, Z. W. Li, and A. Giua, “Performance optimization for timed
weighted marked graphs under infinite server semantics,” IEEE Trans-
actions on Automatic Control, vol. 63, no. 8, pp. 2573–2580, 2018.

[8] W. M. P. van der Aalst, Process Discovery: An Introduction. New York,
NY, USA: Springer, 2011.

[9] H. M. Zhang, L. Feng, and Z. W. Li, “A learning-based synthesis
approach to the supremal nonblocking supervisor of discrete-event
systems,” IEEE Transactions on Automatic Control, vol. 63, no. 10,
pp. 3345–3360, 2018.

[10] Z. Y. Ma, Y. Tong, Z. W. Li, and A. Giua, “Basis marking representation
of Petri net reachability spaces and its application to the reachability
problem,” IEEE Transactions on Automatic Control, vol. 62, no. 3, pp.
1078–1093, 2017.

[11] Y. Tong, Z. W. Li, C. Seatzu, and A. Giua, “Verification of state-based
opacity using Petri nets,” IEEE Transactions on Automatic Control,
vol. 62, no. 6, pp. 2823–2837, 2017.

[12] F. Basile, M. P. Cabasino, and C. Seatzu, “State estimation and fault di-
agnosis of labeled time Petri net systems with unobservable transitions,”
IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 997–1009,
2015.

[13] D. Lefebvre, “On-line fault diagnosis with partially observed Petri nets,”
IEEE Transactions on Automatic Control, vol. 59, no. 7, pp. 1919–1924,
2014.

[14] L. Li and C. N. Hadjicostis, “Minimum initial marking estimation in
labeled Petri nets,” IEEE Transactions on Automatic Control, vol. 58,
no. 1, pp. 198–203, 2013.

[15] J. Prock, “A new technique for fault detection using Petri nets,” Auto-
matica, vol. 27, no. 2, pp. 239–245, 1991.

[16] Y. Wu and C. N. Hadjicostis, “Algebraic approaches for fault iden-
tification in discrete-event systems,” IEEE Transactions on Automatic
Control, vol. 50, no. 12, pp. 2048–2055, 2005.

[17] A. Ramı́rez-Treviño, E. Ruiz-Beltrán, I. Rivera-Rangel, and E. Lopez-
Mellado, “Online fault diagnosis of discrete event systems. A Petri
net-based approach,” IEEE Transactions on Automation Science and
Engineering, vol. 4, no. 1, pp. 31–39, 2007.

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 11

TABLE III
COMPARISON OF OUR APPROACH WITH THE ONE IN [30].

event a e a e g · · · e g g g g g
solving times I 3 3 5 5 5 · · · 5 5 5 3 3 3
solving times II 8 22 27 39 41 · · · 5591 7512 10652 9988 9973 18583

running time I (s) 0.02 0.01 0.02 0.04 0.04 · · · 1.07 1.10 1.21 1.73 1.98 2.23
running time II (s) 0.03 0.05 0.08 0.10 0.09 · · · 23.52 32.63 51.80 49.97 44.57 87.89

diagnosis result [1 0 1] [1 0 1] [1 1 1] · · · · · · · · · · · · · · · [1 1 2] [0 2 2] · · · · · ·

[18] A. Benveniste, E. Fabre, S. Haar, and C. Jard, “Diagnosis of asyn-
chronous discrete-event systems: a net unfolding approach,” IEEE Trans-
actions on Automatic Control, vol. 48, no. 5, pp. 714–727, 2003.

[19] J. Zaytoon and S. Lafortune, “Overview of fault diagnosis methods for
discrete event systems,” Annual Reviews in Control, vol. 37, no. 2, pp.
308–320, 2013.

[20] S. Genc and S. Lafortune, “Distributed diagnosis of discrete-event
systems using Petri nets,” in Proceedings of International Conference
on Application and Theory of Petri Nets, Eindhoven, the Netherlands,
2003, pp. 316–336.

[21] A. Giua and C. Seatzu, “Fault detection for discrete event systems using
Petri nets with unobservable transitions,” in Proceedings of the 44th
IEEE Conference on Decision and Contro, Seville, Spain, 2005, pp.
6323–6328.

[22] M. P. Cabasino, A. Giua, and C. Seatzu, “Fault detection for discrete
event systems using Petri nets with unobservable transitions,” Automat-
ica, vol. 46, no. 9, pp. 1531–1539, 2010.

[23] M. P. Cabasino, A. Giua, M. Pocci, and C. Seatzu, “Discrete event
diagnosis using labeled Petri nets. An application to manufacturing
systems,” Control Engineering Practice, vol. 19, no. 9, pp. 989–1001,
2011.

[24] M. P. Cabasino, A. Giua, A. Paoli, and C. Seatzu, “Decentralized
diagnosis of discrete-event systems using labeled Petri nets,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 6,
pp. 1477–1485, 2013.

[25] F. Basile, P. Chiacchio, and G. De Tommasi, “An efficient approach
for online diagnosis of discrete event systems,” IEEE Transactions on
Automatic Control, vol. 54, no. 4, pp. 748–759, 2009.

[26] M. Dotoli, M. P. Fanti, A. M. Mangini, and W. Ukovich, “On-line
fault detection in discrete event systems by Petri nets and integer linear
programming,” Automatica, vol. 45, no. 11, pp. 2665–2672, 2009.

[27] Y. Ru and C. N. Hadjicostis, “Fault diagnosis in discrete event systems
modeled by partially observed Petri nets,” Discrete Event Dynamic
Systems, vol. 19, no. 4, pp. 551–575, 2009.

[28] X. Wang, C. Mahulea, and M. Silva, “Diagnosis of time Petri nets using
fault diagnosis graph,” IEEE Transactions on Automatic Control, vol. 60,
no. 9, pp. 2321–2335, 2015.

[29] W. Hamscher, L. Console, and J. De Kleer, Readings in Model-Based
Diagnosis. San Mateo, CA: Morgan Kaufmann, 1992.

[30] M. P. Fanti, A. M. Mangini, and W. Ukovich, “Fault detection by labeled
Petri nets in centralized and distributed approaches,” IEEE Transactions
on Automation Science and Engineering, vol. 10, no. 2, pp. 392–404,
2013.

[31] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[32] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems. New York, NY, USA: Springer, 2009.

[33] Gurobi Optimizer. [Online]. Available: http://www.gurobi.com/
[34] M. P. Cabasino, A. Giua, and C. Seatzu, “Diagnosability of bounded

petri nets,” in Proceedings of the 48th IEEE Conference on Decision
and Control, Shanghai, China, 2009, pp. 1254–1260.

[35] ——, “Diagnosability of discrete-event systems using labeled Petri nets,”
IEEE Transactions on Automation Science and Engineering, vol. 11,
no. 1, pp. 144–153, 2014.

[36] F. Basile, P. Chiacchio, and G. De Tommasi, “On k-diagnosability of
Petri nets via integer linear programming,” Automatica, vol. 48, no. 9,
pp. 2047–2058, 2012.

[37] G. H. Zhu, “Matlab programs for this paper.” [Online]. Available:
https://github.com/zhuguanghui86/code for mypaper

APPENDIX A
MODIFICATION DETAILS OF THE ALGORITHM IN [30]

The centralized fault diagnosis algorithm proposed in [30]
has a different output with the one in this paper and thus we
need to modify it, keeping the key idea unchanged, to compare
its efficiency with our approach. We first briefly recall the ILP
problem defined in [30] based on a sequence σo ∈ T ∗o .

Given a sequence of observable transitions denoted by σo =
tα1

tα2
· · · tαh , the ILP problem without objective function can

be defined as
M0 + Cu ·

i∑
k=1

yk +
i−1∑
k=1

C(·, tαk) ≥ Pre(·, tαi)

yi ∈ Nnu
i = 1, . . . , h.

(3)

By specifying different objective functions to Eq. (3), we
obtain three ILP models:

ILPP 4: φ1 = max
h∑
i=1

yi(f) s.t. Eq. (3)

ILPP 5: φ2 = min
h∑
i=1

yi(f) s.t. Eq. (3)

ILPP 6: φ3 = min ~11×nf ·
h∑
i=1

yi(Tf) s.t. Eq. (3).

On the basis of these ILP problems, the Fault Detection
Algorithm (FDA) proposed in [30] (see Fig. 2 in [30]) is
modified as Algorithm 2 which takes a transition sequence
σo ∈ T ∗o as input. At the same time, the Diagnoser Algorithm
(DA) proposed in [30] (see Fig. 3 in [30]) is modified as
Algorithm 3 which enumerates all sequences of observable
transitions consistent with an observed word and repetitively
calls Algorithm 2. The data shown in rows 3 and 5 of Table III
is computed by executing Algorithm 3. The readers can inspect
the souce code [37] for the details.

Note that the symbol ⊗ (not mentioned in [30]) in Line 11
of Algorithm 3 is another contribution of this paper, which is
a binary operation defined in Table IV and very appropriate
to compute the combination of diagnosis results of transition
sequences σo’s consistent with an observed word ω. We will
extend the approaches shown in [21] and [25] to the case of
labeled Petri nets using this symbol in the subsequent research.
We next show the formal definition of symbol ⊗ and prove
its correctness.

Analogous to the labeling function λ, we define a new
function τ : T → To ∪ {ε} such that τ(t) = t if t ∈ To and
τ(t) = ε if t ∈ Tu. The function τ is extended to a sequence
σt ∈ T ∗ such that τ(σt) = τ(σ)τ(t), i.e., ν = τ(σ) represents

http://www.gurobi.com/
https://github.com/zhuguanghui86/code_for_mypaper

REPORT OF LABORATOIRE DINFORMATIQUE ET SYSTMES (LIS), AIX-MARSEILLE UNIVERSITY, MARSEILLE, FRANCE 12

Algorithm 2: A fault diagnosis algorithm denoted by
(R, s, χ) = new FDA(N , σo)

Input: A diagnostic Petri net system N = 〈N,M0, E, λ,F〉
and a transition sequence σo ∈ T ∗o

Output: The diagnosis results R and s of fault transitions and
the overall fault status, respectively, a flag χ to denote
if an ILP problem admits a solution

1 R = ~0nf ,s = 0, χ = true, build Eq. (3) according to σo;
2 if Eq. (3) has no feasible solution then
3 χ = false; return R, s and χ (terminate the procedure);

4 for each f ∈ Tf do
5 if φ1 == 0 then
6 R(f) = ∆(ω, f) = 0;
7 else
8 if φ2 == 0 then
9 R(f) = ∆(ω, f) = 1;

10 else
11 R(f) = ∆(ω, f) = 2;

12 if R == ~0 then
13 s = ∆(ω,F) = 0;
14 else if there exists r in vector R such that r == 2 then
15 s = ∆(ω,F) = 2;
16 else if there exists only r in vector R such that r == 1 then
17 s = ∆(ω,F) = 1;
18 else
19 if φ3 == 0 then
20 s = ∆(ω,F) = 1;
21 else
22 s = ∆(ω,F) = 2;

23 return R, s and χ;

Algorithm 3: An online fault diagnosis algorithm
Input: A diagnostic Petri net system N = 〈N,M0, E, λ,F〉
Output: The diagnosis results R and s for each event e

1 R = ~0nf , s = 0, Λ′ = {ε}, α = true (α denotes if e is the
first event);

2 Wait until a new event e is observed; Λ = ∅;
3 for each t ∈ Te do
4 for each σ′o ∈ Λ′ do
5 σo = σ′ot; (R′, s′, χ) = new FDA(N , σo);
6 if χ is true then
7 Λ = Λ ∪ {σo};
8 if α is true then
9 R = R′, s = s′, α = false;

10 else
11 R = R⊗R′; s = s⊗ s′;

12 Λ′ = Λ;
13 Output R, s; Goto 2;

the projection of σ ∈ T ∗ on the set of observable transitions.
For an observed word ω ∈ LE(N,M0), we denote

T (ω) = {ν ∈ T ∗o | σ ∈
←−
C (ω), ν = τ(σ)}

the set of observable projections of transition sequences con-
sistent with ω.

Proposition 3. Given a diagnostic net system
〈N,M0, E, λ,F〉 and an observed word ω ∈ E∗, for

TABLE IV
BINARY OPERATION ⊗.

⊗ 0 1 2
0 0 1 1
1 1 1 1
2 1 1 2

each f ∈ Tf ∪ {F}, it holds

∆(ω, f) = ∆(ν1, f)⊗∆(ν2, f)⊗ . . .⊗∆(νk, f), (4)

where k = |T (ω)|, {ν1, . . . , νk} = T (ω), and ⊗ : {0, 1, 2} ×
{0, 1, 2} → {0, 1, 2} is a binary operation defined in Table IV.

Proof. For f ∈ Tf ∪ {F} and ν ∈ T (ω), we can compute
∆(ν, f) according to Algorithm 2. T (ω) denotes all sequences
of observable transitions whose projections on E are ω.
Assume that there are only two items ν1 and ν2 in T (ω).
For f ∈ Tf , if ∆1 = ∆(ν1, f) = 0 and ∆2 = ∆(ν2, f) = 0,
there is no fault f to occur in paths consistent with ν1 and ν2
according to Definition 2, and thus we have ∆(ω, f) = 0.
On the other hand, if ∆1 = 0 and ∆2 = 2, there is no
fault f in paths consistent with ν1 but fault f must occur
in all paths consistent with ν2. Thus, ∆(ω, f) = 1 is true
according to Definition 2. Following a similar procedure, we
obtain Table IV for each f ∈ Tf∪{F} according to Definitions
2 and 3. If T (ω) contains more than two elements, Eq. (4) is
readily verified.

	Introduction
	Position of the paper
	Motivation
	Contribution

	Preliminaries
	Basics of Petri nets
	Labeled Petri net

	Problem Statement
	ILP-based solution
	Diagnosability and overall fault status
	Case study
	Conclusion
	References
	Appendix A: Modification details of the algorithm in fanti2013fault

