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Planktonic ciliates in different water masses in open waters near Prydz 
Bay (East Antarctica) during austral summer, with an emphasis 
on tintinnid assemblages

Chen Liang1,2,3,4 · Haibo Li1,2,4 · Yi Dong1,2,4 · Yuan Zhao1,2,4 · Zhencheng Tao1,2,4 · Chaolun Li1,2,4 · 
Wuchang Zhang1,2,4  · Gerald Gregori5

Abstract
Planktonic ciliates are important microzooplankton in pelagic ecosystems. Previous studies in Antarctic waters have only 
investigated ciliate assemblages in different habitats without considering water masses. In this article, we report the 
charac-teristics of ciliate assemblages in different water masses in open waters near Prydz Bay (East Antarctica) during 
austral sum-mer. Three water masses were identified according to temperature and salinity: Summer Surface Water (SSW), 
Winter Water (WW), and Circumpolar Deep Water (CDW). SSW was further divided into  SSWChl a < 3 (in vivo 
Chlorophyll a > 3 mg m−3) and  SSWChl a < 3 (in vivo Chlorophyll a < 3 mg m−3). Ciliate abundance and biomass in water 
masses decreased in the order: SSW > WW > CDW.  SSWChl a > 3 had a higher proportion (38.2%) of tintinnids to the 
total ciliate abundance and larger aloricate ciliates (ciliates in the 10–20 µm size class were < 15% of the total aloricate 
ciliate abundance) than in other water masses. WW had a higher proportion (> 30%) of Southern Ocean endemic tintinnid 
species in total tintinnid abundance than in other water masses. Each water mass had the following indigenous tintinnid 
species: SSW, Salpingella sp., Codonellopsis gaussi; WW, Salpingella costata, S. faurei, Cymatocylis affinis/convallaria 
forma drygalskii, and C. vanhoeffeni. Laackman-niella naviculaefera and C. affinis/convallaria forma cristallina were 
present at high abundance in both WW and  SSWChl a > 3. Upwelling caused discontinuity of the ciliate distribution. Our 
results will help predict the spatial and temporal variations of ciliate assemblages and other plankton according to the 
dynamics of water masses in Antarctic waters.

Keywords Planktonic ciliates · Abundance · Tintinnid · Water mass · Prydz Bay · Antarctica

Introduction

Marine planktonic ciliates constitute a major, ubiquitous, 
and diverse group of protozoa. These organisms range 
from 5 to 200 µm in length and can be divided into tintin-
nids and aloricate ciliates, which belong to the subclasses 
Oligotrichia and Choreotrichia, respectively, in the class 
Spirotrichea (Lynn 2008). As one of the main components 
of microzooplankton, ciliates are a trophic link between the 
microbial food web and the traditional food chain. Plank-
tonic ciliates feed on nanoplankton (Heinbokel and Beers 
1979; Capriulo 1983; Verity 1987) and picoplankton (Ber-
nard and Rassoulzadegan 1993), while they are preyed upon 
by mesoplankton and fish larvae (Azam et al. 1983; Laval-
peuto et al. 1986; Pierce and Turner 1992, 1994). Thus, they 
play an important role in the transfer of energy and material 
through the entire pelagic food web (Beers 1967; Pierce and 
Turner 1992).
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The various genera of tintinnids have been divided into 
several biogeographical types (cosmopolitan, neritic, warm-
water, boreal, and austral) according to their global occur-
rence (Pierce and Turner 1993; Dolan et al. 2013a). There-
fore, different biogeographical areas can be characterized 
by different tintinnid assemblages (Li et al. 2016). In the 
austral assemblage, Dolan et al. (2012) divided the austral 
species (40°S–78°S) into Southern Ocean endemic species 
(only found south of 40°S) and widespread species (those 
with a geographic range extending into the Southern Ocean). 
In Antarctic waters, ciliate abundance was observed in dif-
ferent habitats (oceanic areas, transitional areas, polynyas, 
edges of glaciers, and edges of sea ice) in the Amundsen 
Sea (e.g., Jiang et al. 2014, 2015, 2016) and the Weddell Sea 
(e.g., Heinbokel and Coats 1986; Garrison and Buck 1989; 
Garrison et al. 1991; Gowing and Garrison 1992). These 
investigations generally evaluated ciliate assemblages at a 
horizontal level while providing very little vertical distribu-
tion information. Plankton distribution has been found to 
be closely related to water masses (Longhurst 2007), and 
previous studies have provided evidence of different phy-
toplankton community structures in various water masses 
(e.g., Stoecker et al. 1992; Mura et al. 1995; Zhang et al. 
2012). Although water masses are well defined in the South-
ern Ocean (Tomczak and Godfrey 1994), no studies have 
investigated the relationship between ciliates and different 
water masses in this ocean to date.

There are several vertically divided water masses in 
waters near Prydz Bay (East Antarctica) during austral 
summer; namely, Summer Surface Water (SSW), Winter 
Water (WW), Circumpolar Deep Water (CDW), Antarctic 
Bottom Water (ABW) and Antarctic Shelf Water (ASW) 
(Smith et al. 1984; Middleton and Humphries 1989; Le 
et al. 1996; Vaz and Lennon 1996; Williams et al. 2010; 
Shi et al. 2013). Moreover, upwelling occurs sporadically 
in Prydz Bay (Lin et al. 2016). Bathymetrically, there is a 
basin known as the Amery Depression located at a depth 
of about 700 m seaward of the Amery Ice Shelf that shoals 
gently to outer shelf banks at a depth of around 200 m (Gao 
et al. 2013). Few studies have investigated ciliate assemblage 
in Prydz Bay and its surrounding waters. Planktonic ciliates 
were investigated at 0 and 5 m below sea ice at two stations 
very close (3 km) to shore (Paterson and Laybourn-Parry 
2012). In addition, ciliate abundances were determined at 
a depth of 15 m in Prydz Bay, 5 km offshore from the Aus-
tralian Antarctic station of Davis (Davidson and Marchant 
1992), but there is no record of tintinnid species in this area. 
However, there have been studies of phytoplankton, zoo-
plankton, bacteria, and viruses in Prydz Bay and its adja-
cent areas without considering water masses (e.g., Zhu et al. 
1994; Waters et al. 2000; Thomson et al. 2010; Liang et al. 
2016). Moreover, Zhang et al. (2012) used flow cytometry 
to show that the SSC (side scatter, optical parameter) signal 

of picophytoplankton increased horizontally from out of the 
bay to a coastal station without considering the vertical divi-
sion of water masses in Prydz Bay.

The notion that different water masses contain different 
indigenous species of plankton is the base of plankton bioge-
ography (Longhurst 2007; Priede 2014), as well as the base 
of expatriate species (Angel 1993; Kobari et al. 2008), stray 
species (Dolan et al. 2012) and indicator species (e.g., Kato 
and Taniguchi 1993). Most of the biogeographical studies 
have been conducted in the horizontal division of water 
masses, however, we hypothesized that different ciliates 
have different preferred water masses in the vertical direc-
tion in Antarctic waters. Therefore, we compared the ciliate 
assemblages in different vertically divided water masses in 
open waters near Prydz Bay during austral summer. Our 
specific objectives were to compare (1) the contributions of 
aloricate ciliates and tintinnids to total abundance, (2) pro-
portions of different-sized aloricate ciliates in total aloricate 
ciliate abundance, and (3) tintinnid species distributions in 
different water masses.

Materials and methods

Sampling was conducted at 34 stations in four South-North 
transects (P2, P3, P4, P5) in open waters near Prydz Bay 
(65°28′–73°3′E, 65°–68°S) (Fig. 1) onboard the R. V. “Xue-
long”, during the late austral summer (3–27 February) of 
2015. The study area was outside of Amery Depression 
and free of ice. The minimum and maximum depths of 
the stations were 102 m (St. P2-9) and 3991 m (St. P5-2), 
respectively. At each station, vertical profiles of temperature, 
salinity and in vivo Chlorophyll a (Chl a) fluorescence were 
determined from the sea surface to a depth of 300 m or 2 m 
above the bottom when the water depth was < 300 m using 
the SBE911-conductivity-temperature-depth (CTD) unit. 
Water masses were determined according to temperature 
and salinity (Smith et al. 1984; Middleton and Humphries 
1989; Le et al. 1996; Vaz and Lennon 1996; Williams et al. 
2010; Shi et al. 2013).

Water was sampled using 10-L Niskin bottles on a rosette 
CTD carrousel. Seawater samples of 1 L were collected 
from each sampling point (surface, 25, 50, 75, 100, 150, 
200, 300 m at each station), then fixed with Lugol’s solution 
(1% final concentration,  vv−1). A total of 264 water samples 
were collected.

In the laboratory, each water sample was concentrated 
to about 100 mL by gently siphoning out supernatant water 
after allowing it to settle for at least 48 h. The settling and 
siphoning processes were repeated to concentrate each sam-
ple to a final volume of ~ 50 mL. The concentrated sample 
was then allowed to settle in an Utermöhl counting chamber 



2357

for at least 24 h, after which it was examined using an Olym-
pus IX 71 inverted microscope (×100 or ×400).

For each sample, the entire concentrated sample was 
counted. A maximum of 25 mL of the concentrated sample 
was examined in each count; therefore, at least two counts 
were made to complete sample analysis. A smaller volume 
was examined for each count when the microscopic view was 
blurred because of the high concentration of phytoplankton. 
The species present in low abundance (especially Antarctic 
endemic species of tintinnids) were counted completely in 

every count to ensure accuracy. Highly abundant species 
were not counted if a high number was obtained in a pre-
vious count. Because mechanic and chemical disturbances 
associated with collection and fixation procedures could 
provoke detachment of the protoplasma from the loricae 
(Paranjape and Gold 1982; Alder 1999), empty loricae of 
tintinnid species were counted as living cells in this study. 
In addition, some loricae might be empty when they were 
sampled (Kato and Taniguchi 1993; Dolan and Yang 2017), 
which might have resulted in overestimated numbers.

Fig. 1  Sampling stations in 
open waters near Prydz Bay 
during the late austral summer. 
Red star Chinese Antarctic sta-
tion of Zhongshan; Red circle 
Australian Antarctic station of 
Davis
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For each species, sizes (e.g., length or width, accord-
ing to shape) of the cell (aloricate ciliate) or lorica (tintin-
nid, especially length and oral diameter) were measured 
for at least (if possible) 20 individuals in the entire study 
area. According to lorica morphology and size, tintinnids 
were identified to the species level according to references 
(Laackmann 1910; Kofoid and Campbell 1929, 1939; Hada 
1970; Boltovskoy et al. 1990; Alder 1999; Zhang et al. 2012; 
Dolan et al. 2013b; Kim et al. 2013). Ciliate volumes were 
then estimated using appropriate geometric shapes (cone, 
ball, and cylinder). Tintinnid carbon biomass was estimated 
using the equation: C = lorica volume (µm3) × 0.053 + 444.5 
(Verity and Langdon 1984). The conversion factor of carbon 
biomass for aloricate ciliates used in this study was 0.19 pg 
C µm−3 as defined by Putt and Stoecker (1989). Southern 
Ocean endemic species were defined according to Dolan 
et al. (2012).

Data analysis

The occurrence frequency of each tintinnid species was cal-
culated by dividing the total number of sampling points by 
the number of sampling points where this species occurred. 
Principal component analysis (PCA) was conducted using 
Canoco for Windows 4.5 software. For PCA, environmental 
variables included seawater temperature, salinity, Chl a and 
depth, while biological variables consisted of the abundance 
of 13 tintinnid species. Cluster analysis was conducted using 
the Primer 5 software. Group-average linkage based on the 
Bray–Curtis similarity matrix of the fourth root transformed 
tintinnid abundances was utilized.

Results

Hydrography and water mass division

The water column temperature (Fig. 2) showed obvious 
sandwich structures, with warm water (T > − 1.5 °C) lying 
on and below a cold water (T < − 1.5 °C) layer. We defined 
the cold-water belt (T < − 1.5 °C) in the middle as WW, 
the warm water upon WW in the upper 50 m as SSW, and 
the warm water below WW as CDW. Upwelling occurred 
in transect P3 (Sts. 6, 7), P4 (Sts. 4–6), and P5 (Sts. 3–6). 
The upwelling in transects P4 and P5 were stronger, with 
− 1.2 °C outcropping to the surface, while the upwelling was 
comparatively weak in Transect P3 with a temperature of 
only − 0.8 °C outcropping to the surface. WW lied between 
50 and 100 m on the offshore side of the transects, whereas 
it occupied the water column down to 300 m on the coastal 
side.

The salinity was less than 34 in the upper 50 m (SSW) 
at most stations, while WW and CDW exhibited higher 

salinity (> 34) (Fig. 2). The position of salinity 34 isoha-
line was similar to that of the − 1.5 °C isothermal underly-
ing SSW. The in vivo Chlorophyll a (Chl a) decreased with 
depth, and the highest values (> 3 mg m−3) were limited to 
coastal sites in the upper 50 m of SSW, with a maximum 
value of 19.18 mg m−3 being observed at 4.5 m at St. P5-9. 
According to the spatial distribution of the concentration of 
Chl a, SSW was divided into an area with Chl a concentra-
tion > 3 mg m−3 near the shelf and another area with concen-
tration < 3 mg m−3 in the north. The horizontal division of 
the two sectors overlapped with that of the upwelling, with 
the exception of transect P2, for which upwelling was not 
detected in SSW.

Ciliate abundance and biomass in different water 
masses

Ciliate abundance and biomass decreased from SSW to 
CDW (Table 1, Figs.  3, 4, 5a). High ciliate abundance 
(> 1000 ind.  L−1) and biomass (> 4 µg C  L−1) occurred in 
SSW. The aloricate ciliate proportion accounted for > 57% 
of the total ciliate abundance in all water masses. Aver-
age abundances of aloricate ciliates and total ciliates in 
 SSWChl a > 3 (SSW, Chl a > 3 mg m−3) were less than in 
 SSWChl a < 3, but their average biomasses were greater than 
in this fraction of water (Table 1, Fig. 5b). The proportion 
of tintinnids to the total ciliate abundance in  SSWChl a > 3 
(38.2%) was much higher than in any other water masses 
(< 13%), with CDW having the lowest tintinnid proportion 
(2.2%, Fig. 5b). In addition,  SSWChl a > 3 contained larger 
sized aloricate ciliates, with those in the 10–20 µm size class 
compromising < 15% of the total aloricate ciliate abundance, 
while this value was more than 39% in other water masses 
(Fig. 5c).

Thirteen tintinnid species belonging to five genera were 
identified (Table 2, Fig. 6), and the occurrence frequencies 
and abundances of different tintinnids varied greatly. Gen-
erally, tintinnids with a higher occurrence frequency also 
had a higher abundance (both average abundance and maxi-
mum abundance, Online Resource 1). Salpingella sp. was 
the most abundant and frequent species, while Amphorides 
laackmanni was the least abundant (Table 2, Fig. 5d, Online 
Resource 1). Tintinnid total abundance in different water 
masses was different, with  SSWChl a > 3 having the highest 
average tintinnid total abundance (209 ind.  L−1) among all 
water masses (Fig. 5d, Table 1). The average abundance 
of all tintinnid species in CDW was low (< 0.9 ind.  L−1) 
(Fig. 5d, Table 2).

There were seven Southern Ocean endemic tintinnid spe-
cies (Codonellopsis gaussi, Laackmanniella naviculaefera, 
Cymatocylis affinis/convallaria, C. antarctica, C. affinis/con-
vallaria forma cristallina, C. affinis/convallaria forma dryg-
alskii and C. vanhoeffeni). Laackmanniella naviculaefera 
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and C. affinis/convallaria forma cristallina were the most 
abundant endemic species in WW (Table 2). The average 
abundance of endemic species in  SSWChl a > 3 was highest 
(Fig. 5d), and the Southern Ocean endemic species abun-
dance in WW (> 30%) was much higher than in other water 
masses (Fig. 5e).

Tintinnid species in different water masses

Cluster analysis divided all tintinnid species into four 
groups according to their distribution (Online Resource 
2). Species in groups I, II and III had higher occurrence 
frequencies, making it possible to study their distribution 

pattern. Three main patterns corresponding to the three 
groups were identified according to their distribution char-
acteristics (Figs. 7, 8, 9). Pattern 1 was defined by tintinnids 
that mainly occurred in SSW. These organisms were distrib-
uted in the surface or subsurface layer of SSW, but disap-
peared in the deep water. Tintinnids with this pattern were 
identified as Salpingella sp. and C. gaussi. The maximum 
abundance of Salpingella sp. was observed in the upper 
25 m, while that of C. gaussi was found in the upper 50 m 
(Fig. 7, Online Resource 3). Pattern 2 was defined as tintin-
nids that mainly occurred in WW. These species (Salpin-
gella costata, S. faurei, C. affinis/convallaria forma drygal-
skii and C. vanhoeffeni) did not exist in the upper 25 m and 

Fig. 2  Vertical distributions of temperature (T,   °C), salinity (S), 
in  vivo Chlorophyll a (Chl a) fluorescence along the transects (P2, 
P3, P4, P5) in open waters near Prydz Bay. Dot symbols indicate both 
the depths at which ciliates were sampled and the water masses where 

samples were collected (purple circle SSW; red diamond WW; green 
square CDW). Blue line: upwelling range at the 0-m depth. SSW: 
Summer Surface Water, WW: Winter Water, CDW: Circumpolar 
Deep Water
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mainly occurred in the subsurface and stretched into deep 
water in WW in the coastal area, with a decreasing trend to 
the north (Fig. 8, Online Resource 3). Finally, L. navicu-
laefera and C. affinis/convallaria forma cristallina formed 
Pattern 3. These organisms inhabited both  SSWChl a > 3 and 
WW, and were distributed from the surface of  SSWChl a > 3 to 
deep water in WW (Fig. 9, Online Resource 3). These two 
species were the most abundant Southern Ocean endemic 
species in WW (Table 2). Species in group IV (Codonel-
lopsis glacialis, C. affinis/convallaria, C. antarctica, Sal-
pingella acuminata, and A. laackmanni) occurred too rarely 
(occurrence frequency < 8%, Table 2) to show any obvious 
occurrence pattern (Online Resource 4).

Principal component analysis of the 264 samples and 13 
tintinnid species was conducted to examine the contribution 
of the environmental variables to tintinnid species occur-
rence (Fig. 10). Two principal components discriminated 
the environmental conditions in three water masses. These 
components explained a large proportion (68.1%) of the var-
iance, as well as 44.7 and 23.4% of the tintinnid species vari-
ation, respectively (Fig. 10). The first principal component 
was closely related to seawater depth, Chl a, Salpingella sp., 
C. gaussi and C. glacialis. These three tintinnid species had
a strong positive correlation with Chl a but a strong negative
correlation with depth. Chl a had the greatest influence on
C. gaussi and C. glacialis. The second principal component
was closely related to temperature, S. costata, S. faurei, C.
affinis/convallaria forma drygalskii and C. vanhoeffeni, C.
affinis/convallaria forma cristallina and L. naviculaefera.
These species had a strong negative correlation with tem-
perature (Fig. 10). Different tintinnid groups had different
temperatures and Chl a preferences: those showing Pattern
1 occurring in warm water in the surface and those showing
Pattern 2 being present in cold water. Tintinnid species in
Pattern 3 occurred in cold water and warm water with high
Chl a levels (Online Resource 5).

Discontinuity of ciliate distribution

Isolines of low abundance of aloricate ciliates, tintinnids, and 
total ciliates showed upwelling in the corresponding horizon-
tal position of the upwelling. The total ciliate abundance iso-
line of 200 ind.  L−1 upwelled in transects P3, P4 and P5, and 
even reached the surface in SSW in transect P5. The aloricate 
ciliate isoline of 200 ind.  L−1 was distributed in generally 
the same pattern as the total ciliate assemblage. The tintin-
nid abundance isoline of 40 ind.  L−1 reached the surface in 
SSW and defined areas of low abundance in surface water 
for all transects (Fig. 3). According to the tintinnid distri-
bution (Figs. 7, 8, 9), there was an obvious low-abundance 
division area that split the tintinnid abundance distribution 
into two parts. The Salpingella sp. abundance distribution 
in Transect P3 could easily be split into two parts by the 5 Ta
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ind.  L−1 isoline, while the 60 ind.  L−1 isoline split Transect 
P4 and P5 into two parts (Fig. 7). In the case of tintinnids 
with Patterns 2 and 3 (C. affinis/convallaria forma drygalskii, 
C. vanhoeffeni, S. costata, S. faurei, L. naviculaefera and
C. affinis/convallaria forma cristallina), their distribution
area was also divided by low abundance isolines, and their
abundance was higher on the coastal side of the cold-water
upwelling (Figs. 8, 9).

Discussion

Ciliate abundance and biomass in different water 
masses

Data concerning ciliate abundance and biomass are scarce in 
open waters near Prydz Bay. Paterson and Laybourn-Parry 
(2012) reported a maximum ciliate abundance of 3000 ind. 

Fig. 3  Vertical distributions of abundance (ind.  L−1) of aloricate cili-
ate, tintinnid, and total ciliate along the transects (P2, P3, P4, P5) in 
open waters near Prydz Bay. Dot symbols indicate both the depths 
at which ciliates were sampled and the water masses where samples 
were collected (purple circle SSW; red diamond WW; green square 

CDW). Blue line: upwelling range at the 0-m depth. SSW: Summer 
Surface Water; WW: Winter Water; CDW: Circumpolar Deep Water. 
Red isotherm of − 1.5 °C and green Chl a isoline of 3 mg m−3 were 
attached
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 L−1 in the sea ice area 3 km offshore in April. In addition, 
higher ciliate abundance of 1.6 × 105 ind.  L−1 was recorded 
at depth of 15 m at a site 5 km offshore from the Austral-
ian Antarctic station of Davis in January (Davidson and 
Marchant 1992). The close proximity of these stations to the 
shoreline might explain their higher abundance. The aver-
age ciliate abundance (301 ind.  L−1) and biomass (1.6 µg C 
 L−1) in this study were higher than during the same season 
in the Bellingshausen and Amundsen seas, where there were 
average ciliate abundance of 139 ind.  L−1 and a biomass of 
0.34 µg C  L−1, respectively (Wickham et al. 2011). The tin-
tinnid biomass ranged from 0.02 µg C  L−1 under the sea-ice 

to 1.3 µg C  L−1 in the open water column in the Weddell Sea 
(Buck et al. 1992).

The proportion of tintinnid abundance to total ciliate 
abundance has been shown to be < 20% in oceanic waters 
(Suzuki and Taniguchi 1998; Gómez 2007; Sohrin et al. 
2010; Yu et al. 2016). Yu et al. (2016) found that tintin-
nid abundance was < 10% in stations deeper than 80 m. In 
the present study, the proportion of tintinnids in  SSWChl a < 3 
(SSW, in vivo Chlorophyll a < 3 mg m−3) and WW was close 
to that of oceanic water. A higher tintinnid proportion was 
found in  SSWChl a > 3 than in other water masses. This phe-
nomenon was consistent with the idea that tintinnids may be 

Fig. 4  Vertical distributions of biomass (µg C  L−1) of aloricate, tin-
tinnid, and total ciliate along the transects (P2, P3, P4, P5) in open 
waters near Prydz Bay. Dot symbols indicate both the depths at which 
ciliates were sampled and the water masses where samples were col-

lected (purple circle SSW; red diamond WW; green square CDW). 
Blue line: upwelling range at the 0-m depth. SSW: Summer Surface 
Water; WW: Winter Water; CDW: Circumpolar Deep Water. Red iso-
therm of − 1.5 °C and green Chl a isoline of 3 mg m−3 were attached
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more favored than aloricate ciliates under eutrophic condi-
tions in oceanic waters (Gómez 2007). Suzuki and Taniguchi 
(1998) also found that tintinnids were adapted to high Chl 
a concentrations.

The size class of aloricate ciliates has rarely been inves-
tigated. In our study, the percentages of different size class 
aloricate ciliates in different layers of a low Chl a concen-
tration area was roughly the same as in the tropical Western 
Pacific (Wang et al. 2016). However, the size class of alori-
cate ciliates became larger in the higher Chl a concentration 
area. There were no similar results in other studies.

Tintinnid species composition

This study was the first to investigate tintinnid species com-
munities in open waters near Prydz Bay. A neritic assem-
blage has also been described in Antarctic waters (Dolan 
et al. 2013a). However, neritic genera (Favella, Helicosto-
mella, Leprotintinnus, Metacylis, Stenosemella, Stylicauda, 
Tintinnidium, and Tintinnopsis) (Dolan et al. 2013a) were 
not found in the present study. These findings indicate that 
we did not identify the southernmost limit of the austral 
assemblage. The tintinnid assemblage might extend fur-
ther south until it meets the neritic assemblage. However, 

there has been only one investigation (Yu et al. 2016) of the 
expansion of neritic species to offshore areas. That study 
showed neritic species expanded from the coastal line to the 
80-m (distance from bottom) isoline in the East China Sea. If
this phenomenon is similar in the Antarctic, neritic species
would be found in waters shallower than 80 m. However,
the shallowest depth in our study was 102 m; therefore, it is
assumed that neritic species did not occur in our study area.
Thus, further studies should be conducted in nearshore areas
to reveal the mixing between austral assemblage and neritic
assemblages in Antarctic waters.

Dolan et al. (2012) divided tintinnid species reported 
from locations between 40°S and 78°S into Southern Ocean 
endemic species (32 species) and widespread species (161 
species). In this study, we found seven Southern Ocean 
endemic species which was only a small part of the total 
endemic species list. Most endemic species did not emerge 
in our survey area, which was likely because their abundance 
was below the detection limit or they inhabited other areas of 
Antarctic waters. Dolan et al. (2013b) suggested that several 
species in the genus Cymatocylis were different morphotypes 
of Cymatocylis affinis/convallaria. Kim et al. (2013) clas-
sified C. drygalskii and C. convallaria as C. affinis, and C. 
gaussi as Laackmanniella (L. naviculaefera = L. prolongata). 

Fig. 5  Abundance of ciliate (a) and proportions of aloricate ciliate 
and tintinnid (b), proportions of different-sized aloricate ciliate in 
total aloricate ciliate abundance (c), abundances (d) and proportions 
(e) of different tintinnid species in different water masses. Southern

Ocean endemic species were in red rectangle.  SSWChl a < 3: Summer 
Surface Water with Chl a < 3 mg m−3;  SSWChl a > 3: Summer Surface 
Water with Chl a > 3 mg m−3; WW: Winter Water; CDW: Circumpo-
lar Deep Water
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Therefore, we considered C. drygalskii, C. cristallina and C. 
convallaria to be polymorphic forms and combined them 
under the name C. affinis/convallaria. However, this was not 
done for C. antarctica and C. vanhoeffeni because of their 
very different morphotypes. In addition, L. naviculaefera 
and C. gaussi were treated as different species because they 
showed distinct morphologies in our study.

In this study, C. affinis/convallaria forma cristallina was 
the dominant morphotype, and C. affinis/convallaria forma 
affinis and convallaria occurred occasionally in Prydz Bay. 
However, C. affinis/convallaria forma convallaria was domi-
nant in Admiralty Bay (King George Island) in austral sum-
mer, occupying up to 90% of the total tintinnid proportion, 
while C. affinis/convallaria forma cristallina did not appear 
(Wasik and Mikolajczy 1994). This distinct difference might 
reflect geographic differences of tintinnid occurrence.

In the present study, Salpingella sp. was the most abun-
dant species, which was consistent with the results of 
previous studies. For instance, the maximum abundance 
of Salpingella sp. reached 1300 ind.  L−1 at a nearshore 
site in Signy Island (Leakey et al. 1994) and 380 ind.  L−1 
in the ice-edge zone of the Weddell Sea (Buck et al.1992). 

Based on pictures and the size of lorica observed in previ-
ous studies (Heinbokel and Coats 1985; Buck et al. 1992), 
the Salpingella sp. observed in the present study may be 
the same as that of Salpingella sp. #1 observed in the 
Weddell Sea (Buck et al. 1992).

All Southern Ocean endemic tintinnid species except 
for C. gaussi were limited to the onshore side of the tran-
sects from 65°S to 67.51°S in the present study. Similarly, 
C. affinis/convallaria forma drygalskii was defined as most
abundant in the ice-covered coastal zone in the Belling-
shausen Sea (Alder and Boltovskoy 1991), while it was
dominant in the Amundsen Sea, where it tended to be dis-
tributed near the shore (Jiang et al. 2014). In another study,
C. affinis/convallaria forma drygalskii was almost entirely
restricted to the region between 74°S and the Filchner Ice-
shelf (Boltovskoy et al. 1989).

Indigenous tintinnid species in water masses 
determined their vertical distribution

Because some tintinnid species had higher abundance in a 
certain water mass than in other water masses, we took them 

Table 2  Tintinnid species’ distribution in different water masses in open waters near Prydz Bay

In each water mass are displayed the average abundance ± SE (ind.  L−1) of each tintinnid species with its maximum value (ind.  L−1) in parenthe-
sis as well as its occurrence frequency (%)
OF occurrence frequency of each tintinnid species calculated by dividing the total number of sampling points by the number of sampling points 
where this species occurred, SSWChl a < 3 Summer Surface Water with Chl a < 3 mg m−3, sampling points n = 51, SSWChl a > 3 Summer Surface 
Water with Chl a > 3 mg m−3, sampling points n = 27, WW Winter Water, sampling points n = 119, CDW Circumpolar Deep Water, sampling 
points n = 67, PB Prydz Bay, sampling points n = 264

Species Water masses

SSWChl a < 3 SSWChl a > 3 WW CDW PB

Abundance OF Abundance OF Abundance OF Abundance OF OF

Codonellopsis gaussi 0.53 ± 1.78 (9) 7.23 2.76 ± 5.06 (18) 9.52 0.58 ± 2.75 (27) 4.52 0.05 ± 0.37 (3) 2.94 11.36
C. glacialis 0.22 ± 0.93 (6) 4.82 1.75 ± 5.06 (24) 5.95 0.41 ± 2.99 (32) 3.01 0.00 0.00 7.20
Cymatocylis affinis/

convallaria forma 
cristallina

1.06 ± 3.00 (12) 8.43 6.75 ± 12.31 (63) 17.86 1.54 ± 3.06 (16) 12.95 0.01 ± 0.12 (1) 2.94 25.00

C. affinis/convallaria 0.08 ± 0.45 (3) 2.41 0.11 ± 0.42 (2) 2.38 0.02 ± 0.13 (1) 0.60 0.01 ± 0.12 (1) 2.94 2.65
C. affinis/convallaria 

forma drygalskii
0.45 ± 1.43 (6) 6.02 0.41 ± 0.94 (3) 5.95 0.92 ± 1.92 (10) 9.94 0.01 ± 0.12 (1) 2.94 16.67

C. vanhoeffeni 0.20 ± 1.40 (10) 1.20 0.30 ± 1.55 (8) 1.19 0.55 ± 1.42 (8) 7.23 0.00 0.00 9.85
C. antarctica 0.00 0.00 0.00 0.00 0.11 ± 0.69 (6) 1.20 0.03 ± 0.24 (2) 2.94 1.89
Laackmanniella

naviculaefera
4.97 ± 13.00 (72) 16.87 21.17 ± 28.88 (131) 25.00 3.34 ± 5.35 (32) 19.58 0.10 ± 0.55 (4) 8.82 39.02

Salpingella acuminata 0.00 0.00 0.00 0.00 0.17 ± 0.73 (6) 3.01 0.19 ± 0.74 (4) 17.65 6.06
S. costata 1.43 ± 8.99 (64) 3.61 0.00 0.00 3.81 ± 18.71 (201) 13.55 0.42 ± 1.69 (10) 20.59 20.83
S. faurei 0.59 ± 2.42 (16) 6.02 0.45 ± 1.83 (9) 2.38 2.91 ± 9.99 (79) 10.54 0.29 ± 1.88 (15) 11.76 17.42
Salpingella sp. 55.51 ± 80.26 (346) 43.37 174.98 ± 255.15 

(1014)
28.57 3.88 ± 11.30 (91) 12.05 0.87 ± 4.58 (36) 23.53 40.91

Amphorides laack-
manni

0.00 0.00 0.34 ± 0.87 (5) 1.19 0.55 ± 3.61 (33) 1.81 0.01 ± 0.12 (1) 2.94 3.03
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to be indigenous species of this water mass. All the indig-
enous species form indigenous assemblages of this certain 
water mass. In this study, SSW indigenous assemblage was 
composed of Salpingella sp. and C. gaussi, WW indigenous 

assemblage included S. costata, S. faurei, C. affinis/conval-
laria forma drygalskii and C. vanhoeffeni, and there was 
no indigenous assemblage in CDW. The tintinnid assem-
blage in one certain water mass was a mixture of indigenous 

Fig. 6  Photos of some tintinnid species in open waters near Prydz 
Bay. a Laackmanniella naviculaefera, b Salpingella sp., c S. faurei, 
d Codonellopsis glacialis, e C. gaussi, f Cymatocylis affinis/conval-

laria, g C. affinis/convallaria forma drygalskii, h C. affinis/conval-
laria forma cristallina, i C. vanhoeffeni 
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tintinnids of this water mass and those indigenous to other 
water masses in addition to some occasional species. Our 
results supported the hypothesis that different ciliates have 
different preferred water masses.

Although previous studies of tintinnids in Antarctic 
waters did not define any tintinnid species–water mass rela-
tionship, some studies have investigated their vertical dis-
tribution (e.g., Boltovskoy and Alder 1992; Kivi and Kuosa 
1994; Christaki et al. 2008). Since water masses were verti-
cally divided in our study area, we were able to compare 
our results with these previous studies. In our study, Salpin-
gella sp. and C. gaussi mainly inhabited SSW, which was 
consistent with the results of previous studies that showed 
they were present in higher abundance in surface waters. For 
example, the abundance of Salpingella sp. was higher in the 
upper 50 m than in deeper waters in the ice-edge zone of the 
Weddell Sea (Buck et al. 1992). C. gaussi (maximum 40.3 
ind.  L−1) mainly existed in the upper 50 m of the ice-edge 
zone in the Weddell Sea (Boltovskoy and Alder 1992).

Four species (S. fauri, S. costata, C. affinis/convallaria 
forma drygalskii and C. vanhoeffeni) were mainly found 
in WW in this study. No specific vertical distribution pat-
tern of these species was reported in previous studies. 

Boltovskoy and Alder (1992) reported that Salpingella 
sp. was mainly distributed in deep water (> 100 m) in the 
Weddell Sea. This species distribution pattern was similar 
to that of S. fauri and S. costata observed in the present 
study. Because there was no concrete species information 
about Salpingella sp. reported in Boltovskoy and Alder 
(1992), we suggest that the Salpingella sp. observed in 
their study might be the S. fauri or S. costata found in the 
present study.

In the present study, C. affinis/convallaria forma cris-
tallina and L. naviculaefera were found in high abundance 
in  SSWChl a > 3 and WW. L. naviculaefera is a surface spe-
cies for which the maximum abundance (131  ind.  L−1) 
was observed at 25 m in our study. This species has previ-
ously been reported to be present in maximum abundance 
(40.2 ind.  L−1) at 50 m in the Weddell Sea (Boltovskoy and 
Alder 1992). To the best of our knowledge, there is no verti-
cal distribution data for C. affinis/convallaria forma cristal-
lina in the available literature. Other species like A. laack-
manni and C. antarctic with no concrete pattern were rare in 
our study and we did not find any previous distribution data 
regarding these species.

Fig. 7  Vertical distribution of abundance (ind.  L−1) of tintinnid spe-
cies (Pattern 1) in open waters near Prydz Bay. Dot symbols indicate 
both the depth at which ciliates were sampled and the water masses 
where samples were collected (purple circle SSW; red diamond WW; 

green square CDW). Blue line: upwelling range at the 0-m depth. 
SSW: Summer Surface Water; WW: Winter Water; CDW: Circumpo-
lar Deep Water. Tintinnid pictures were attached
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Influences of upwelling on ciliate distribution

Another characteristic of the distribution pattern is the influ-
ence of upwelling. Although this upwelling has long been 

recognized (Middleton and Humphries 1989), its influence 
on plankton distribution has not been investigated to date. 
The combined effects of the coast and upwelling could be 
responsible for Chl a intensification in surface waters at 

Fig. 8  Vertical distribution of abundance (ind.  L−1) of tintinnid spe-
cies (Pattern 2) in open waters near Prydz Bay. Dot symbols indicate 
both the depth at which ciliates were sampled and the water masses 
where samples were collected (purple circle SSW; red diamond WW; 

green square CDW). Blue line: upwelling range at the 0-m depth. 
SSW: Summer Surface Water; WW: Winter Water; CDW: Circumpo-
lar Deep Water. Tintinnid pictures were attached
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the coastal ends of the transects. Upwelling occurred in the 
same location in which low abundance of surface ciliates 
and some tintinnid species occurred. Because deep water 
had low ciliate abundance, we propose that this upwelling 
was responsible for the low abundance areas. L. naviculaef-
era and C. affinis/convallaria forma cristallina occurred in 
WW, and were the most abundant Southern Ocean endemic 
species in WW. Therefore, these two species might be more 
adaptive than other endemic species in WW. We speculate 
that these two species might be the original inhabitants in 
WW. When WW was brought to the surface by upwelling, 
these two species were able to survive and prosper, while 
others perished. Because the upwelling moved both upward 
and coastward, these two species occurred in  SSWChl a > 3 but 
not in  SSWChl a < 3.

Upwelling in Prydz Bay is a part of the “Antarctic diver-
gence” which generally occurs at 60°S–65°S, although it 
shows great variations with time (Mann and Lazier 2006; 
Lin et al. 2016). Thus, the influence of upwelling on ciliate 
distribution in our study might have occurred in other Ant-
arctic waters in which upwelling was found.

Prediction of spatial and temporal variations 
of austral tintinnid assemblage

Because different water masses inhabited different indig-
enous assemblages, we predicted tintinnid assemblages in 
other areas and times according to the spatial and tempo-
ral variations of water masses in the Southern Ocean. The 
sandwich structures of SSW, WW, and CDW stretched from 
waters near Prydz Bay northward until Antarctic Circum-
polar Current (ACC) mixed the water layers. Therefore, we 
speculate that the distributions of austral tintinnid assem-
blages were similar in waters from our study area to those 
of ACC.

According to data recorded at the Chinese Antarctic 
Station of Zhongshan, air temperature was the highest in 
January (http://polar .china re.gov.cn/meteo /). Our study 
was conducted at the end of austral summer, when WW 
was at its minimum range. As time went on, SSW gradu-
ally disappeared and was replaced by WW; thus, WW 
occupied more of the surface water. Therefore, in winter, 
the abundance of the dominant species, Salpingella sp. 

Fig. 9  Vertical distribution of abundance (ind.  L−1) of tintinnid spe-
cies (Pattern 3) in open waters near Prydz Bay. Dot symbols indicate 
both the depth at which ciliates were sampled and the water masses 
where samples were collected (purple circle SSW; red diamond WW; 

green square CDW). Blue line: upwelling range at the 0-m depth. 
SSW: Summer Surface Water; WW: Winter Water; CDW: Circumpo-
lar Deep Water. Tintinnid pictures were attached

http://polar.chinare.gov.cn/meteo/
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(which was indigenous in SSW), will decrease. Tintin-
nid species indigenous in WW might move northward and 
upward to the surface waters, resulting in the increase of 
their proportion.

We do not have species information regarding aloricate 
ciliates; however, the aloricate assemblage might utilize 
the same mechanism as tintinnid species because of their 
close phylogenetic relationship. Although there have been 
no reports on other plankton differences in different water 
masses in the Antarctic, this mechanism might also exist 
in phytoplankton and zooplankton.

In summary, the results of this study supported our 
hypothesis that different water masses had ciliate assem-
blages with different characteristics and indigenous tintin-
nids. Tintinnid vertical distribution could be determined 
by whether they were indigenous to water masses. Our 
results will help predict the spatial and temporal variations 
in assemblages of ciliates and other plankton according to 
the dynamics of water masses in Antarctic waters.
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Online Resource 1 Relationship between occurrence frequency and maximum abundance ( ), and 

average abundance (  ) of each tintinnid species. (1) Salpingella sp.; (2) Laackmanniella 

naviculaefera; (3) Cymatocylis affinis/convallaria forma cristallina; (4) Salpingella costata; (5) 

Salpingella faurei; (6) Cymatocylis affinis/convallaria forma drygalskii; (7) Codonellopsis gaussi; 

(8) Cymatocylis vanhoeffeni; (9) Codonellopsis glacialis; (10) Salpingella acuminata; (11)

Amphorides laackmanni; (12) Cymatocylis affinis/convallaria; (13) Cymatocylis antarctica 



Online Resource 2 Cluster analysis using group-average linkage based on the Bray-Curtis 

similarity matrix of fourth root transformed tintinnid abundances in all sampling points. (group I) 

tintinnid species in Pattern 1; (group II) tintinnid species in Pattern 2; (group III) tintinnid species 

in Pattern 3; (group IV) tintinnid species with no distribution pattern 



Online Resource 3 Vertical scatter distribution of typical tintinnid species in three patterns. (a) 

Pattern 1: tintinnid mainly occurred in SSW; (b) Pattern 2: tintinnid mainly occurred in WW; (c) 

Pattern 3: tintinnid occurred in both SSWChl a>3 and WW. SSW: Summer Surface Water; WW: 

Winter Water; SSWChl a>3: Summer Surface Water with Chl a>3 mg m-3 



Online Resource 4 Vertical distribution of abundance (ind. L-1) of tintinnid species with no 

distribution pattern in open waters near Prydz Bay. Dot symbols indicate both the depth at which 

ciliates were sampled and the water masses where samples were collected (  SSW;  WW; 

CDW). SSW: Summer Surface Water; WW: Winter Water; CDW: Circumpolar Deep Water 



Online Resource 5 Seawater temperature T (°C) and Chl a in the sampling points in open waters 

near Prydz Bay. Different sizes of red circles indicate different abundances (ind. L-1) of typical 

tintinnid species in three patterns in the sampling points. Solid blue dots mean sampling points 

where this species did not occur. (a) Pattern 1: tintinnids mainly occurred in SSW; (b) Pattern 2: 

tintinnids mainly occurred in WW; (c) Pattern 3: tintinnids occurred in both SSWChl a>3 and WW. 

SSW: Summer Surface Water; WW: Winter Water; SSWChl a>3: Summer Surface Water with Chl a>3 

mg m-3. Horizontal and vertical dashed line indicate Chl a value of 3 mg m-3 and temperature of -

1.5 °C, respectively 
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