
HAL Id: hal-02019075
https://amu.hal.science/hal-02019075

Submitted on 7 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computation of synchronizing sequences for a class of
1-place-unbounded synchronized Petri nets

Changshun Wu, Isabel Demongodin, Alessandro Giua

To cite this version:
Changshun Wu, Isabel Demongodin, Alessandro Giua. Computation of synchronizing sequences for
a class of 1-place-unbounded synchronized Petri nets. 2018 5th International Conference on Control,
Decision and Information Technologies (CoDIT), Apr 2018, Thessaloniki, France. pp.51-57. �hal-
02019075�

https://amu.hal.science/hal-02019075
https://hal.archives-ouvertes.fr

Computation of synchronizing sequences for a class of
1-place-unbounded synchronized Petri nets

Changshun WU1, Isabel DEMONGODIN1 and Alessandro GIUA2

Abstract— In this paper, we consider a special class of
synchronized Petri nets, called 1-place-unbounded, that contain
a single unbounded place. The infinite reachability spaces of
such nets can be characterized by two types of finite graphs,
called improved modified coverability graph and weighted
automata with safety conditions. In the case of that these
two finite graphs are deterministic, we develop computation
algorithms for synchronizing sequences for this class of nets.

I. INTRODUCTION

One of the fundamental testing problems for discrete event
systems (DESs) is the identification of a final state, i.e.,
given a system whose current state is unknown, find an input
sequence that can drive it to a known state. Synchronizing
sequences (SSs), without output information, and homing se-
quences (HSs), with output information, are two conventional
solutions to this problem and a comprehensive survey can be
found in [1]. Most of the literature on this topic uses as model
finite state machines[2][3].

Petri net is a graphical and mathematical formalism that
has also been widely used to model DESs. However there
exist few works on the use of Petri nets for testing. The prob-
lem of computing SSs for Petri nets with input events, called
synchronized Petri nets (SynPNs), was recently addressed.
[4] focused on bounded SynPNs and provided general algo-
rithm for computing SSs based on the reachability graph of a
net, showing that for particular classes of nets more efficient
algorithms based on the net structure exist. In a later work
[5] the same authors extended the synchronization problem to
classes of unbounded nets, but the algorithm they proposed
to construct a modified coverability graph for unbounded
nets is not guaranteed to provide an exact description of its
behavior, and thus may not always be used to compute SSs.
In particular using the modified coverability graph (MCG)
in [5] there may exist spurious markings (i.e., markings in
the graph that are not reachable in the net) or vanishing
markings (i.e., markings that are reachable in the net but are
not represented in the graph).

We are also interested in the analysis of unbounded
SynPNs for using them as models for synchronization (and
more generally testing) problems. However the analysis of
systems with an infinite state space is a challenging problem.
Recently, [6] have investigated the synchronization problem
for weighted automata (WA). WA are a special class of

*This work was not supported by any organization
1Changshun WU and Isabel DEMONGODIN are with Aix-Marseille

Université, CNRS, ENSAM, Université de Toulon, LIS UMR 7020, France
{changshun.wu, isabel.demongodin}@lis-lab.fr

2Alessandro GIUA is with University of Cagliari, DIEE, Italy
giua@diee.unica.it

infinite state systems, whose state is defined by a finite
location and a quantitative weight (or energy) and whose
behavior may be subject to quantitative constraints on the
energy value. These authors have shown that the existence
of sequences synchronizing a deterministic WA to a known
state with safety conditions or to a known location with or
without safety condition is decidable. Motivated by this, the
authors in [7] considered a particular class of SynPNs, called
1-place-unbounded SynPNs, in which a single place can be
unbounded and they found out that this class of SynPNs
can be converted into equivalent WAs with safety conditions
and the infinite reachability spaces of this class of SynPNs
can be exactly represented by a finite graph, called improved
modified coverability graph (IMCG).

In this paper we develop computation algorithms for two
location synchronization problems in the case either the
IMCG or the WA is deterministic: synchronization into a
single node and synchronization into a subset of nodes of
these two graphs. Then we show that this approach can be
used to solve two different problems related to the original
net: the synchronization into a single node of the graph of
its IMCG or WA corresponds to synchronizing the net into
a known marking of bounded places and a known set of
enabled transitions, while the synchronization into a subset
of nodes of the graph of its IMCG or WA with same marking
on specified bounded places corresponds to synchronizing
the net into a known marking of specified places. The
advantage of these computation algorithms are reducing the
computation on the global graphs (IMCGs or WAs) to the
one on the smaller subgraph: the ergodic strongly connected
component (SCC), which can reduce the computational effort
and furthermore can also be applied when the converted
deterministic IMCG or WA is not strongly connected.

The paper is structured as follows. Section 2 presents
the basic formalism on synchronized Petri nets, improved
modified coverability graphs and weighted automata. Section
3 formalize the synchronization problem for synchronized
Petri nets. Section 4 presents the computation algorithms
of SSs on the deterministic IMCG and WA of a given 1-
place-unbounded SynPN. Conclusion and future works are
summarized in the last section.

II. SYNCHRONIZED PETRI NETS

In this section, we present the basic notions concerning
SynPNs and its coverability graph and WA. Most of them
are taken from [5] and [6]. For a comprehensive introduction
to Petri nets and weighted automata, see [8], [9].

A. Synchronized Petri nets

In the following, Z and N denote the set of integers and
nonnegative integers, respectively.

A place/transition net (PN) is a structure N=(P, T, Pre,
Post), where P is a set of m places, T is a set of n transitions,
Pre : P × T → N and Post : P × T → N are the pre−
and post− incidence matrixes that specify the weights of
directed arcs from places to transitions and vice versa. C =
Post−Pre is the incidence matrix. A marking is a mapping
M : P → N that assigns to each place of a net a nonnegative
integer. A marking is denoted by a vector and the marking
of a place is represented by M(p). A marked PN 〈N,M0〉
is a net N with an initial marking M0. A transition t is
enabled at M iff M ≥ Pre(·, t) and its firing yields the
marking M ′ = M+C(·, t). The set of all enabled transitions
at M is denoted by ε(M). We write M [σ〉 to denote that
the sequence of transitions σ = t1 · · · tk is enabled at M .
Moreover M [σ〉M ′ denotes the fact that the firing of σ from
M leads to M ′. A marking M is said reachable in 〈N,M0〉
iff there exists a firing sequence M0[σ〉M . The set of all
markings reachable from M0 defines the reachability set of
〈N,M0〉 and is denoted R(N,M0). A place is k-bounded for
a given k > 0 if ∀M ∈ R(N,M0), M(p) ≤ k. A marked
PN 〈N,M0〉 is said to be k − bounded if all places are
k-bounded and the marked PN is unbounded if @k ∈ N
such that the net is k-bounded. Notation Pb and Pu denote,
respectively, the set of bounded and unbounded places with
Pb ∪ Pu = P and Pb ∩ Pu = ∅. M ↑b and M ↑u are
the projection of the marking M onto the set of bounded
places Pb and unbounded places Pu, respectively, with M ↑b
+M ↑u= M . More precisely, M ↑b (pi) = M(pi) if pi ∈ Pb
else M ↑b (pi) = 0 and M ↑u (pi) = M(pi) if pi ∈ Pu else
M ↑u (pi) = 0. We denote •p and p• the preset and postset
of a place p, respectively: •p = {t ∈ T |Post(p, t) > 0} and
p• = {t ∈ T |Pre(p, t) > 0}. The set of input transitions
and the set of output transitions for a set of place P ′ are
respectively, defined as: •P ′ = {t ∈ T | (∃p ∈ P ′) t ∈• p}
and P ′• = {t ∈ T | (∃p ∈ P ′) t ∈ p•}.

A synchronized Petri net (SynPN) is a structure 〈N,E, f〉
such that: i) N is a PN; ii) E is an alphabet of input events;
iii) f : T → E is a labeling function that associates with each
transition t an input event f(t). A marked synchronized PN
〈N,E, f,M0〉 is a SynPN with an initial marking M0. We
denote the set of transitions associated with the input event e
by: Te = {t ∈ T |f(t) = e} and the set of enabled transitions
associated with event e at marking M as: εe(M) = Te ∩
ε(M). The evolution of a synchronized net is driven by the
occurrence of an input event sequence that produces a set
of transition firings. At marking M , transition t ∈ T is fired
only if:
1) transition t is enabled, i.e., t ∈ ε(M);
2) the event e = f(t) occurs.
Note that the occurrence of an input event e ∈ E at marking
M forces the simultaneous firing of all transitions in εe(M)
provided there are no conflicts among them. On the contrary,
the occurrence of an event e does not produce the firing of

a

p1

3
5

- -
-

5t1 t2p2

a

Fig. 1. A 1-place-unbounded synchronized Petri net.

a non enabled transition t ∈ Te.
Definition 1: (Deterministic synchronized PN) A marked

synchronized PN 〈N,E, f,M0〉 is said to be deterministic if
the following condition holds:

(∀M ∈ R(N,M0)) (∀e ∈ E), M ≥
∑

t∈εe(M)

Pre(·, t)

A sufficient structural condition to ensure determinism is the
following.

Assumption 1: Given a synchronized PN 〈N,E, f〉 we
assume there exist no place p such that t, t′ ∈ p• and
f(t) = f(t′).

In the rest of this paper, for the sake of simplicity, we
will focus on deterministic synchronized PNs that satisfy
Assumption 1. We point out, however, that for the class
of 1-place unbounded SynPNs considered in this paper, the
improved modified coverability graph (IMCG) we introduce
in [7] can be used to verify if the net is deterministic
(necessary and sufficient condition).

Definition 2: (Evolution of a deterministic synchronized
PN) In a deterministic synchronized PN, when an input event
e occurs at a marking M , all enabled transitions associated
with this event, εe(M) = Te ∩ ε(M), fire simultaneously in
a single step e|τ :

M [e|τ〉M ′, with τ = εe(M)

M ′ = M +
∑
t∈τ

(Post(·, t)− Pre(·, t))

Here M [e|τ〉M ′ denotes that the occurrence of the input
event e at M yields marking M ′ by the firing of τ .

Example 1: Consider the SynPN in Fig.1 satisfying As-
sumption 1, where P = {p1, p2}, T = {t1, t2}, E = {a},
f(t1) = f(t2) = a. Let M0 = [1 0]T be the initial marking.
At M0, the sets of enabled transitions are: εa(M0) = {t1}. If
a occurs at M0, step a|{t1} fires leading to the new marking
M1 = [1 3]T , i.e., M0[a|{t1}〉M1. If a continue to occur at
M1, the net reaches a new marking M2 = [1 6]T , at which
the occurrence of a makes step a|{t1, t2} fire leading a new
marking M2 = [1 9]T .

B. Improved modified coverability graph

The infinite state space of a 1-place-unbounded SynPN
can be exactly represented by a finite graph, called improved
modified coverability graph (IMCG). Here we recall this
technique proposed in [7] by means of a simple example.
First we introduce two basic notions used in such graph,
called ω-number and ω-vector.

a|{t1} a|{t1}

0

1

3

1

23

1

w

a|{t1,t2}

Fig. 2. The IMCG of the net in Fig.1.

Definition 3: (ω-number) Let n ∈ Z, k, q ∈ N, and 0 ≤
q < k. Then S = {(k · i + q)|i ∈ Z ∧ i ≥ n} is called an
ω-number, with k as its base, n the lower bound, and q the
remainder. An element in S is called an instance of S, and
the minimal instance is Smin = k · n + q. For the sake of
simplicity, we denote S = kωn + q.

For instance, S = 3ω0 + 1 = {(3 · i + 1)|i ≥ 0} =
{1, 4, 7, · · · }, where the base is 3, the lower bound is 0 and
the remainder is 1.

Definition 4: (ω-vector): A m-dimension vector V =
[x1 x2 · · · xm]T is called an ω-vector if at least one of
its components is an ω-number, else it is an ordinary vector.

For example, [1 0 3ω2]T is an ω-vector and called ω-
marking in the nets.

Example 2: The improved modified coverability graph of
the SynPN in Fig.1 with M0 = [1 0]T , is shown in Fig.2. In
the following, notations “\” and “%” are, respectively, used
for quotient and remainder operations.

The initial node of IMCG is q0 with its marking Mq0 =
[1 0]T . Consider event a at q0, it will generate a new node
q1 with Mq1 = [1 3]T after the firing of step a|t1. Although
Mq1 is strictly greater than the marking [1 0]T , Mp2 is not
enough bigger that the weight of the arc from p2. Continuing
to apply event a at node q1, a new node q2 is generated
with marking Mq2 = [1 6]T which is strictly greater than
the marking [1 0]T on the path from q2 to the initial node.
By verifying that a is an increasing sequence which can be
repeated infinitely from node q0 by adding 3 tokens on place
p2, we update the marking of p2 with an ω-number kωn + r
where k = Mq2(p2) −Mq1(p2) = 3, n = Mq2(p2)\k = 2,
and r = Mq2(p2)%k = 1. Thus the new marking of q2 is
[0 3ω2]. Finally, we obtain the IMCG depicted in Fig.2 for
the net in Fig.1.

C. Weighted automata

A weighted automaton is an automaton endowed with
an energy level that is updated by the transition firing. In
addition, the energy level must satisfy certain constraints that
depend on the automaton discrete location.

According to [9] and [6], a weighted automaton with safety
conditions is a 7-tuple A = 〈L,Σ,∆, I, Safe, `0, ρ0〉, where
L is a finite set of locations; Σ is a finite alphabet; ∆ ⊆
L×Σ×Z×L is a set of edges; I is a finite set of intervals
with integer or infinite endpoints; Safe : L→ I is the safety
condition function which defines the energy scope of each
location; `0 ∈ L and ρ0 ∈ N are the initial location and the
initial energy, respectively. A state (`, ρ) is safe if and only

a:3

1 2

 0，1 I 1，1 I

a:3 a:3

Fig. 3. The equivalent WA of the net in Fig.1.

if the energy ρ belongs to the safety condition of Safe(`),
i.e., ρ ∈ Safe(`).

We denote by `
a:z−→ `′, the occurrence of event a at

location ` that moves the automaton to location `′ and
updates the value of the energy from ρ to ρ′ such that
ρ′ = ρ + z. Let Θ be the state space of a weighted
automaton and a state θ = (`, ρ) ∈ Θ. For event a ∈ Σ, let
δ(θ, a) = {θ′ : ∃(`, a, z, l′) ∈ ∆}. For a sequence of events,
w ∈ Σ∗, we recursively define δ∗(θ, aw) = δ(δ(θ, a), w).

Definition 5: A weighted automaton A is deterministic if
for all edges (`, a, z1, `1), (`, b, z2, `2) ∈ ∆, if a = b, then
z1 = z2 and `1 = `2, i.e., for all locations ` ∈ L and all
input event a ∈ E, there must exist a single edge exiting
location ` and labeled a.

Example 3: Consider the weighted automaton in Fig.3,
where L = {`1, `2}, Σ = {a, b}, I = {I0 = [0, 4], I1 =
[5,+∞)}, Safe(`0) = I0 and Safe(`1) = I1. This WA is
non-deterministic because there are two arcs labeled with a
outgoing from `1. If the initial location is `1 and the initial
energy is ρ0 = 0, then the initial state is θ0 = (`1, 0). At
θ0, the occurrence of event a yields a new state θ1 = (`1, 3)
but not θ′1(`2, 3) because this does not respect the safety
condition of `2, as 3 /∈ Safe(`2) = [5,+∞).

For a 1-place-unbounded SynPN PN , the authors in [7]
have proven that it can be converted into an equivalent WA
A with safety conditions. Let R = {r1, · · · , rk} with ri <
rj for 1 ≤ i < j ≤ k be the set of weights on the arcs
from the unique unbounded place pu to its post transitions
of PN , then the set of safety conditions of the equivalent
A is Safe={ I0 = [0, w1 − 1], I1 = [w1, w2 − 1], · · · ,
Ik−1 = [wk−1, wk − 1], Ik = [wk,+∞) }. For instance, the
WA in Fig.3 is the equivalent WA of the 1-place-unbounded
SynPN in Fig.1. Due to the fact that there is only one arc
outgoing from unbounded place p2 and its weight is 5, the
set of safety conditions is {I0 = [1, 4], I1 = [5,+∞)}.

III. SYNCHRONIZATION PROBLEM FOR SYNCHRONIZED
PETRI NETS

In this section, we formalize the general synchronization
problems for synchronized Petri nets.

Problem 1: (Synchronization for SynPNs) Given a marked
SynPN 〈N,E, f,M0〉 with its reachability set R(N,M0),
a target subset of reachable markings Mtar and an initial
marking uncertaintyMuncer, find a sequence of input events
w ∈ E∗ such that from any marking in Muncer the
application of this sequence yields a marking inMtar. Such
a sequence is called a synchronizing sequence (fromMuncer

to Mtar).

In plain words, the marking of the given net will belongs
to Mtar after applying such sequences on the net whatever
the starting marking in Muncer.

One applicable case of this setting is that the non-
autonomous systems modeled by synchronized nets lost
observation for a while and the current state may be any
one in a subset of states reached from initial state, then one
aims to find some inputs to drive the systems into a certain
state or a set of states with some properties.

As we previously stated in last section, the IMCGs and
WAs well characterize the infinite state spaces and dynamic
behaviours of 1-place-unbounded SynPNs. Moreover they
are finite. Thus we investigate the synchronization problem
for 1-place-unbounded SynPNs based on its IMCG and WA.

In this paper, we assume that the initial state uncertainty
is the entire reachability set, i.e., Muncer = R(N,M0) and
consider two scenarios for the target subsets of reachable
markings.

1) the subset of reachable markings represented by a node
of the IMCG or the WA. Consider a 1-place-unbounded
SynPN. If we can find a SS into a single node of
its IMCG, then we can know the exact marking of
bounded places and the set to which the marking of
the single unbounded place belongs is a ω-number. If
we can find a SS into a single node of its WA, then
we can know the exact marking of bounded places and
the set to which the marking of the single unbounded
place belongs is an interval of integers.

2) the subset of reachable markings represented by a
subset of nodes with same properties of the IMCG
or the WA. Consider a 1-place-unbounded SynPN and
a subset of bounded places Ps. If we can find a SS
into a set of nodes of its IMCG or WA with the same
marking of places in Ps, then we can know the marking
of places in Ps.

IV. COMPUTATION OF SYNCHRONIZING SEQUENCES FOR
NETS BASED ON IMCGS AND WAS

Consider a 1-place-unbounded SynPN. If its IMCG is
deterministic, this graph can be seen as a deterministic finite
state machine (FSM) where the input label associated to each
transition is the input event labeling the corresponding net
transition. In a similar way, a deterministic WA equivalent
to a 1-place-unbounded SynPN can also be seen as a deter-
ministic FSM.

In this section we will consider the problem of determining
SSs for these deterministic FSMs corresponding to a given
SynPN and later we will show how these sequences can
be used to solve synchronization problems for the original
SynPN. We first recall the definition of FSMs and the notions
of SSs for FSMs.

Definition 6: (Finite state machine) A deterministic FSM
G is a 5-tuple denoted by G = (X, I,O, δ, λ) where X ,
I and O are finite sets of states, input events and output
events respectively; δ : X×I → X is the transition function,
λ : X × I → O is the output function.

Note that we assume functions δ and λ are completely
defined, i.e., for any state, the occurrence of any event causes
a transition producing a output. However, the output of FSMs
is not considered in this paper. When the machine is in a
current state x ∈ X and receives an input event a from
I , it will move to the next state specified by transition
function δ(x, a). For a sequence of events, w ∈ Σ∗, we
recursively define δ(θ, aw) = δ(δ(θ, a), w). Function δ can
also be extended to a set of states, X ′ ⊆ X as following:
δ(X ′, i) = {δ(x, i) : x ∈ X ′}.

Next we recall the notion of SSs in deterministic FSMs
from [1].

Definition 7: (SSs for FSMs) Given a deterministic FSM
G = (X, I,O, δ, λ) over the alphabet I and a subset X ′ ⊆
X , a sequence of input events w ∈ I∗ (respectively, z ∈ I∗)
is a SS for G into a single state (respectively, into a subset of
states X ′) if δ(X,w) is a singleton (respectively, δ(X, z) ⊆
X ′).

Namely SSs are sequences which can drive a given FSM
into a final state or a desired subset of states regardless of the
initial state. In [1], it was shown that the existence problems
of SSs into a single state and into a specified subset of states
are, respectively, NLOGSPACE and PSPACE-complete.

The basic idea for synchronizing a given FSM into a single
state when the initial uncertainty is the whole state space
consists in searching for merging sequences for any two pair
states.

Definition 8: (Merging sequences) A merging sequence
for two states x, x′ ∈ X is a sequence w ∈ I∗ such that
δ(x,w) = δ(x′, w).

Definition 9: (Auxiliary graph) Given a FSM G with n
states, let Aux(G) be its auxiliary graph. Aux(G) contains
n(n+ 1)/2 nodes, one for every unordered pair (x′, x′′) of
states of G, including pairs (x, x) of identical states. There
exists an edge from node (x′, x′′) to (x̂′, x̂′′) labeled with
input event a ∈ I iff δ(x′, e) = x̂′ and δ(x′′, e) = x̂′′.

The merging sequence of two different states x and y
corresponds to the path from the node (x, y) to an identical
node in the auxiliary graph.

Algorithm 1: [1] Computation of synchronizing se-
quences into a single state for FSMs.
Input: a FSM G = (X, I,O, δ, λ).
Output: a synchronizing sequence w.

1. w := ε,
2. while |δ(X,w)| > 1,

2.1. find two different states x and y ∈ δ(X,w),
2.2. let w′ be a merging sequence for x and y,
2.2.1. if none exists, return failure.
2.2.2. else w := ww′.

3. return w.
For synchronizing a given FSM into a subset of states the

following algorithms can be used.
Algorithm 2: [1] Subset construction algorithm.

Input: A FSM G = (X, I,O, δ, λ) and a subset of states
X ′ ⊆ X .
Output: A synchronizing sequence into subset X ′.

p3

p1

t5

t2

p2

t3

t1

a

a

a

b

p4

3

2

-

-
- -

2 2

t4

t6

t7

t8

a

b

a

p5 p6

b

-

2

Fig. 4. A synchronized Petri net.

1. Set the initial state v0 = X as the root and label it new;
2. While there exist a node v tagged “new” do

2.1. For all a ∈ I:

2.1.1. vnew = δ(v, a);
2.1.2. if vnew ⊆ X ′, return w the sequence of input

events along the path from initial node v0 to
vnew, else if vnew already exists in the tree,

2.1.2.1. tag it “duplicate”, else
2.1.2.2. tag it “new”.

2.2. Untag node v.
Now we recall some basic notions from graph theory. A

directed graph is called strongly connected if there exists
a directed path from each of its nodes to any other. A
strongly connected component (SCC) of a directed graph is
a maximal strongly connected subgraph. According to [4],
such a component is called ergodic (denoted by Cer) if the
set of its output arcs is a subset of the set of its input arcs,
otherwise is called transient (denoted by Ctr). The strongly
connected components of a directed graph can be computed
in linear time. One of the main computation algorithms is
Tarjan’s algorithm [10].

Definition 10: (Condensed graph) For a given directed
graph, if each strongly connected component is contracted
to a single vertex, the resulting graph is a directed acyclic
graph, called condensed graph.

Example 4: Consider the WA in Fig. 5 with 4 SCCs. The
set of transient components is {C1, C2, C3}, while the set of
ergodic SCCs is {C4}.

Now we introduce a notion about the distance between
a transient SCC and the ergodic SCCs of a given directed
graph.

Definition 11: (Distance to ergodic components) Given a
transient SCC Citr of a deterministic FSM, we define the
distance of the component Citr to the ergodic components,
denoted by D(Citr), as the maximum length among all paths
that start from Citr and end in an ergodic component in the
condensed graph.

Example 5: Consider the WA in Fig. 5. It is evident
D(C3) = 1 while D(C1) = 3 because the maximum path
from C1 to C4 is C1C2C3C4.

b:3

a:0

a:0

a:2

b:0

b:3

a:0

a:0

0

1 2

3

0

1

0

0

0

1

 I，

0

1

0

0

1

0

 I，

0

1

0

1

0

0

 I，

0

1

1

0

0

0

 I，

1

1

1

0

0

0

 I，

1

2

1

0

0

0

 I，

4 5

b:1

b:3

C1

C2

C3 C4

b:0

a:0

Fig. 5. The equivalent WA of the net in Fig.4.

A. Leading-out sequences for transient SCCs

In this subsection, we first introduce a notion of leading-
out sequences (LoSs) for the transient SCCs of FSMs and
then show how a well order composition of such sequences
can be a SS into the set of states in the ergodic SCCs. The
formal definition is as following.

Definition 12: (Leading-out sequences) Given a transient
SCC Citr of a deterministic FSM, denote v and V , respective-
ly, a node and the set of nodes of Citr. The sequences of input
events w and z are, respectively, the leading-out sequence for
v and Citr if δ(v, w) /∈ V and δ(V,w)∩V = φ, respectively.

In plain word, the LoSs drive a node or a set of nodes
of a given transient SCC to the outside of this transient
component. Next example clarifies this notion.

Example 6: Consider the transient SCC C2 consisting of
`1 and `2 in Fig. 5. Sequences b and ab are, respectively, the
LoS for state `2 and C2, because δ(`2, b) = `3 /∈ {`1, `2}
and δ({`1, `2}, bab) ∩ {`1, `2} = {`3, `4} ∩ {`1, `2} = φ.

Now we discuss the existence of LoSs.
Theorem 1: For all transient SCC Citr with V the set of

its states of a given deterministic FSM and all state v ∈ V
of Citr, there exist LoSs for v and Citr.

Proof: We prove this theorem in two parts as follows.
First, we prove that there exist LoSs for all states v of all
transient SCCs Citr of a given deterministic FSM. By the
definition of transient SCC, for all Citr, there must exist at
least one state, called outgoing state and denoted by vout,
which has at least one outgoing arc, denoted by a, pointing
to the outside states of this SCC, i.e., δ(vout, a) /∈ V .
Because v and vout are in the same SCC, there must exists
a path w′ from v to vout, i.e., δ(v, w′) = vout. Due to
δ(v, w′a)=δ(δ(v, w′), a)=δ(vout, a) and δ(vout, a) /∈ V , we
have δ(v, w′a) /∈ V , i.e. sequence w′a is the LoS for state
v. Thus first part has been proved.

Second, we prove that there exist LoSs for all transient
SCCs Citr of a given deterministic FSM. Due to the deter-
minism of FSMs, for a set of states V , the number of reached
states from V is less than or equal to the number of states in
V , i.e., |δ(V,w)| ≤ |V |. Since δ(V,w)=δ(V/v, w)∪ δ(v, w),
it holds |δ(V,w)| ≤ |δ(V/v, w)|+|δ(v, w)|. By the proof
of first part, there must exist LoSs for all states v in
V . Let w be the LoS for v, then |δ(v, w)|=|φ|=0. Conse-
quently |δ(V,w)| ≤ |δ(V/v, w)|+|δ(v, w)|=|δ(V/v, w)| + 0
≤ |δ(V/v, w)| ≤ |V/v| < |V |, i.e., |δ(V,w)| < |V | if w is
the LoS for any state in V . Therefore each time we select
one state from δ(V,w) and apply its LoS, the number of
reached states from V will be decreased and reach to zero
in at most |V | steps. The sequence concatenated of the LoS
of each step is the LoS for the transient SCC Citr. Thus the
second part has also been proved.

The proof of Theorem 1 also shows how to compute the
LoSs for transient SCCs and its states therein. Now the
formal algorithm for computing the LoSs is given.

Algorithm 3: Computation of leading-out sequences for
a transient SCC.
Input: a transient SCC Citr of a deterministic FSM and its
node set V .
Output: a leading-out sequence for Citr, denoted as
Los(Citr).

1. w := ε;
2. While V is not empty:

2.1. Select a node v from V ;
2.2. Find a LoS w′ for v to leave out from this SCC;
2.3. update V = δ(V,w′) ∩ V ;
2.4. w = ww′;

3. Return Los(Citr) = w.
Now we give an algorithm to show how to compute a SS

into the set of states of the ergodic SCCs for a given FSM.
Algorithm 4: Computation of leading-out sequences for

a deterministic FSM.
Input: a deterministic FSM G with η transient SCCs.
Output: a SS into the set of states of ergodic SCCs for G.

1. For j = 1 : η:
1.1. uj = LoS(Cjtr);
1.2. dj = D(Cjtr);

2. Let ξ = maximum(dj), 1 ≤ j ≤ η;
3. For i = 1 : ξ:

3.1. wi = ε;
3.2. for j = 1 : η:
3.2.1. if dj = i then wi = wiuj ;

4. Return w = wξwξ−1 · · ·w1.
Step 1 computes the LoS for each transient SCC (note that

these computations are independent and can be parallelized).
The number ξ obtained in Step 2 is the longest distance
between transient SCCs and ergodic SCCs. Step 3 compose
a sequence wi by concatenating the LoSs of transient SCCs
whose distance to ergodic components is i. After applying
wi on the given FSM, the states of transient components with
same distance i will be driven into a component more closer

to ergodic component. The last step is an iteration aiming at
driving all states from far to near and at last into the ergodic
components.

Example 7: The LoSs of the transient SCCs C1, C2, and
C3 in the WA in Fig.5 are, respectively, w1 = a, w2 = bab,
and w3 = b. Since there exist only one ergodic SCC C4 and
the distance from the transient SCCs to ergodic SCCs are
D(C1) = 3, D(C2) = 2, and D(C3) = 1. Thus the SS into
the set of states of C4 is w = w1w2w3=ababb.

B. Computation of SSs on IMCG and WA

Before we formally introduce the computation algorithms,
we give two conditions that characterize two interesting
classes of FSMs.

Condition 1: The graph of the deterministic FSM has a
unique ergodic SCC and there exists a SS into a single node
in this ergodic SCC.

Condition 2: Given a subset of nodes V of a deterministic
FSM, there exists a SS into V on the ergodic SCCs of this
FSM.

Condition 1 can be tested by first checking whether there
is only one node with no outgoing arc in the condensed
graph of a given FSM. If so, using the method of auxiliary
graph to verify if there exists a sequence w ∈ I∗ such that
δ(v, w) = δ(v′, w) for any two different nodes v and v′ in the
unique ergodic SCC. Meanwhile, Condition 2 can be tested
by verifying whether V is reached in the subset construction
of the ergodic SCCs.

Theorem 2: Given a deterministic FSM: a) there exists
a SS into a single node if and only if Condition 1 holds;
b) there exists a SS into a subset of nodes V if and only if
Condition 2 holds.

Proof: The proof has two parts: sufficiency and neces-
sity. The necessity part can be obviously proved by the fact
that for a given deterministic FSM and a subset Xs ⊆ X ,
if ∃w ∈ I∗ and z ∈ I∗ such that |δ(X,w)| = 1 and
δ(X, z) ⊆ Xs, thus for any subset X ′ ⊆ X it holds
|δ(X ′, w)| = 1 and δ(X ′, z) ⊆ Xs.

The sufficiency part can be proved as follows. Since for a
deterministic FSM, from all nodes of its graph there exists
a leading-out sequence w1 into its ergodic SCCs, if there
exists a SS w2 on the ergodic SCCs, then sequence w1w2 is
a SS for the given FSM.

Now we present the computation algorithms for the SSs
into a single node and into a subset of nodes for a determin-
istic IMCG and WA.

Algorithm 5: SSs into a single node.
Input: a deterministic IMCG or WA of a given 1-place-
unbounded SynPN.
Output: a SS into a single node.

1. Test Condition 1 by Algorithm 1. If it holds, let w1 be
the output of Algorithm 1 and go to step 2, else there
is no SS into a single node on the FSM.

2. Find a sequence w2 to drive the graph into the unique
ergodic component by Algorithm 4.

3. Concatenate the previous two sequences w = w2w1.

Example 8: Consider the WA in Fig. 5 of the net in Fig.
4. We can conclude that there exists no SS for the net in
Fig. 4 because it has only one ergodic components on which
there exists no SS. However, the IMCG in Fig. 2, there exists
a SS w = aaa leading the graph to node [1 3ω2]T .

Complexity: Both step 1 and 2 can be solved in linear
time, while step 3 can be completed in NLOGSPACE in
the input size of the only ergodic SCC. For step 4, it
only needs a constant time for concatenating two sequences.
Thus the upper bound of the complexity of Algorithm 1 is
NLOGSPACE in the size of the input IMCG or WA and it
can be reached in the case of that the input IMCG or WA is
strongly connected.

Now we end this section with an algorithm to compute
a SS which drive a deterministic IMCG or WA into a set
of nodes VPs

corresponding the same marking of a set of
bounded places Ps.

Algorithm 6: SSs into a subset of nodes with the same
marking of a subset of bounded places Ps.
Input: a deterministic IMCG or WA of a given 1-place-
unbounded SynPN and VPs with the same marking of a
subset of bounded places Ps.
Output: a SS into a subset of nodes VPs

with the same
marking of a subset of bounded places Ps.

1. Test Condition 2 by Algorithm 2. If it holds, let w1 be
the output of Algorithm 2 and go to step 2, else there is
no SS into a subset of nodes VPs

with the same marking
of a subset of bounded places Ps.

2. Find a sequence w2 to drive the condensed graph into
the ergodic component by Algorithm 4.

3. Concatenate the previous two sequences w = w2w1.
Example 9: Consider the WA in Fig. 5 of the net in Fig.

4. If specify Ps = {p1, p2, p3, p4} and VPs = {`4, `5}, w =
ababb is the SS into VPs . Because w can drive all the nodes
in this WA into the unique ergodic SCC C4 meanwhile all
the states in C4 are with the same marking of places in Ps.

Complexity: Similar with Algorithm 5, the step 1 and 2
in this algorithm need linear time and step 4 needs a constant
time for concatenating two sequences but the complexity of
step 3 is PSPACE-complete. Thus the upper bound of the
complexity of Algorithm 6 is PSPACE-complete in the size
of the input IMCG or WA and it can be reached in the case
of that the input IMCG or WA is strongly connected.

V. CONCLUSION

In this paper, we consider one class of 1-place-unbounded
synchronized Petri nets. In the case of that either its im-
proved modified coverability graph or weighted automaton
is deterministic, the synchronization problem for the net
can be addressed by studying the deterministic finite state
machine underlying the IMCG or the WA. We showed that
the problems of synchronizing a deterministic finite state
machines into one single state and into a specified subset of
states can be reduced to synchronizing its ergodic strongly
connected components. Thus the computation of these kinds
of synchronizing sequences can be completed in two steps:
first find out the sequences driving all states in transient

components into ergodic components and then compute
the synchronizing sequences on the ergodic components.
In future work, we plan to explore the case in which the
converted weighted automaton and the improved modified
coverability graph of given 1-place-unbounded synchronized
Petri nets are non-deterministic.

REFERENCES

[1] S. Sandberg, “Chapter 1. homing and synchronizing sequences,”
Model-based testing of reactive systems, pp. 5–33, 2005.

[2] E. F. Moore, “Gedanken-experiments on sequential machines,” Au-
tomata studies, vol. 34, pp. 129–153, 1956.

[3] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines-a survey,” Proceedings of the IEEE, vol. 84, no. 8, pp.
1090–1123, 1996.

[4] M. Pocci, I. Demongodin, N. Giambiasi, and A. Giua, “Testing exper-
iments on synchronized Petri nets,” IEEE Transactions on Automation
Science and Engineering, vol. 11, no. 1, pp. 125–138, 2014.

[5] ——, “Synchronizing sequences on a class of unbounded systems
using synchronized Petri nets,” Discrete Event Dynamic Systems,
vol. 26, no. 1, pp. 85–108, 2016.

[6] L. Doyen, L. Juhl, K. G. Larsen, N. Markey, and M. Shirmohammadi,
“Synchronizing words for weighted and timed automata,” in LIPIcs-
Leibniz International Proceedings in Informatics, vol. 29, 2014.

[7] C. Wu, I. Demongodin, and A. Giua, “Conversion of 1-place-
unbounded synchronized petri nets into weighted automata,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 13 434–13 440, 2017.

[8] R. David and H. Alla, Discrete, continuous, and hybrid Petri nets.
Springer Science & Business Media, 2010.

[9] M. Droste, W. Kuich, and H. Vogler, Handbook of weighted automata.
Springer Science & Business Media, 2009.

[10] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

