
HAL Id: hal-02022877
https://amu.hal.science/hal-02022877v1

Submitted on 18 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vitamin E intestinal absorption: Regulation of
membrane transport across the enterocyte

Emmanuelle Reboul

To cite this version:
Emmanuelle Reboul. Vitamin E intestinal absorption: Regulation of membrane transport across the
enterocyte. IUBMB Life, 2019, 71 (4), pp.416-423. �10.1002/iub.1955�. �hal-02022877�

https://amu.hal.science/hal-02022877v1
https://hal.archives-ouvertes.fr


 

 1 

Vitamin E intestinal absorption: regulation of 

membrane transport across the enterocyte 
 

Emmanuelle Reboul 

Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France. 

Emmanuelle.Reboul@univ-amu.fr; Tel. :+33-049-1324-278 

  



 2 

Abstract 

 

Vitamin E is an essential molecule for our development and health. It has long been 

thought that it was absorbed and transported through cellular membranes by a passive 

diffusion process. However, data obtained during the past 15 years showed that its 

absorption is actually mediated, at least in part, by cholesterol membrane transporters 

including the Scavenger Receptor Class B type 1 (SR-BI), CD36 molecule (CD36/SRB2), 

NPC1 like transporter 1 (NPC1L1) and ATP-binding cassettes A1 and G1 (ABCA1 and 

ABCG1). This review focuses on the absorption process of vitamin E across the enterocyte. 

A special attention is given to the regulation of this process, including the possible 

competition with other fat-soluble micronutrients, and the modulation of transporter 

expressions. Overall, recent results noticeably increased the comprehension of vitamin E 

intestinal transport, but additional investigations are still required to fully appreciate the 

mechanisms governing vitamin E bioavailability. 

 

Keywords: tocopherol; intestine; mixed micelles; membrane transporters; uptake; 

chylomicrons; HDL; fat-soluble vitamins, bioavailability, competition. 
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Introduction 

The vitamin E family includes four tocopherols and four tocotrienols (Figure 1) originating 

from plants and other photosynthetic organisms (1). The main vitamin E sources are 

vegetable oils such as sunflower oil, and nuts such as almond (2). The human diet mainly 

provides RRR-α-tocopherol in Europe (3), while RRR-g-tocopherol is highly consumed in 

the US (4). RRR-α-tocopherol is also the main vitamer present in human blood and tissues 

(3). In this review, we will thus mainly focus on both α-tocopherol and g-tocopherol. 

Vitamin E has primarily been identified as an essential factor to restore fertility in deficient 

female rats (3). Further investigations showed that vitamin E was also a potent antioxidant 

(3), as well a key molecule in the modulation of signal transduction and gene expression in 

the context of inflammation and immune system disorders (5). However, dietary surveys 

highlighted that a significant part of the population in Europe and in the US did not cover 

the Recommended Dietary Allowance for vitamin E (6). These alarming conclusions 

strengthen the major interest of promoting vitamin E bioavailability from foods and to 

fully understand the molecular mechanisms governing its intestinal absorption. 

During the digestion process, vitamin E is extracted from its food matrix, dissolved in the 

fat phase of the bolus at the gastric level and finally incorporated into mixed micelles with 

other lipid hydrolysis products during duodenal digestion (see for review (7)). Mixed 

micelles then diffuse through the unstirred water layer of the glycocalix area to approach 

the apical membrane of the enterocytes, i.e. the brush border membrane. Vitamin E 

absorption has long been considered to occur by passive diffusion because it was i) 

independent of ATP, and ii) linear up to fairly high concentrations (1.2 mM) in rat intestine 

(8). However, these data were conflicting with other results showing that vitamin E 
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postprandial responses after a tocopherol load were highly variable in humans (9). 

Vitamin E transport mechanisms in the intestine have thus been reinvestigated recently. 

 

Vitamin E transport across the enterocyte (Figure 2) 

Vitamin E uptake across the brush border membrane: role of SR-BI, CD36 and NPC1L1 

In 2006, we showed for the first time that both α- and γ-tocopherol intestinal uptake was 

facilitated by SR-BI (scavenger receptor class B type I) (10). This observation is not 

surprising because SR-BI contributes to vitamin E uptake in liver cells (11), porcine brain 

(12), rat retina (13) and pneumocytes (14). Furthermore, vitamin E metabolism is altered in 

SR-BI-deficient mice (15) and a protein analog to SR-BI can mediate vitamin E uptake in 

Drosophila (16). SR-BI was later confirmed to be a major protein in vitamin E intestinal 

uptake, at least in Caco-2 cell and mouse models (17), as well as in the uptake of fat-

soluble micronutrients and phytochemicals in general (7). Interestingly, SR-BI was also 

shown to mediate vitamin E efflux from the cytosolic compartment of Caco-2 cells to the 

apical medium, suggesting a potential regulatory role of this protein in vitamin E cellular 

concentrations (10). The molecular mechanisms underlying vitamin E transport through 

SR-BI are still unknown. SR-BI was primarily shown to selectively mediate the uptake of 

a-tocopherol from HDL (12), which suggests a direct interaction with this ligand. 

However, SR-BI has also been shown to traffic in clathrin-coated lipid vesicles after a lipid 

load (18), and we demonstrated that SR-BI extracellular loop could bind mixed micelles 

(19). Finally, SR-BI has recently been described as an intestinal lipid sensor (20), and it 

appeared to be a modulator of chylomicron secretion (21). These last results suggest that 

SR-BI may actually promote lipid flux through the enterocyte and thus indirectly enhance 
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vitamin E absorption. Further research is therefore required to understand the nature of 

interactions between SR-BI and vitamin E. 

We later showed that besides its ability to transport carotenoids (22) and possibly vitamin 

D (23) and K (24), intestinal CD36 (CD36 molecule) could contribute to tocopherol 

absorption process (25). However, despite the fact that the extracellular loop of this protein 

could bind mixed micelles (19) and that CD36 was clearly involved in vitamin E uptake in 

vitro, its effect on vitamin E absorption in vivo in mice was rather due to its impact on lipid 

general absorption process. Conversely to what was expected, CD36-deficient mice 

showed an accumulation of plasma vitamin E during the postprandial state, due to a 

defect of clearance of the produced chylomicrons (25). 

Finally, by using both Caco-2 and rodent models, it was shown that the major intestinal 

cholesterol transporter, i.e. NPC1L1 (NPC1 like intracellular cholesterol transporter 1) was 

another contributor to α-tocopherol absorption (26, 17). Accordingly, the overexpression in 

Caco-2 cells of clustered variants of NPC1L1, presenting either a decreased expression 

level, an altered subcellular localization or a lower intrinsic activity compared with wild-

type NPC1L1, led to a decreased vitamin E absorption (27). Additionally, it was recently 

revealed in transfected cells that α-tocopherol could compete with cholesterol to bind to 

the NPC1L1-N terminal domain. This interaction promoted NPC1L1 endocytosis, which 

may in turn enhance lipid and vitamin E transport in clathrin-coated lipid vesicles (28). As 

expected ezetimibe, which is a potent inhibitor of NPC1L1, can reduce vitamin E 

absorption in vivo in rats (26). As recent data also suggested that Orlistat could also inhibit 

NPC1L1 functioning (29), further research is needed to evaluate the long-term effects of 

these drugs on vitamin E status in humans. 
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Vitamin E basolateral secretion from the enterocyte: chylomicron and intestinal HDL pathways 

Vitamin E trafficking across the enterocyte is poorly understood. Due to its lipophilic 

nature, vitamin E should likely be targeted to cytosolic lipid droplets or organelle 

membranes after absorption. Indeed, a recent work showed that in cultured liver cells, 

both a- and g-tocopherol were associated with lysosomes and endoplasmic reticulum 

membrane (30). It may also traffic bound to binding proteins, the best candidate being 

Sec14p-like proteins TAP1, 2 and 3 (31). Vitamin E is then packed into chylomicrons 

without esterification in the Golgi apparatus to be released to the lymph (7). Besides, a 

non-apoB pathway involving ABCA1 (ATB-binding cassette A1) (32, 33) and maybe 

ABCG1 (34) has been demonstrated in mice and in Caco-2 cells. These data are supported 

by the fact that ABCA1 has been described as an important vitamin E exporter in several 

cell types including human fibroblasts, mouse macrophages (35) and liver cells (36). 

Similarly, ABCG1 has also been involved in vitamin E membrane transport in transfected 

CHO cells, Hep3B hepatocytes and THP-1 macrophages, and vitamin E metabolism was 

abnormal in ABCG1-deficient mice (37). The mechanisms responsible for vitamin E 

transport via ABC transporters have not been resolved yet, but we propose a process 

similar to the one suggested for cholesterol. It is believed that ABCA1 acts like a flippase 

that induces the rearrangement of plasma membrane phospholipids, thus favoring the 

anchoring of apo A-I (apolipoprotein A-I) to the cellular membrane. Once bound to the 

membrane, apoA-I can then be loaded with phospholipids and cholesterol, allowing their 

removal from the cell (38). 

 

Vitamin E intestinal absorption sites and competition for absorption with other 

(micro)nutrients 
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The assumption that vitamin E was absorbed in the proximal or mid-intestine (39) has 

recently been challenged by the observation that after a gavage, vitamin E accumulation in 

intestinal mucosa was mainly located in the distal part of mouse small intestine, i.e., in the 

distal jejunum and the ileum (17, 40). This seems contradictory with duodenal or jejunal 

expression of SR-BI (41), CD36 (42) and NPC1L1 (43). We could hypothesize a better 

clearance of vitamin E from enterocyte cytosol in the upper part of the intestine compared 

to the distal part. However, this is unlikely because we would have observed a similar 

phenomenon for other fat-soluble vitamins, and this is not the case for vitamin A, which 

accumulates in the proximal intestine as expected (40). In fact, the expression of these 3 

proteins is highly variable along the intestine and they can be highly expressed in the 

ileum (44). Moreover, although more expressed in the duodenum, SR-BI is present in 

significant amount on the basolateral membrane of the ileum enterocytes (45), where it 

may play a role in vitamin E release to the lymph or the blood compartments.  

The existence of membrane proteins facilitating vitamin E transport in the enterocyte 

raises the possibility of a discrimination between the different vitamers, a saturation of 

absorption, as well as possible competitions for absorption between the different ligands. 

Interestingly, the intestine does not discriminate between vitamers (46, 10) or 

stereoisomers (47) of vitamin E. However, a higher absorption of α-tocopherol compared 

to γ- and δ- forms has been observed in in lymph-cannulated rats (48), likely due to a 

preferential metabolization and excretion of γ- and δ-tocopherols (49). Vitamin E 

absorption efficiency assessed with deuterium- or 14C-labeled vitamin E ranged from 10 to 

81 % in humans (50, 51). This high variability may be partly linked to factors related to the 

food matrix used to provide vitamin E (apples vs milk). Among the dietary factors 

negatively affecting vitamin E absorption (see for review (7)), we showed in Caco-2 cells 
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that α-tocopherol could compete for absorption with cholesterol, as well as with γ-

tocopherol, vitamin A, D, K and carotenoids (10, 22, 24). Except for vitamin A, these 

competitions are likely due to shared uptake routes involving common transporters. 

Regarding vitamin A, it has been hypothesized that vitamin E was protecting retinol 

(preformed vitamin A) from luminal oxidation, leading to a degradation and thus a 

reduced absorption of vitamin E (52). Phytosterols may also inhibit vitamin E absorption 

in normocholesterolemic patients (53) through similar mechanisms than the ones leading 

to reduce cholesterol absorption, i.e. a competition for incorporation into mixed micelles 

and a reduction of uptake by the enterocyte. Finally, the flavanone naringenin altered 

vitamin E uptake by Caco-2 cell monolayers (54), probably by interfering with membrane 

transporter functioning, as previously shown with digestive enzymes (55).  

Finally, the identification of membrane proteins facilitating vitamin E uptake does not rule 

out the possibility of a partial transport by passive diffusion. Indeed, we previously 

showed that vitamin D uptake was facilitated by membrane transporters at dietary doses 

while it was driven by passive diffusion at higher doses (23). Passive diffusion 

contribution may be more or less important along the duodenal-ileal axis, which would 

partly explain why transporter expressions do not correlate with vitamin E accumulation 

in mouse intestinal mucosa. 

 

Regulation of vitamin E membrane transport in the intestine 

The fact that vitamin E transport is, directly or indirectly mediated by lipid transporters, 

raise two additional questions: “Can vitamin E regulate the expressions of these 

transporters and thus impact on both its own transport and other lipid transport?” and 
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“Can other factors, by regulating the expression of these transporters, modulate vitamin E 

fluxes in the intestine?” 

 

Vitamin E and SR-BI regulation 

Vitamin E effect on intestinal SR-BI expression has not been investigated yet. However, it 

is worth to mention that vitamin E-depleted diet induced a drastic increase in SR-BI 

expression in rat liver, while HepG2 incubation with vitamin E could conversely reduce 

SR-BI expression, putatively through a PKC (protein kinase C)-dependent signaling 

pathway (56). Such regulation may also occur in the enterocyte.  

Besides, oleic acid and ecosapentaenoic acid (EPA) were shown to moderately increase SR-

BI expression in Caco-2 cells (57), while ezetimibe (58) and chokeberry polyphenols (59) 

could decrease it. Using both human cell and mouse models, it was also shown that SR-BI 

expression was subject to control by retinoid signaling via the intestinal transcription 

factor ISX, which can repress its expression (60). Conversely, insulin resistance state 

increased SR-BI intestinal expression in hamsters (61). Finally, SR-BI post-transcriptional 

regulation was shown to be dependent on bile component delivery to the intestine (i.e. in 

cholestasis conditions), bile salts leading to an increased in SR-BI expression in rodent 

intestines (62). All these factors may thus modulate vitamin E absorption via their effects 

on intestinal SR-BI regulation (Table 1). 

 

Vitamin E and CD36 regulation 

Vitamin E effect on transcriptional regulation of CD36 has first been described about 20 

years ago (63). If no data are available on such regulation at the intestinal level, it was 

consistently shown that vitamin E could inhibit CD36 expression in aortic smooth muscle 
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cells (64), human macrophages (65) and liver of rats (66) and guinea pigs (67), while 

vitamin E deficiency led to an upregulation of CD36 in HepG2 cells (68). This 

downregulation may be due to a reduction of lipid peroxidation and cellular oxidative 

stress (69) or to an inhibition of tyrosine kinase (65). Although not demonstrated, such 

regulation by vitamin E may also involve transcription factors such as PXR (70, 71), 

possibly via its long chain metabolite a-tocopherol-13’-COOH (72).  

Interestingly, CD36 intestinal expression is downregulated by dietary fat, and especially 

by fatty acids such as oleic acid (73, 74), which can subsequently impact on vitamin E 

absorption (Table 1). 

 

Vitamin E and NPC1L1 regulation 

If no data are available on vitamin E effect on NPC1L1 expression, it is noteworthy that 

this protein is regulated by SREBP2 (75) and LXR (76), making it a putative target of 

tocopherol signaling. Indeed, tocopherol can target these transcription factors in an 

indirect manner (37).  

NPC1L1 is downregulated by several dietary compounds including fat (77), cholesterol 

(78), fatty acids (79, 57), calcium (80), curcumin (81), sitosterol (82) and lactobacillus from 

fermented foods (83), while dietary glucose was shown to increase its expression (84). 

NPC1L1 expression is also regulated by hormones: estrogen (85) and cholecystokinin (86) 

could increase it while PYY reduced it (87). The effects of these factors are summarized in 

Table 1. 

 

Vitamin E and ABC transporter regulation 
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We previously reported in Caco-2 cells that vitamin E, probably via SREBP2, led to an 

inhibition of cholesterol synthesis, which resulted in a decrease in cellular cholesterol and 

thus in cellular oxysterol concentration. This induced an important decrease in the 

expression level of genes regulated by LXR, such as ABCA1 and ABCG1 (88). This effect 

was confirmed in vivo in rat liver and macrophages (37). 

Additionally, as presented in Table 1, intestinal ABCA1 can be downregulated by fat, fatty 

acids (79, 57), phytosterols (89), glucose (90), chokeberry polyphenols (59) or ezetimibe 

(58). However, the subsequent effect of such regulation on vitamin E absorption still need 

to be demonstrated.  



 

 1 

Conclusions 

The mechanisms of vitamin E intestinal absorption are only partly comprehended. The 

discovery of vitamin E intestinal transporters with broad substrate specificity has raised 

many questions regarding the potential interactions with other nutrients and/or drugs 

during the vitamin E absorption process, due to possible competitions or because of 

indirect effects on transporter expressions. Besides, it is very likely that other proteins 

involved in vitamin E membrane transport still need to be identified (7), which is of major 

importance because genetic polymorphisms in these proteins can partly explain the high 

interindividual variability regarding vitamin E absorption in humans (91). Further 

research is thus needed to answer these questions and propose personalized intake 

recommendations for vitamin E taking into accounts both genetic factors and lifestyle. 
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Figure 1. The vitamin E family 
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Figure 2 : Vitamin E fate across the enterocyte  
? = putative pathways, --> Indirect transport, L = lysosomes, BP = binding protein, ER = 
endoplasmic reticulum 
Vitamin E is released from its food matrix during digestion and incorporated into mixed 
micelles. Micellar vitamin E apical transport is facilitated by membrane proteins including 
SR-BI, CD36 and NPC1L1. A fraction of vitamin E may be effluxed back to the intestinal 
lumen via apical membrane transporters (SR-BI and possibly other transporters). 
Intracellular vitamin E might be associated to lipid droplets, lysosomes, ER membrane and/ 
or specific binding proteins. The major fraction of vitamin E is secreted in the lymph into 
chylomicrons, while a minor part may also be secreted at the basolateral side via ABCA1 
(apoAI pathway) and possibly ABCG1. 
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Table 1. Factors modulating intestinal transporter expression 
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Factors 
Membrane 

transporter 
Model Effect  

Signaling/ regulation 

pathway 
References 

D
ie

ta
ry

 a
nd

/o
r h

os
t f

ac
to

rs
 

Vitamin E 

SR-BI 
Rat liver/ 

HepG2 cells 
¯ 

 

 

 

PKC ? (54) 

CD36 

Rat liver/ guinea 

pig liver 

Independent of LXRa, PXR 

and PPARg. Posttranslational 

regulation ? 

(64, 65) 

Macrophages Tyrosine kinase (Tyk2). (63) 

Muscle cells nd (62) 

ABCA1/G1 Caco-2 cells ¯ 
SREBP2, cholesterol 

synthesis genes, LXR 
(85) 

Fat 

CD36 Mouse intestine ¯ nd (70) 

NPC1L1 
Mouse intestine ¯ 

Linked to a posttranslational 

increase in HMGCR activity 
(74) 

ABCA1 

Oleic acid and EPA SR-BI Caco-2  nd (55) 

Oleic acid CD36 Rat enterocytes ¯ nd (71) 

EPA, DHA NPC1L1 Caco-2 cells ¯ LXR/RXR ? 
(76, 55) 

ARA, DHA ABCA1 Caco-2 cells ¯ LXR/RXR ? 

cholesterol NPC1L1 Mouse intestine ¯ nd (75) 

25-

hydroxycholesterol 
NPC1L1 Caco-2 cells ¯ SREBP-2 (72) 

Sitosterol NPC1L1 
FHs 74 intestinal 

cells 
¯ nd (79) 

Phytosterols ABCA1 Caco-2 cells ¯ 27 hydroxycholesterol/ LXRa (86) 

Glucose 
NPC1L1 

Caco-2 cells, 

mice 
 

Phosphatase-dependent 

transcriptional pathways 
(81) 

ABCA1 Caco-2 cells ¯ nd (87) 

Calcium NPC1L1 
Ovariectomized 

hamsters 
¯ 

Independent of SREBP2, 

LXR and HMGCR 
(77) 

Polyphenols 

(chockeberry) 

SR-BI 

Caco-2 cells ¯ 
HMGCR, SREBP2, 

SREBP1C ?  
(57) NPC1L1 

ABCA1 

Curcumin NPC1L1 
Hamster 

intestine 
¯ SREBP2 ? (78) 

Retinoid SR-BI Mouse/cell lines ¯ ISX (58) 

Lactobacillus 

plantarum Lp27 
NPC1L1 

Caco-2 cells, rat 

intestine 
¯ nd (80) 

Bile salts SR-BI 
Mouse and rat 

intestines 
 

Postranscriptionnal 

regulation 
(60) 
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nd = not described, ecosapentaenoic acid (EPA), arachidonic acid (ARA), docohexaenoic 
acid (DHA), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), CCK receptor 1 
and 2 (CCK1R and CCK2R), G protein βγ dimer (Gβγ), phosphatidylinositide 3-kinase 
(PI3K) 
 
 

 

H
or

m
on

es
 

Insulin resistance SR-BI 
Hamster 

intestine 
 nd (59) 

Estrogen NPC1L1 Mouse intestine  ERa (82) 

Cholecystokinin NPC1L1 
Mouse intestine, 

Caco-2 cells 
 

CCK1R/CCK2R, Gβγ, PI3K, 

Akt, Rab11a 
(83) 

PYY NPC1L1 Caco-2 cells ¯ nd (84) 

D
ru

gs
 

Ezetimibe 

SR-BI 

Caco-2 cells ¯ 
RARg, SREBP-1 and -2, 

LXRb ? 
(56) NPC1L1 

ABCA1 


