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Abstract

Chlordecone is a persistent organochlorine pesticide used in the banana fields of the French

West Indies from 1972 to 1993. Three marine habitats (mangroves, seagrass beds and

coral reefs) of two study sites located downstream contaminated rivers were chosen to eval-

uate the level of contamination of marine food webs. On each habitat, the food chain col-

lected included suspended organic matter, primary producers (macroalgae, algal turf,

seagrass), zooplankton, symbiotic organisms (corals, sea anemones), primary consumers

(herbivores, suspension feeders, biofilm feeders), omnivores and detritivores (lobsters,

fish), secondary consumers (carnivores 1: invertebrate feeders, planktivores) and tertiary

consumers (carnivores 2: invertebrate and fish feeders, piscivores). Log-linear regressions

of the concentrations of chlordecone versus nitrogen isotopic ratios (δ15N) were used to

assess the bioaccumulation of chlordecone along trophic food webs. At each site, biocon-

centration and bioamplification take part on the transfer of chlordecone in marine organisms.

In mangroves (i.e. close to the source of pollution), lower trophic magnification factors

(TMF) indicated that bioconcentration prevailed over bioamplification phenomenon. The

opposite phenomenon appeared on coral reefs in which bioconcentration processes were

less important and bioamplification pathway became dominant. Far from the source of pollu-

tion, molecules of chlordecone seemed to be transfered to organisms mostly via trophic

interactions rather than water contact.

Introduction

Persistent organic pollutants (POPs) are organic substances, persistent, bioaccumulative and

possess toxic characteristics likely to cause adverse human health or environmental effects.
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Many thousands of organic trace pollutants, such as organochlorine pesticides (OCPs), poly-

chlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) or polycyclic aro-

matic hydrocarbons (PAHs) are generated by agricultural and industrial activities and are, in

part, released into the environment [1,2]. Coastal marine areas are generally the ultimate

depositories of these anthropogenic compounds that reach the sea by riverine and atmospheric

pathways [3].

In the French West Indies, an organochlorine insecticide called “chlordecone” (commer-

cialized as 1Kepone, then as 1Curlone) was applied to banana fields from 1973 to 1993 to

control root borers [4]. This hydrophobic molecule undergoes no significant biotic or abiotic

degradation. Consequently, chlordecone is still present in soils where it was applied and the

chlordecone pollution of soils in the French West Indies has been estimated to last for decades

or centuries [5]. In Guadeloupe, approximately 6 200 hectares are moderately to heavily pol-

luted by chlordecone [6], which represents about 25% of the land surface used for agriculture.

Banana plants grow in the southern part of Basse-Terre (one of the two islands of Guade-

loupe), which is mountainous and, as a consequence of tropical humid weather, characterized

by intense rainfall events. Organochlorine molecules, adsorbed onto organic matter of the soil,

end up in the ocean due to runoff and infiltration [5,7,8].

Toxicological studies have demonstrated that chlordecone is a reproductive and develop-

mental toxicant, neurotoxic and carcinogenic for rodents and is an endocrine-disrupting

chemical [9,10]. Several surveys have confirmed that French West Indies human population

continues to be exposed to this chemical through consumption of contaminated foodstuffs

and a correlation between chlordecone exposure and risk of prostate cancer has been evi-

denced for human [11,12].

Since 2003, several samplings surveys have been conducted in Guadeloupe to evaluate the

level of contamination by chlordecone of some species of fish, crustaceans and mollusks, prin-

cipally species with a high economical interest in order to regulate the fishing activities around

the island [13–18]. In 2008, the European Commission of Food Safety set the maximal residue

limit (MRL) to 20 μg.kg-1 wet weight for the consumption and commercialization of sea prod-

ucts. Research surveys indicated that the most contaminated marine areas are located down-

stream to banana plantations [16]. These areas are now totally closed to fishing activities and

the boundary areas are classified as areas of fishing restrictions in which it is not possible to

fish a list of targeted species.

While spatial variations in the level of contamination of marine areas have been identified

[15,16], no study has been conducted to understand the contamination dynamics, including

the potential ways of transfer and bioaccumulation of the molecule in the food chain.

Persistent hydrophobic chemicals, such as chlordecone, may accumulate in marine organ-

isms through different mechanisms: via the direct uptake from surrounding contaminated

waters by gills or teguments (bioconcentration) and via the consumption of contaminated

food (bioamplification or biomagnification) [19]. Bioconcentration is defined as the uptake of

a chemical by an organism directly from the abiotic environment, resulting in a concentration

of chemical in the organism higher than in the environment [20]. This uptake of chemicals

from water probably follows a passive diffusion mechanism analogous to that of oxygen uptake

until reaching an equilibrium partitioning between water and biota level [19,21]. Recently, a

negative relationship between the level of chlordecone in the lionfish, Pterois volitans, and the

distance of individuals from the source of pollution has been demonstrated [17]. These results

indicated a potential bioconcentration of chlordecone in marine fishes. Bioamplification (or

biomagnification) is a contamination by dietary exposure along the food chain. The transfer of

chemicals, such as POPs, results in elevated concentrations of the chemical with increasing tro-

phic level, due to their resistance to chemical and metabolic degradations [22].

Transfer pathways of chlordecone in tropical marine food webs
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Biomagnification mechanisms in marine food webs can be evaluated with stable isotope

analyses (SIA). Generally, quantitative comparisons are performed using nitrogen stable iso-

tope ratios (δ15N) as a proxy for the trophic position of species, because δ15N value increases

with increasing trophic level [23]. The use of stable isotopes to assess trophic position has

numerous advantages over traditional methods such as analysis of gut contents as it averages

dietary assimilation over a longer period of time [24]. The regression slope of the concentra-

tion of pollutants versus δ15N signatures of fish has been used to model and predict bioamplifi-

cation processes [25–27]. At the same time, the y-intercept of the regression line gives an

estimation of the level of contamination in the environment, i.e. the level of the background

concentration [25].

While bioconcentration processes received not much attention in the literature, bioamplifi-

cation of POPs, which include organochlorine pesticides, have been widely studied along food

webs of the artic region [28,29], cold seas [30–32], freshwater systems [26,33–36] or temperate

marine ecosystems [37–40]. On the contrary, few studies dealt with bioaccumulation processes

of POPs on entire trophic food webs in marine tropical ecosystems. In these areas, the level of

contamination of organochlorine pollutions has been measured in mangrove food chains [41–

45], in vegetal and sediments in seagrass beds [44,46,47] and in macrophytes, invertebrates

and fish in coral reefs [44,48–50]. In parallel, few works investigated the contamination of tro-

phic food webs within the continuum “mangrove-seagrass bed-coral reef” [44].

The principal objective of the present study was to evaluate the part of bioconcentration

and bioamplification mechanisms in the transfer of chlordecone in marine coastal food webs

of Guadeloupe along three interlinked habitats: mangroves, seagrass beds and coral reefs. For

that, regression models of the concentrations of chlordecone versus nitrogen isotopic ratios

were performed on each habitat of two study sites. These models were conducted on the entire

food chain from suspended organic matter to piscivorous predators.

Material and methods

Study sites

Two study sites (Goyave and Petit-Bourg) were chosen on the eastern coast of Basse-Terre in

Guadeloupe. They are located in an area of fishing restrictions due to their position down-

stream contaminated rivers and banana fields. At each site, three types of marine habitats were

investigated: coastal mangroves, seagrass beds (located approximately at 400 m from the coast)

and coral reefs (between 500 m and 3 km offshore), representing a seaward gradient of

decreasing land influence. Sampling depth was comprised between 1 m in mangroves and 5 m

in coral reefs ecosystems.

Sample collection and preparation

The sampling survey was carried out from January 2014 to February 2015. For this study, 387

samples were collected, 193 at Goyave and 194 at Petit-Bourg (Table 1). The sampling protocol

(location of the captures, method of capture and list of the collected species) has been approved

and covered by a field permit delivered by the Direction de la Mer of Guadeloupe. The full list

of collected species is given in S1 Table. Macroalgae, fishes and crustaceans were collected by

hand, spearfishing or using nets in seagrass beds and mangroves. Whenever possible, three

replicates were made for each species. To sample the suspended organic matter (SOM), 40 L of

seawater were collected in the three habitats at each site in acid-cleaned plastic drums. In order

to have three replicates of SOM per habitat at each site, 10 L of seawater were filtered on each

Whatman GF/F 47 mm filter. Samples were grouped into eight trophic categories: SOM, pri-

mary producers (macroalgae, algal turf, seagrass), zooplankton, symbiotic organisms (corals,

Transfer pathways of chlordecone in tropical marine food webs
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sea anemones), primary consumers (herbivores, suspension feeders, biofilm feeders), omni-

vores and detritivores (lobsters, fish), secondary consumers (carnivores 1: invertebrates feed-

ers, planktivores) and tertiary consumers (carnivores 2: invertebrates and fish feeders,

piscivores). Each individual was rinsed, measured (total length, TL, in cm) and weighed (wet

weight, ww, in g). For each organism, 50 g of flesh for animal (white mucle) and vegetative tis-

sue were collected and frozen (-18˚C) until analyses. Due to the small amount collected, 0.03 g

ww of SOM were used for the analyses. Chlordecone concentrations and isotopic ratios were

measured on the same sample. Same type (flesh or tissue) and amount of sample was collected

at the two sites.

Chlordecone extraction and analysis

Chlordecone was extracted from homogenized sampled tissues with a solution of organic sol-

vents (hexane-acetone) and turned into chlordecone hydrate (hydrosoluble) in the presence of

sodium hydroxide. The aqueous phase was rinsed with hexane to eliminate fats. Chlordecone

was then reassembled in acid conditions, extracted with a solution of hexane and acetone.

Concentration of chlordecone was quantified with liquid chromatography coupled to mass

spectrometry in tandem (UPLC-MS/MS). Chlordecone concentrations were expressed in μg.

kg-1 (ww) and the lower limit of quantification (LOQ) with this method was 1 μg.kg-1 (ww)

with measurement precision of 0.1 μg.kg-1 when data were superior to the LOQ. In this study,

chlordecone concentration was not lipid-corrected as the maximal residue limit indicated by

European regulations is expressed in wet weight.

Stable isotope analyses

All samples were cut into small pieces, oven dried at 50˚C to a constant weight and ground

into a homogenous fine powder. For each sample, 1 mg of dry weight (dw) was used for analy-

sis. Nitrogen isotope ratios were determined by a continuous flow mass spectrometer (Thermo

Fisher™, delta V Advantage). Nitrogen isotope ratios were expressed in standard delta notation

(δ15N) in ‰ according to the following formula: δ15N = [(Rsample/Rstandard− 1)] x 1000, where

R is the ratio 15N:14N of samples or international standard (atmospheric air). The analytical

measurement precision was <0.1‰ (replicate measurements of internal laboratory

standards).

Table 1. Number of individuals and species (into brackets) collected in each habitat.

Sites Goyave Petit-Bourg

Habitats Mangrove Seagrass Reef Mangrove Seagrass Reef

SOM 3 3 3 3 3 3

Zooplankton 3 3

Primary producers 6 (2) 15 (5) 12 (4) 6 (2) 15 (5) 11 (4)

Symbiotic organisms 3 (1) 8 (3) 9 (3)

Primary consumers 6 (2) 16 (6) 19 (7) 3 (1) 22 (9) 12 (6)

Detritivores—omnivores 9 (5) 4 (2) 9 (3) 14 (6) 3 (1) 5 (2)

Secondary consumers 23 (11) 14 (7) 9 (4) 18 (8) 13 (6) 15 (5)

Tertiary consumers 12 (10) 4 (2) 12 (5) 17 (8) 7 (3) 12 (5)

Total 59 (30) 59 (23) 75 (26) 61 (25) 63 (24) 70 (25)

SOM: suspended organic matter. The full list of species is given in S1 Table.

https://doi.org/10.1371/journal.pone.0191335.t001
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Trophic magnification factor (TMF)

The trophic transfer of chlordecone through the food chain is based on the relationship

between nitrogen isotope ratios (δ15N in ‰) and chlordecone concentrations ([CHD] in μg.

kg-1). The trophic transfer of chlordecone was estimated following the formula [32]:

log10[CHD] = a δ15N + b, where b is the y-intercept (constant dependent on the background

concentration) and a is the slope of the regression log10[CHD] function to δ15N (indicating

the biomagnification power of the contaminant).

The trophic magnification factor (TMF), also called “food web magnification factor”

(FWMF), is calculated from the slope using the following formula: TMF = ea.

We replace trophic level (TL) (used in [32]) by δ15N values as a more accurate estimation of

the organism position in the food chain. Contaminant with TMF greater than 1 is considered

to biomagnify in the food chain while, TMF values comprised between 0 and 1 indicates that

the contaminant is not biomagnified in the food web. A TMF value inferior to zero indicates

that the contaminant is excreted by the organisms in the food chain [25,45].

Statistical analysis

Normality of data was verified with Shapiro-Wilk tests. Concentrations of chlordecone

were compared between habitats (mangrove, seagrass beds and reef) with one-way analyses

of variance (ANOVA), followed by multiple comparison tests, performed with post hoc

Tukey’s honestly significant difference (HSD) test. Simple linear regression analyses were

used to investigate the relationship between the logarithm of chlordecone concentrations

(log10[CHD]) and the trophic level of species (δ15N). Comparisons of the regression slopes

at each site were performed with Student’s t-tests.

Differences of chlordecone concentrations between Goyave and Petit-Bourg were tested

with one-way analyses of variance on ranks (Kruskal-Wallis tests) on species present at both

sites in the same habitat. To avoid an influence of fish size on between-site comparisons, differ-

ences of the mean total length of fish between sites were previously tested with Kruskal-Wallis

tests, as the influence of fish size on their level of contamination has already been demon-

strated [17,39].

Results

Levels of contamination by chlordecone according to habitat

In Goyave, the concentrations of chlordecone varied from 1.1 μg.kg-1 for Halimeda incrassata
to 1034 μg.kg-1 for an individual of Pomadasys corvinaeformis. At this site, concentrations of

chlordecone were significantly different according to habitat (ANOVA, F(2,190) = 26.9,

p< 0.0001). The highest mean concentration of chlordecone (± standard error) was found in

mangrove (182.4 ± 22.6 μg.kg-1). This mean value was significantly higher from those mea-

sured in seagrass beds and coral reef (Tukey’s HSD, p< 0.0001). Mean concentration of chlor-

decone in seagrass bed (54.1 ± 8.9 μg.kg-1) and coral reef (61.1 ± 8.4 μg.kg-1) did not differ

significantly (Tukey’s HSD, p = 0.94). In mangrove, only 6 samples (10% of mangrove sam-

ples) presented a concentration lower to the MRL (= 20 μg.kg-1). The number of samples com-

pliant with the MRL was 28 in seagrass beds (47%) and 37 in coral reefs (45%).

In Petit-Bourg, concentrations of chlordecone varied from 1.1 μg.kg-1 for Megalops atlanti-
cus to 3012 μg.kg-1 for an individual Callinectes sp. Similarly to Goyave, the mean concentra-

tion of chlordecone measured in mangrove was the highest (251.0 ± 52.7 μg.kg-1) and was

significantly different from those of the two other habitats (ANOVA, F(2,191) = 13.4,

p< 0.0001). No significant difference was found between the concentrations measured in

Transfer pathways of chlordecone in tropical marine food webs
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seagrass (71.5 ± 10.6 μg.kg-1) and coral reef communities (48.5 ± 6.0 μg.kg-1) (Tukey’s HSD,

p< 0.85). The number of samples with a concentration of chlordecone lower to the MRL was

8 in mangrove (13% of mangrove samples), 23 in seagrass beds (36%) and 32 in coral reefs

(45%). The level of contamination in each habitat was also reflected by the y-intercept (b) of

simple linear regressions log10[CHD] versus δ15N of organisms (Fig 1). The values of the con-

stant b differed significantly with habitat, showing a consistent pattern. At the two sites, the y-

intercept was the highest in mangroves (b = 1.01 in Goyave and b = 1.61 in Petit-Bourg), inter-

mediate in seagrass beds (b = 0.19 in Goyave and b = 0.55 in Petit-Bourg), and the lowest in

coral reefs (b = -0.12 in Goyave and b = 0.01 in Petit-Bourg).

Bioamplification of chlordecone along marine food webs

A significant relationship was found between log-transformed concentrations of chlordecone

(log10[CHD]) versus δ15N signatures of organisms in each habitat in Goyave (mangrove: r2 =

0.21, p< 0.01, seagrass bed: r2 = 0.70, p< 0.0001, coral reef: r2 = 0.64, p< 0.0001) (Fig 1A)

and in Petit-Bourg (mangrove: r2 = 0.09, p< 0.01, seagrass bed: r2 = 0.42, p< 0.0001, coral

reef: r2 = 0.63, p< 0.0001) (Fig 1B).

Trophic magnification factors (TMF) were calculated based on the slope of each model of

linear regression. In Goyave, TMF was higher than 1 in mangrove (TMFmangrove = 1.16), sea-

grass bed (TMFseagrass = 1.25) and coral reef (TMFreef = 1.25). These values were also higher

than 1 in the second site Petit-Bourg (TMFmangrove = 1.07, TMFseagrass = 1.14, TMFreef = 1.21).

At each site, increasing TMF values were found across a seaward spatial gradient from man-

groves to coral reefs.

At Goyave, slopes of the linear regressions were significantly different between mangrove

and seagrass beds (Student’s t-test, p<0.05) and between mangrove and coral reef systems

(Student’s t-test, p<0.05), but were not different between seagrass beds and coral reef (Stu-

dent’s t-test, p>0.05).

At Petit-Bourg, slopes were not different between mangrove and seagrass beds (Student’s t-

test, p>0.05), but the slopes of these two systems differed significantly with those of coral reef

(Student’s t-tests, p<0.05).

Difference of contamination between sites

Differences of chlordecone concentrations between Goyave and Petit-Bourg were tested on a

list of species present at both sites in the same habitat (Table 2). Aulostomus maculatus, Hae-
mulon carbonarium and Lutjanus apodus were present in coral reefs at both sites, but were not

considered for site comparisons because total of individuals differed significantly with site

(Kruskal-Wallis, p<0.05 for each considered species). In mangrove, 57% (4/7) of the studied

species showed a concentration of chlordecone higher at Petit-Bourg than at Goyave. In sea-

grass beds, 30% (3/10) of the studied species followed a similar tendency. Finally, higher con-

centrations of chlordecone were measured at Petit-Bourg for 20% (2/10) of samples collected

in coral reefs. Two species, the sea anemone Stichodactyla helianthus and the West indian

starsnail Lithopoma tectum, presented higher chlordecone concentrations at Goyave than

Petit-Bourg (Table 2). The other species did not show any significant difference in their con-

centrations of chlordecone between Petit-Bourg and Goyave.

Discussion

The highest concentrations of chlordecone were measured in organisms collected in man-

groves that are located on the coastline, close to river mouths. The level of chlordecone was
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three to four times lower in the organisms living in seagrass beds and coral reefs, two habitats

located between 400 m and 3 km from the coast respectively.

This decreasing gradient of chlordecone from the coast to the open sea was previously iden-

tified [18] when studying spatial variations of the level of chlordecone contamination in differ-

ent trophic groups. These results indicated that marine organisms are contaminated by

chlordecone by direct contact with seawater and highlighted the existence of a bioconcentra-

tion phenomenon in these areas. Through water contact, living organisms integrate organo-

chlorine toxicant via gills and tegument epithelium, and their level of residue is related to the

level of contamination the ambient water [1]. The measurement of chlordecone concentration

Fig 1. Relationships between logarithm of chlordecone concentrations (log10[CHD]) and nitrogen isotope ratios (δ15N). Organisms

measured in mangrove (black circle), seagrass beds (grey circles) and coral reefs (white circles) at A) Goyave and B) Petit-Bourg.

https://doi.org/10.1371/journal.pone.0191335.g001

Table 2. Comparisons of concentrations of chlordecone between the two sites.

Petit-Bourg Goyave

Mangrove n [CHD] [CHD] X2 p values Comparisons

SOM 6 191.3 ± 38.5 60.0 ± 5.6 3.86 p < 0.05 PB > G

Acanthophora spicifera 6 11.3 ± 0.6 7.6 ± 0.6 3.97 p < 0.05 PB > G

Anchoa lyolepis 6 323.7 ± 47.5 209.0 ± 101.9 2.33 p = 0.13 PB = G

Callinectes sp. 6 1547.3 ± 1387.8 257.0 ± 52.1 2.33 p = 0.13 PB = G

Crassostrea rhizophorae 6 122.3 ± 3.8 74.7 ± 5.5 3.86 p < 0.05 PB > G

Eucinostomus gula 6 202.3 ± 12.9 100.7 ± 14.6 3.87 p < 0.05 PB > G

Harengula clupeola 5 265.0 ± 137.2 113.0 ± 72.5 1.33 p = 0.25 PB = G

Seagrass beds

SOM 6 31.7 ± 2.9 27.3 ± 9.5 0.44 P = 0.5 PB = G

Caulerpa sertularoides 6 16.6 ± 6.0 10.7 ± 2.0 1.19 P = 0.4 PB = G

Cerithium vulgatum 6 27.0 ± 1.0 22.7 ± 4.9 3.14 P = 0.07 PB = G

Halophila stipulacea 6 4.6 ± 0.9 4.1 ± 0.8 0.43 P = 0.70 PB = G

Holothuria Mexicana 6 3.9 ± 1.1 4.1 ± 2.1 0.20 P = 0.66 PB = G

Neopetrosia carbonaria 6 14.7 ± 1.5 8.8 ± 3.3 3.86 P < 0.05 PB > G

Padina sp. 6 4.5 ± 0.3 1.8 ± 0.2 3.86 P < 0.05 PB > G

Sparisoma radians 6 63.3 ± 37.2 19.0 ± 3.6 3.86 P < 0.05 PB > G

Syringodium filiforme 6 5.4 ± 0.8 6.9 ± 0.3 3.86 P = 0.10 PB = G

Thalassia testudinum 6 3.0 ± 0.6 2.7 ± 0.2 0.43 P = 0.70 PB = G

Coral reefs

SOM 6 30.3 ± 2.1 20.7 ± 0.6 3.97 P < 0.05 PB > G

Plankton 6 20.7 ± 2.1 6.3 ± 1.7 3.86 P < 0.05 PB > G

Halimeda incrassata 5 1.8 ± 1.1 1.3 ± 1.3 3.00 P = 0.08 PB = G

Lithopoma tectum 6 13.0 ± 2.0 21.3 ± 1.5 3.86 P < 0.05 PB < G

Panulirus argus 6 86.7 ± 18.5 86.7 ± 10.4 0.05 P = 0.83 PB = G

Porites astreoides 5 2.4 ± 0.5 1.6 ± 0.4 3.00 P = 0.08 PB = G

Porites furcata 6 1.9 ± 0.5 2.6 ± 0.4 3.14 P = 0.07 PB = G

Pterois volitans 6 74.3 ± 11.7 87.7 ± 26.1 0.43 P = 0.50 PB = G

Scarus taeniopterus 6 11.2 ± 1.7 10.3 ± 3.2 0.43 P = 0.51 PB = G

Stichodactyla helianthus 6 11.5 ± 2.3 41.7 ± 6.0 3.86 P < 0.05 PB < G

Comparisons were done with Kruskal Wallis tests. [CHD]: concentrations of chlordecone (± SE in μg.kg-1), SOM: suspended organic matter, PB: Petit-Bourg, G:

Goyave, n is the number of samples.

https://doi.org/10.1371/journal.pone.0191335.t002

Transfer pathways of chlordecone in tropical marine food webs

PLOS ONE | https://doi.org/10.1371/journal.pone.0191335 February 1, 2018 8 / 14

https://doi.org/10.1371/journal.pone.0191335.g001
https://doi.org/10.1371/journal.pone.0191335.t002
https://doi.org/10.1371/journal.pone.0191335


directly in seawater was not possible in the present study due to analytical issues. Therefore, it

was not possible to calculate the concentration factor (relation between the contaminant con-

centration of organisms and those of the ambient water) in these food webs. However, the y-

intercept of the regression lines (log10[CHD] vs δ15N), the constant b, gave a relative estimation

of the ambient level of chlordecone in each habitat. At both sites, the constant b was maximal

in mangroves, intermediate in seagrass beds and minimal in coral reefs, attesting to the exis-

tence of a decreasing gradient of contamination seawards from the coast. These results indi-

cated that the mechanism of bioconcentration is prevailing in mangroves, inducing a

contamination of the entire food chain, with less influence of the trophic level of the organ-

isms. In mangroves, a large part of samples (53/59 samples) presented contamination values

higher than the MRL authorized for consumption and commercialization of sea products in

these areas. Bioconcentration seemed to be a less important driver of contamination by chlor-

decone in the two other habitats.

At each site, the logarithms of chlordecone concentrations were positively correlated to the

trophic level of marine organisms estimated by their δ15N. These observations indicated that

the concentration of contaminant increased along the food chain, from lower to higher trophic

levels, attesting of the existence of a bioamplification phenomenon in each habitat. This mode

of transfer occurs through food consumption and the integration of pollutant via digestive

pathways. Bioamplification of POPs is thus related to the feeding habits and trophic level of

organisms [26,51]. However, it should be noted that the variability of chlordecone concentra-

tions among individuals in one species and among species at each trophic level was much

higher than the variability of their δ15N (see S1 Table). Such a high intra- and inter-specific

variability of contaminant concentration is observed in all studies, whatever the type of con-

taminants [39], as the level of contamination in one organism depends on many factors, such

as the environmental conditions (temperature, salinity habitat, contaminant inputs,), and the

biology (species, diet, trophic level) and physiology (metabolism, growth rate, sex, age) of the

different organisms studied ([36,32] among many others). To fully apprehend the transfer of

any contaminant in food webs it is necessary to analyze a sufficiently wide spectrum of species

and individuals.

Bioamplification, increasing contaminant concentration with increasing trophic level, was

demonstrated by the measurement of Trophic Magnification Factors (TMF), based on the

slopes of the regression lines (log10[CHD] vs δ15N). A contaminant presenting a TMF higher

than 1 is considered to biomagnify in the food chain, while a TMF value comprised between 0

and 1 indicates that the contaminant is not biomagnified [25,45]. In the present study, all TMF

values exceeded 1, indicating that the level of chlordecone bioamplify along the food webs.

These TMF values ranged from 1.07 to 1.25, and reached similar thresholds than those calcu-

lated for POPs in entire food webs (from zooplankton to apex predators) in African lake

(TMFDDT = 1.16, TMFDDE = 1.25, [26]). On the contrary, the TMF values of the present study

were lower than those calculated in South China mangroves (TMFDDT = 2.61, TMFPCB = 2.76,

[45]), in Artic food webs exposed to PCB and DDT (TMF = 2.41 and 2.20 respectively, [37]),

or exposed to Mirex pollution (TMF = 10.5, [32]). However, the length of the food chain

greatly influences the value of biomagnification factors. Studies conducted in the Artic or cold

sea regions generally encompass a larger scale of trophic levels (from primary producers to

marine mammals and sea birds) than in other ecosystems.

In the present study, TMF values were different according to the habitat, with minimal val-

ues in mangroves, intermediate values in seagrass beds (at Petit Bourg) and maximal values in

coral reefs. The statistical comparisons of the regression slopes indicated that degrees of

bioamplification were different according to the three habitats. At Goyave, the highest slopes

were found in seagrass beds and coral reefs and these values differed significantly from the
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slope calculated in mangrove. These results indicate that, at this site, bioamplification is maxi-

mal in seagrass beds and coral reefs food webs and minimal in mangrove systems. At Petit

Bourg, the highest slope was found in coral reef ecosystem and differed from those calculated

in mangrove and seagrass beds. At this site, bioamplification seemed to be maximal in coral

reef, but lower and equivalent in seagrass beds and mangrove. In Singapore, higher POPs con-

centrations were found in predator species while organisms at lower trophic levels had in gen-

eral, lower levels of POPs [43]. These results highlighted a bioamplification phenomenon in

mangrove food webs in Singapore. In the present study, the difference of TMF values and the

comparisons of the regression slopes between the three habitats showed that the bioamplifica-

tion phenomenon is masked in mangroves by the predominance of bioconcentration. This

tendency also appears in seagrass beds at Petit-Bourg, which can be explained by the difference

of background concentrations between the two sites. At petit-Bourg, the level of contamina-

tion in the environment seems to be higher than at Goyave, leading to a higher influence of the

source of pollution on the food web and a prevalence of bioconcentration phenomenon as far

as seagrass beds.

Biomagnification is linked to the physical properties of contaminant such as the octanol-

water partition coefficient (log KOW). Concentrations of very hydrophobic substances (log

KOW > 6.3) increased with trophic positions, attesting that bioamplification occurred for

these molecules [36]. For less hydrophobic substances of log KOW < 5.5, biomagnification is

not observed and the contamination of the food chain is the result of equilibrium partition

of the chemical between water and biota level. Our colleagues [52] predicted that com-

pounds with log KOW < 6, such as chlordecone (KOW = 5.41), attain equilibrium within 1

year. Some evidence for biomagnification of chemical with log KOW values between 5.5 and

6.3 has been demonstrated [36]. Moreover, the ability of Kepone to magnify, like in the

present study, while the KOW of chlordecone is less than 5.5, has been evidenced before

[53,54].

The level of contamination, respectively to each habitat, appears to be globally similar

between the two sites (Goyave and Petit-Bourg). However, between 20 and 57% of the

samples, depending on the habitat, showed higher concentrations of chlordecone in Petit-

Bourg than in Goyave. The level of contamination of rivers cannot explain this result,

because the river flowing at Goyave is more contaminated than these flowing at Petit-

Bourg (“Rivière Moustique” and “Rivière la Rose”) (Office de l’Eau Guadeloupe). How-

ever, the location of the two sites could give an explanation to this difference in the level of

contamination. Petit-Bourg is located in the North of Goyave and is more enclosed in the

bay of Petit Cul-de-Sac Marin, where the trade winds tend to accumulate seawater. This

particularity could involve a trapping of the molecules of chlordecone in the north of the

bay.

In summary, both phenomena (bioconcentration and bioamplification) are effective on the

transfer of chlordecone in marine organisms in Guadeloupe, but bioconcentration prevails on

bioamplification in mangroves at both sites, and in seagrass beds at Petit-Bourg. In coral reefs

at both sites and seagrass beds in Goyave, the opposite tendency seems to appear. Far from the

source of pollution, molecules of chlordecone were transferred more via trophic interactions

than water contact.

Consequences of chlordecone exposure to marine organisms have not been widely studied

while the knowledge on their damages on human health is well documented [11,12,54]. How-

ever, few studies were conducted to investigate the consequences of long-term exposure of

marine food chain or the metabolic and physiologic responses of marine organisms facing

with chlordecone exposure [55].
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