
HAL Id: hal-02024257
https://amu.hal.science/hal-02024257

Submitted on 25 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Use of palmitoleic acid and its oxidation products for
monitoring the degradation of ice algae in Arctic waters

and bottom sediments
Jean-Francois Rontani, Remi Amiraux, Catherine Lalande, Marcel Babin,

Hak-Ryul Kim, Simon Belt

To cite this version:
Jean-Francois Rontani, Remi Amiraux, Catherine Lalande, Marcel Babin, Hak-Ryul Kim, et
al.. Use of palmitoleic acid and its oxidation products for monitoring the degradation of ice
algae in Arctic waters and bottom sediments. Organic Geochemistry, 2018, 124, pp.88-102.
�10.1016/j.orggeochem.2018.06.002�. �hal-02024257�

https://amu.hal.science/hal-02024257
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Use of palmitoleic acid and its oxidation products for monitoring the
degradation of ice algae in Arctic waters and bottom sediments

Jean-François Rontani a,⇑, Rémi Amiraux a, Catherine Lalande b, Marcel Babin b, Hak-Ryul Kim c,

d
Simon T. Belt 

a Aix Marseille Univ, Université de Toulon, CNRS/INSU/IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
b Takuvik Joint Laboratory, Département de Biologie/Pavillon Alexandre-Vachon, Université Laval, Québec, Québec G1V 0A6, Canada
c School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
d Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
⇑ Corresponding author.
E-mail address: jean-francois.rontani@mio.osupytheas.fr (J.-F. Rontani).
a b s t r a c t
Keywords:
Palmitoleic acid
Sympagic algae
Arctic
Biotic and abiotic degradation
Sea ice
Sinking particles
Superficial bottom sediments
Degradation of palmitoleic acid (C16:1x7), the main fatty acid component of sea ice-associated (sympagic)
diatoms, was monitored in Arctic sea ice at the beginning of ice melting and in the underlying sinking
particles and superficial bottom sediments. In sea ice, degradation of sympagic algae involved biotic oxi-
dation induced by 10S-DOX-like lipoxygenase of unknown salinity-stressed attached bacteria, while
photo- and autoxidation were limited. In the water column, strong hydratase and Z/E isomerase activity
were observed. Hydration of unsaturated fatty acids seems to be a detoxification strategy, which is
essential for bacterial survival when associated with free fatty acid-rich environments such as ice algae.
In contrast, Z/E isomerisation of palmitoleic acid was attributed to the release of Fe2+ ions during radical-
induced damage of the active site of the bacterial 10S-DOX-like lipoxygenase and Z/E isomerases. Due to
the poor physiological state of their attached bacteria resulting from salinity stress in brine channels or
toxicity of free ice algae fatty acids, sympagic algae appeared to be only very weakly biotically degraded
within the water column. In bottom sediments, free radicals resulting from 10S-DOX-like lipoxygenase
activity induced a strong autoxidation of the ice algal material. The presence in bottom sediments of a
significant proportion of oxidation products resulting from 10S-DOX-like lipoxygenase activity attested
to the strong contribution of sea ice-derived OM released during the early stages of ice melt prior to depo-
sition in the sediments. However, on the basis of the highest fatty acid photooxidation state observed in
these sediments, an additional contribution of highly photooxidized material (ice algal material released
at the end of ice melting or open water phytoplankton) seems likely. The degradation of hydroperoxides,
resulting from biotic and abiotic degradation of palmitoleic acid, appeared to involve: (i) homolytic cleav-
age of the peroxyl group affording the corresponding hydroxy- and oxoacids, (ii) reduction to the corre-
sponding hydroxyacids by peroxygenases, (iii) heterolytic proton-catalysed cleavage and (iv) conversion
to allylic 1,4-diols by diol synthases and hydroperoxide isomerases.
1. Introduction

The thinning and retreat of Arctic sea ice, which is one of the
most striking consequences of recent climate change, will likely
have a significant impact on Arctic ecosystem functioning in the
future (Wassmann et al., 2011). Continued changes in the polar
seas and sea ice retreat will also affect marine biogeochemical
cycles, with possibly important feedbacks to the climate and mar-
ine ecosystems (Arzel et al., 2006).
Reduction of sea ice in the Arctic under the effect of global
warming should significantly alter the relative fluxes of phyto-
plankton and ice algae to the seafloor (Carroll and Carroll, 2003).
A climate-change-mediated shift in primary producers would thus
impact the structure and function of the sea floor community,
which is strongly dependent upon the deposition of organic mate-
rial from the overlying water column for its energy requirements
(McMahon et al., 2006). Moreover, under the effect of global warm-
ing the carbon sink potential of ice algae (resulting from their
strong aggregation and the stress state of their associated bacteria,
should be gradually replaced by the carbon source potential of
open water phytoplankton (weakly aggregated and mineralized
before the bottom) (Amiraux et al., 2017).
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Determining the fate of sympagic (ice-associated) derived par-
ticulate organic matter (POM) following its release from sea ice
during spring melting is thus an important research objective
(Tedesco and Fettweis, 2012), but partitioning processes such as
growth of the water column phytoplankton community, grazing,
remineralization and export is complicated and currently not well
constrained. The strong pulse of particulate OM released into the
water column during ice melt provides essential energy at the base
of the Arctic food web (Michel et al., 1996; Lizotte, 2001), although
some sinks to the seafloor (Riebesell et al., 1991; Fortier et al.,
2002; Renaud et al., 2007). Ultimately, the material that is not
grazed or re-mineralized during its descent through the water col-
umn, can feed the benthos (Boetius et al., 2013) or be stored in
sediments.

In practice, many factors influence the quantity and the qual-
ity of the sympagic OM reaching the seafloor. These include the
physical characteristics of the water column, including water
depth and whether it is well mixed or stratified, the latter being
a particular feature of Arctic waters due to the lower salinity
caused by ice melt in spring and freshwater runoff. In addition,
the fate of sympagic OM is influenced by physiological,
morphological and ecological factors such as cell agglomeration
and grazing by under-ice and water column heterotrophs
(Vancoppenolle et al., 2013). A particular feature of sea ice biota
is their ability to produce large quantities of so-called extra-
cellular polymeric substances (EPS), which serve as a cryoprotec-
tant within the ice matrix. Indeed, EPS concentrations in Arctic
sea ice are typically at least an order of magnitude higher than
for under-ice and open water environments (Krembs and Engel,
2001; Meiners et al., 2003), which promotes aggregation of sym-
pagic algae and thus enhances export efficiency to the seafloor.
The contribution of ice algae to the underlying sediments also
depends strongly on the remineralization potential of their asso-
ciated bacteria. Recently, it was observed that during the early
stage of ice melting, hypersaline conditions in brine channels
strongly impact the bacterial community associated with ice
algae (Amiraux et al., 2017). The resulting poor physiological
state of these bacteria should likely contribute to the preserva-
tion of the algal material prior to deposition on the ocean
bottom.

Lipid biomarkers, although only representing a relatively minor
fraction of the total OM, can convey important information on the
source (terrigenous, marine or bacterial) and degradation state of
OM, and their distributions are often more informative than bulk
parameters such as total organic carbon (Saliot et al., 2002). Fur-
thermore, the oxidation products of monounsaturated fatty acids
appear to be especially useful for differentiating the involvement
of photo- and autoxidative degradation processes in suspended
and sinking particulate matter and bottom sediment samples (for
a review see Rontani, 2012). More recently, analysis of these com-
pounds provided evidence of lipoxygenase-induced degradation in
suspended (Galeron et al., 2018) and sinking (Amiraux et al., 2017)
particles.

Since the integrity of the strong pulse of particulate organic
matter (POM) released during Arctic ice melt remains largely unex-
amined, we monitored biotic and abiotic degradation processes in
ice algae released from melting Arctic sea ice and their transfer to
the ocean bottom using pathway-specific degradation tracer prod-
ucts of palmitoleic acid (C16:1x7). Indeed, although present in sev-
eral bacteria (e.g., de Carvalho and Caramujo, 2014), palmitoleic
acid is also the major fatty acid of diatoms (Fahl and Kattner,
1993; Leu et al., 2010), which strongly dominate the biomass in
sea ice.
2. Experimental

2.1. Sampling

Ice cores, sinking particles and superficial bottom sediments
were collected during the spring of 2015 at a landfast ice station
located near Broughton Island (67�28.7660N; 63�47.5790W; water
column depth: 379 m) north of Davis Strait, Canada (GreenEdge
ice camp 2015). Sea ice and sinking particles were sampled during
the early stage of ice melt (Amiraux et al., 2017). An ice core was
collected on 4 June 2015 using a 9 cm internal diameter Mark II
coring system (Kovacs Enterprises) and sliced in the field. The bot-
tom 1 cm slice, which corresponds to the ice–ocean interface and
contains the largest amount of ice algae, was allowed to melt in fil-
tered seawater (FSW; 0.2 mm) using at least 2 parts FSW for 1 part
of ice in order to limit osmotic stress and filtered (Whatman GF/F
47 mm). Short-term sediments traps were deployed to collect sink-
ing particles over 48 h at 2 m and 25 m with two mooring lines.
Sediment traps were made of polyvinyl chloride (PVC) and had
an aperture diameter of 15 cm. The recovery of the samples ana-
lyzed in the present study took place on 8–10 June 2015 (at the
time of highest flux of sinking material measured during this time
series, Lalande, unpublished data). A sub-sample for lipid analysis
(corresponding to 4.5% of the total sample) was filtered ontoWhat-
man GF/F 47 mm filter. Superficial bottom sediment samples (ca.
0–1 cm) were also collected using box corers at the same sampling
location on board the CCGS Amundsen in October 2015 as part of
the GreenEdge project. All the samples were kept frozen (–20 �C)
until analysis.
2.2. Treatment

Samples (filters or sediments) were reduced with excess NaBH4

or NaBD4 after addition of MeOH (25 ml; 30 min) to reduce labile
hydroperoxides to alcohols which are more amenable to analysis
using gas chromatography–mass spectrometry. Water (25 ml)
and KOH (2.8 g) were then added and the resulting mixture saponi-
fied by refluxing (2h). After cooling, the mixture was acidified (HCl,
2 N) to pH 1 and extracted with dichloromethane (DCM; 3 � 20
ml). The combined DCM extracts were dried over anhydrous Na2-
SO4, filtered and concentrated via rotary evaporation at 40 �C to
give total lipid extracts (TLEs). TLEs were derivatized by dissolving
them in 300 ml of pyridine/bis(trimethylsilyl)trifluoroacetamide
(BSTFA; Supelco; 2:1, v:v) and silylated (50 �C, 1 h). After evapora-
tion to dryness under a stream of N2, the derivatized residue was
dissolved in ethyl acetate/BSTFA (to avoid desilylation) and ana-
lyzed using gas chromatography–electron ionization quadrupole
time of flight mass spectrometry (GC–QTOFMS).

A different treatment was employed to estimate the relative
proportions of hydroperoxides and their ketonic and alcoholic
degradation products. Subsamples were extracted three times with
chloroform-MeOH-H2O (1:2:0.8, v:v:v) using ultrasonication. The
supernatant was separated by centrifugation at 3500g for 9 min.
To initiate phase separation, purified H2O was added to the com-
bined extracts. The upper aqueous phase was extracted three times
with DCM and the combined organic phase and DCM extracts were
filtered and the solvent removed via rotary evaporation. The resi-
due obtained after extraction was dissolved in 4 ml of DCM and
separated in two equal subsamples. After evaporation of the sol-
vent, degradation products were obtained for the first subsample
after acetylation, which induced conversion of hydroperoxides to
the corresponding ketones (Mihara and Tateba, 1986), and



saponification. The second subsample was reduced with NaBD4

and saponified. Comparison of the amounts of alcohols present
after acetylation and NaBD4 reduction made it possible to estimate
the amount of hydroperoxides and alcohols present in the samples,
while deuterium labeling after NaBD4 reduction allowed us to esti-
mate the proportion of ketones present in the samples (Marchand
and Rontani, 2003).

Acetylation was carried out in 300 ll of a mixture of pyridine
and acetic anhydride (2:1, v:v), which was allowed to react at 50
�C overnight and then evaporated to dryness under a stream of N2.
2.3. GC-QTOFMS

Oxidation products of palmitoleic acid were identified and
quantified using an Agilent 7890B/7200A GC-QTOF System (Agi-
lent Technologies, Parc Technopolis - ZA Courtaboeuf, Les Ulis,
France). A cross-linked 5% phenyl-methylpolysiloxane (Macherey
Nagel; Optima 5-MS Accent) column (30 m � 0.25 mm, 0.25 lm
film thickness) was employed. Analysis was performed with an
injector operating in pulsed splitless mode at 280 �C and the oven
temperature programmed from 70 �C to 130 �C at 20 �C/min, then
to 250 �C at 5 �C/min and then to 300 �C at 3 �C/min. The carrier gas
(He) was maintained at 0.69 � 105 Pa until the end of the temper-
ature program. Instrument temperatures were 300 �C for the trans-
fer line and 230 �C for the ion source. Accurate mass spectra were
obtained across the range m/z 50–700 at 4 GHz. The QTOFMS
instrument provided a typical resolution ranging from 8009 to
12,252 from m/z 68.9955 to 501.9706. Perfluorotributylamine
(PFTBA) was utilized for daily MS calibration. Compounds were
identified by comparison of their TOF mass spectra, accurate
masses and retention times with those of standards, either pur-
chased or synthesized in the laboratory (see following Section).
Quantification of each compound involved extraction of specific
accurate fragment ions, peak integration and determination of
individual response factors using external standards.
2.4. Standard compounds

(8-11)-Hydroperoxyhexadec-(8-10)-enoic acids (Z and E) acids
(1–6) (see Appendix A) were produced by Fe2+/ascorbate induced
autoxidation (Loidl-Stahlhofen and Spiteller, 1994) of palmitoleic
acid. Subsequent reduction of these different hydroperoxides in
methanol with excess NaBH4 afforded the corresponding hydroxy-
acids. Hydrogenation of these hydroxyacids was carried out in
methanol with Pd/CaCO3 as catalyst. Treatment of palmitoleic acid
with meta-chloroperoxybenzoic acid in dry methylene chloride
yielded 9,10-epoxyhexadecanoic acid (20). Hydrolysis of this epox-
ide in HCl (2N) afforded the corresponding chlorohydrins, while
methanolysis yielded the corresponding methoxyhydrins. Threo
and erythro 9,10-dihydroxyhexadecanoic acids (17) were respec-
tively obtained after stereospecific oxidation of the double bond
of palmitelaidic (the trans isomer of palmitoleic acid: hexadec-9
(E)-enoic acid) and palmitoleic acids with OsO4 in pyridine-
dioxane (McCloskey and McClelland, 1965). Threo and erythro
8,11-dihydroxyoctadec-9(E and Z)-enoic acids (22 and 23) were
produced in low yield (5–10%) by oxidation of palmitoleic acid
with SeO2-t-butylhydroperoxide (Knothe et al., 1994). A standard
of threo 7,10-dihydroxyoctadec-8(E)-enoic acid (42) containing
10% of threo 7,10-dihydroxyhexadec-8(E)-enoic acid (21) previ-
ously produced by Pseudomonas aeruginosa PR3 (Suh et al., 2011)
was obtained from Dr. H.R. Kim (School of Food Science and
Biotechnology, Kyungpook National University, Daegu, Korea).
2.5. Estimation of autoxidative, photooxidative and 10S-DOX
degradation

The role played by autoxidation in the degradation of palmi-
toleic acid was estimated by considering the proportion of its
specific Z-oxidation products (Frankel, 1998) and the water tem-
perature according to the approach previously described by
Marchand and Rontani (2001). After subtraction of the amounts
of oxidation products of autoxidative origin, it remained to deter-
mine the relative parts played by photooxidative and enzymatic
processes in the degradation. Taking into account the production
of equal amounts of 9-E (8) and 10-E (9) oxidation products during
the photooxidation of the D9 monounsaturated fatty acids
(Frankel, 1998) and their specific allylic rearrangement to 11-E
(5) and 8-E (6) isomers, respectively (Porter et al., 1995), the con-
tribution of photooxidative degradation was estimated to be 2 �
(9-E + 11-E). Concerning 10S-DOX degradation, this was obtained
from the difference between (10-E + 8-E) and (9-E + 11-E) oxida-
tion products, to which was added the amount of 7,10-
dihydroxyhexadec-8(E)-enoic acid (21) formed (Galeron et al.,
2018).

3. Results

Significant proportions (increasing from 3.5% relative to the
residual parent palmitoleic acid in sea ice to 25% in sediments) of
C16 isomeric allylic hydroperoxyacids (11-hydroperoxyhexadec-
9(E)-enoic (1), 9-hydroperoxyhexadec-10(E)-enoic (2), 10-hydro-
peroxyhexadec-8(E)-enoic (3), 8-hydroperoxyhexadec-9(E)-enoic
(4), 11-hydroperoxyhexadec-9(Z)-enoic (5) and 8-hydroperoxy-
hexadec-9(Z)-enoic (6) acids) (see Appendix A) and of the corre-
sponding hydroxy- and oxoacids could be detected in the different
samples investigated (Table 1). After NaBH4 reduction, the mix-
tures of the corresponding isomeric hydroxyacids appeared to be
strongly dominated by 10-hydroxyhexadec-8(E)-enoic acid (9) in
sea ice (Fig. 1a) and by 10-hydroxyhexadec-8(E)-enoic (9) and
8-hydroxyhexadec-9(E)-enoic (10) acids in sinking particles
(Fig. 1b). This dominance relative to the other isomers was less
apparent in superficial bottom sediments (Fig. 1c).

Saturated hydroxyacids (9-hydroxyhexadecanoic (13) and 10-
hydroxyhexadecanoic (14) acids), methoxyhydrins (9-hydroxy-
10-methoxyhexadecanoic (15) and 9-methoxy-10-hydroxyhexa-
decanoic (16) acids), diols (diastereoisomeric 9,10-dihydroxyhexa-
decanoic acids (17)) and chlorohydrins (9-hydroxy-10-
chlorohexadecanoic (18) and 9-chloro-10-hydroxyhexadecanoic
(19) acids), all derived from the degradation of (Z and E) 9,10-
epoxyhexadecanoic acids (20) during the sample treatment
(Fig. 2; Marchand and Rontani, 2001), could be also detected
(Fig. 1). NaBH4 reduction of mid-chain epoxides is generally slow
and not regioselective (Zabeti et al., 2010); the higher proportions
of 10-hydroxyhexadecanoic acid (14) relative to 9-hydroxy-
hexadecanoic acid (13) observed (Fig. 1) thus suggest the involve-
ment of an additional source of the 10-isomer. The concentration
of epoxides was thus estimated on the basis of their degradation
product concentrations according to the following equation:
(2 � [9-hydroxyhexadecanoic acid] + [methoxyhydrins] + [diols] +
[chlorohydrins]). Interestingly, their percentage relative to the
sum of the parent palmitoleic acid and its degradation products
increased from 1% in sea ice to 17% in superficial bottom
sediments.

Isomeric allylic dihydroxyhexadecenoic acids could be also
detected (Table 1, Fig. 3). Threo 7,10-dihydroxyhexadec-8(E)-
enoic (21), threo and erythro 8,11-dihydroxyhexadec-9(E)-enoic
(22) and erythro 8,11-dihydroxyhexadec-9(Z)-enoic acids (23)



Table 1
Concentration of palmitoleic acid and its degradation products in sea ice, sinking particle and surficial bottom sediment samples collected in Davis Strait.

Compounds Sea ice
(0–1 cm)
(ng ml�1)

Sinking particles (trap 2 m)
(mg m�1 d�1)

Sinking particles (trap 25 m)
(mg m�1 d�1)

Surface sediment (0–1 cm)
(mg g�1)

Hexadec-9(Z)-enoic acid (Palmitoleic acid) 10,105 345 437 7.5
(8-11)-Hydroperoxyhexadec-(8-10)(Z and E)-enoic acids (1–6) 104.5 3.3 3.2 1.1
(8-11)-Hydroxyhexadec-(8-10)(Z and E)-enoic acids (7–12) 137.8 4.4 4.3 1.0
(8-11)-Oxohexadec-(8-10)(Z and E)-enoic acids (36–41) 130.3 4.1 4.0 1.8
10-Hydroxyhexadecanoic acid (14) 19.4 2.2 2.8 0.6
10-Oxohexadecanoic acid (35) 2.1 0.2 0.3 0.1
9,10(Z and E)-Epoxyhexadecanoic acid1 (20) 109.2 3.4 3.6 2.7
7,10-Dihydroxyhexadec-8(E)-enoic acid (threo) (21) 1.8 0.5 0.3 0.2
7,10-Dihydroxyhexadec-8(E)-enoic acid (erythro) (21) 1.5 0.3 0.3 0.1
8,11-Dihydroxyhexadec-9(Z)-enoic acid (threo or erythro) (23) 2.5 0.8 0.3 0.2
8,11-Dihydroxyhexadec-9(E)-enoic acid (threo) (22) 1.9 0.3 0.2 0.1
8,11-Dihydroxyhexadec-9(E)-enoic acid (erythro) (22) 0.8 0.3 0.2 0.1
9,12-Dihydroxyhexadec-10(E)-enoic acid (threo or erythro) (24) 1.9 0.1 0.1 0.3

Ratio hexadec-9(E)-enoic acid/hexadec-9(Z)-enoic acid 0.03 0.04 0.22 0.27

1 Sum of epoxide degradation products (alcohols + diols + chlorohydrins + methoxyhydrins) (Fig. 2).
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could be formally identified by comparison of their accurate mass
spectra (Fig. 4a and c) and retention times with those of reference
compounds. The compound eluting just after threo 7,10-
dihydroxyhexadec-8(E)-enoic acids (21) (Fig. 3), and exhibiting
exactly the same mass spectrum, was attributed to the erythro
diastereoisomer. Indeed, it was observed previously that threo
and erythro diastereoisomers of TMS derivatives of dihydroxyhex-
adecanoic acids eluted on an apolar column in the same order
(Hansel and Evershed, 2009). Erythro 9,12-dihydroxyhexadec-10
(E)-enoic acids (24) were tentatively identified on the basis of
the accurate mass fragmentations of their trimethylsilyl deriva-
tives (Fig. 4b) and the abundance of the m/z 147 peak in their mass
spectra, which is similar to those of the other E isomers (Fig. 4a and
c). Indeed, this fragment ion, which arises from interaction
between two TMS groups, is always more intense in the EI mass
spectrum of the Z isomer compared to its E counterpart (Zaikin
and Halket, 2009). The percentage of these isomeric dihydroxyhex-
adecenoic acids increased from 0.1% in sea ice to 6% in superficial
bottom sediments.

A significant increase of the proportion of hexadec-9(E)-enoic
(palmitelaidic) acid relative to palmitoleic acid was apparent in
the deeper sediment trap and in superficial bottom sediments
(Table 1).

4. Discussion

4.1. Degradation of palmitoleic acid in sea ice (0–1 cm)

Type II photosensitized oxidation (i.e. involving singlet oxygen)
of palmitoleic acid produces equal proportions of isomeric 9- and
10-hydroperoxides (2 and 3) with an allylic E double bond
(Frankel, 1998), which can subsequently undergo highly stereose-
lective radical allylic rearrangement to 11-E and 8-E hydroperox-
ides (1 and 4), respectively (Fig. 5; Porter et al., 1995). In
contrast, autoxidation (i.e. free radical induced oxidation) affords
a mixture of 9-E (2), 10-E (3), 11-E (1), 11-Z (5), 8-E (4), and 8-Z
(6) hydroperoxides, also exhibiting equal proportions of the major
9-E (2) and 10-E (3) isomers (Fig. 5; Frankel, 1998). The strong pre-
dominance of the 10-E hydroxyacid (9) observed in sea ice after
NaBH4 reduction (Fig. 1) is thus very surprising. Similar profiles
of palmitoleic acid oxidation products were observed previously
in other sea ice samples (Amiraux et al., submitted for
publication) and in sinking particles underlying melting sea ice
(Amiraux et al., 2017), also in the Canadian Arctic, and attributed
to the involvement of a specific bacterial enzymatic process under
the hypersaline conditions found in brine channels. Indeed, a 10S-
DOX-like lipoxygenase able to convert palmitoleic acid to 10(S)-
hydroperoxyhexadec-8(E)-enoic acid (3) was previously isolated
from Pseudomonas aeruginosa 42A2 (Guerrero et al., 1997;
Busquets et al., 2004). Palmitoleic acid is a major constituent of
numerous bacteria (Oliver and Colwell, 1973; Viso and Marty,
1993), although it is also the predominant fatty acid in sea ice dia-
toms (Fahl and Kattner, 1993), which make up the major part of
the biomass in sea ice. The presence of high proportions of 10-
hydroperoxyhexadec-8(E)-enoic acid (3) in sea ice was thus attrib-
uted to the degradation of ice algae by some of their attached bac-
teria (Amiraux et al., 2017), consistent with the autonomous action
of prokaryotic lipoxygenases on the membrane phospholipids of
their eukaryotic cell hosts (Vance et al., 2004; Garreta et al., 2013).

The involvement of 10S-DOX-like lipoxygenase enzymatic
activity in the sea ice sample investigated herein is further sup-
ported by the detection of threo 7,10-dihydroxyhexadec-8(E)-
enoic acid (21) (Table 1, Fig. 3) formed from the specific action of
7S,10S-hydroperoxide diol synthase (linked to the 10S-DOX-like
lipoxygenase enzymatic activity) (Fig. 5; Estupiñán et al., 2014,
2015) on 10(S)-hydroperoxyhexadec-8(E)-enoic acid (3). This
enzyme appeared to be inactive towards reaction with 9-
hydroperoxyhexadec-10(E)-enoic acid (2), since there was an
absence of threo 9,12-dihydroxyhexadec-10(E)-enoic acid (24)
(Fig. 5), although it converted 12-hydroperoxyoctadec-10(E)-
enoic acid (25) (arising from vaccenic acid oxidation) to threo
9,12-dihydroxyoctadec-10(E)-enoic acid (31) (Table 2). These con-
trasting results suggest that the diol synthase present in the Arctic
bacteria is only active on allylic hydroperoxides allowing the for-
mation of a diol between the carboxyl and the peroxyl groups
and not on those where the diol is formed between the methyl
and the peroxyl groups (Table 3). Consequently, the formation of
threo 8,11-dihydroxyoctadec-9(E)-enoic acid (22) (Fig. 5) likely
results from the reaction of this enzyme with 11-
hydroperoxyhexadec-9(E)-enoic acid (1) rather than with 8-
hydroperoxyhexadec-9(E)-enoic acid (4) (Table 2).

The relatively low proportions of 9E- and 11E-hydroxyacids
(Fig. 1a) is consistent with the low efficiency of Type II photooxida-
tion processes on ice algae, attributed previously to the good phys-
iological state of algae at the time of sampling (Amiraux et al.,
2017). Autoxidation also appeared to be limited in the sea ice sam-
ple as shown by the low amounts of specific 8Z- and 11Z-
hydroxyacids (Fig. 1a).
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The degradation of all these labile isomeric hydroperoxyacids
arising from photooxidative, autoxidative and enzymatic processes
in sea ice involves: (i) homolytic cleavage of the peroxyl group
affording the corresponding hydroxy- and oxoacids (Frimer,
1979), (ii) reduction to the corresponding hydroxyacids by perox-
ygenases, which catalyze an intermolecular transfer of oxygen
from hydroperoxides to the double bonds of fatty acids yielding
alcohols and epoxides (Blée and Schubert, 1995; Blée, 1998), (iii)
heterolytic proton-catalysed cleavage leading to the formation of
two carbonyl fragments (Hock cleavage) initiated by migration of
groups to positive oxygen (Frimer, 1979), and (iv) isomerization
to allylic 1,4-diols by hydroperoxide isomerases (Fig. 6). It is
important to note that this last process affords erythro isomers
(Jernerén et al., 2010), which are different to the threo isomers
resulting from diol synthase activity.

Intermolecular transfer of oxygen from hydroperoxides to the
double bond of palmitoleic acid by peroxygenases affords Z-9,10-
epoxyhexadecanoic acid (20) (Fig. 7; Blée and Schubert, 1995;
Blée, 1998). This Z-configuration may also be produced by stere-
ospecific Z-epoxidation of palmitoleic acid by a hydroperoxide



R R'

OH

R R'

OH

NaBH4 R R'

OHCl

R R'

OHCH3O

R R'

O

R R'

ClHO

R R'

HO OCH3

R R'

HO OH

910 + HCl

+ H2O

+ CH3OH

9 10

R = CH3-(CH2)4-

R' = -(CH2)6-COOH

Fig. 2. Degradation of 9,10-epoxyhexadecanoic acid during the treatment.
species in the presence of transition metal ions (Fig. 7; Hansel and
Evershed, 2009). In contrast, hydroperoxyl radical addition to one
end of the double bond of palmitoleic acid is not stereoselective.
Indeed, in this case intramolecular homolytic substitution (Fossey
et al., 1995) can occur on the resulting free radical after rotation
about the position of the original double bond affording Z- and E-
epoxides (Fig. 7). Isomerization of palmitoleic acid to hexadec-9
(Z)-enoic acid (palmitelaidic acid) catalyzed by thiyl radicals
(Ferreri et al., 2005), metal ions (Holtwick et al., 1997) or Z/E bacte-
rial isomerases (Heipieper et al., 2003) and subsequent epoxidation
by the three processes described above, constitute other potential
sources of (Z and E) 9,10-epoxyhexadecanoic acids (20) (Fig. 7).

The higher abundance of 10-hydroxyhexadecanoic acid (14) rel-
ative to its 9-isomer (13) (Fig. 1a) was attributed to the involve-
ment of hydratase. Indeed, several bacteria are able to hydrate,
stereospecifically, D9 double bonds of fatty acids to 10-
hydroxyacids (El-Sharkawy et al., 1992; Yang et al., 1993; Hou,
1994), which are often subsequently dehydrogenated by alcohol
dehydrogenases to the corresponding 10-ketoacids (El-Sharkawy
et al., 1992). Reduction of the samples with NaBD4 instead of
NaBH4 allowed us to estimate the relative proportions of 10-
hydroxyhexadecanoic acid (14) and 10-oxohexadecanoic acid
(35) in sea ice (9:1).

4.2. Degradation of palmitoleic acid in sinking particles

The dominance of Nitzschia frigida (1–20%) and Fragilariopsis
oceanica (2–24%) (well-known diatom species in sea ice; Poulin
et al., 2011; Ren et al., 2014) in the sediment trap material
(Lalande, unpublished data) confirms a sea ice origin for the major-
ity of sinking particles. The high contribution of ice diatoms to this
material is also supported by the strong dominance of palmitoleic
acid in TLEs (Fahl and Kattner, 1993). Ice algae appeared to be very
weakly degraded within the water column, with degradation per-
centages of palmitoleic acid of only 4.8%, 5.4%, and 4.3% in ice,
upper and deeper sediment traps, respectively. This relative
preservation is likely attributed to the poor physiological state of
bacterial communities associated with ice algae resulting from
salinity stress in brine channels (Amiraux et al., 2017).

Stereospecific allylic rearrangement of 10-hydroperoxyhexade-
c-8(E)-enoic acid (3) to 8-hydroperoxyhexadec-9(E)-enoic acid (4),
which appeared to be very limited in sea ice (Fig. 1a), acted very
intensively in sinking particles (Fig. 1b). The extent of this rear-
rangement increased with time (Porter et al., 1995), with higher
proportions of the 8-E isomer observed in sinking particles con-
firming the aging of the material collected in the sediment traps.

A significant increase of the proportion of 10-
hydroxyhexadecanoic acid (14) was observed in sinking particles
(Fig. 1, Tables 1 and 3) suggesting an enhancement in the activity
of hydratases within the water column. Interestingly, it was previ-
ously demonstrated that myosin cross-reactive antigen (MCRA)
proteins acting as a hydratase on 9(Z) double bonds of fatty acids,
play a role in adherence of bacteria (Volkov et al., 2010). Indeed,
free unsaturated fatty acids (and notably palmitoleic acid, Wille
and Kydonieus, 2003) are toxic for many bacteria due to their dele-
terious effect on bacterial cellular membranes (Greenway and
Dyke, 1979). They also inhibit enoyl-ACP reductase and thus dis-
rupt bacterial fatty acid synthesis (Zheng et al., 2005). Hydration
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of unsaturated fatty acids may thus represent a detoxification
mechanism in bacteria harboring MCRA enzymes. Such detoxifica-
tion could be essential for bacterial colonization and survival on
free fatty acid-rich environments such as ice algae (Falk-Petersen
et al., 1998). However, it may be noted that such enhancement of
hydratase activity was not previously observed in sinking particles
collected in spring 2012 at a landfast ice station in Resolute Pas-
sage (Nunavut, Canada) (Rontani et al., 2016), probably due to
the higher aggregation state of the ice algae (Amiraux et al.,
2017), resulting from an enhanced EPS content. In this case, the
presence of high amounts of EPS around ice algae cells could have
limited the toxicity of unsaturated fatty acids toward bacteria.

The intense Z/E isomerisation of palmitoleic acid observed in
the deeper sediment trap samples (Table 1) may result from the
involvement of thiyl radicals. Indeed, functionalised aliphatic thi-
ols (glutathione, methionine-containing proteins), which are pre-
sent in living organisms in considerable amounts (Ferreri et al.,
2005), are extraordinarily efficient antioxidants that protect the
cells against consequences of damage induced by free radicals
and hydroperoxides (Wlodek, 2002). However, this role as repair-
ing agents is counterbalanced by the formation of thiyl radicals,
which are efficient catalysts for Z/E isomerisation of lipids in bio-
logical membranes (Ferreri et al., 2005). Due to the presence of sig-
nificant amounts of hydroperoxyacids in sinking particles
(Table 1), an induction of Z/E isomerisation of palmitoleic acid by
thiyl radicals resulting from the reaction of thiols with these com-
pounds is therefore possible. However, the involvement of such an
isomerisation process is not supported by the very low E/Z ratios of
unsaturated fatty acids measured previously in highly photooxi-
dized sinking particles (with very high hydroperoxide contents)
collected in spring 2012 at a landfast ice station in Resolute
Passage (Nunavut, Canada) (Rontani et al., 2016).

Bacterial enzymatic reactions with unsaturated fatty acids con-
stitutes another possibility to explain Z/E isomerisation (Heipieper
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2

et al., 2003, 2007) (Fig. 5). Such an adaptive mechanism appears to
be an alternative way to regulate membrane fluidity when the
growth of bacteria is inhibited by toxic compounds or environmen-
tal stress (such as high salinity; Heipieper et al., 2003). The strong
isomerization of vaccenic acid observed previously in the sinking
particles investigated herein was thus attributed to salinity-
induced bacterial stress in brine channels during the early stages
of ice melting (Amiraux et al., 2017). However, it is generally con-
sidered that bacterial Z/E isomerase is the only enzymatic system
known to alter the double bond stereochemistry of phospholipids,
whereas such enzymatic isomerisation is unknown for eukaryotes
(Ferreri et al., 2005). Consequently, enzymatic isomerisation of
palmitoleic acid (arising mainly from algal material in sinking par-
ticles) cannot be occurring in ice algae. Moreover, due to the loca-
tion of the Z/E bacterial isomerase in the periplasm and its
hydrophilic properties (Heipieper et al., 2003, 2007), an activity
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Table 2
Substrate specificity of diol synthase.

Substrate Diol synthase
activity

Product Diol formation

10-Hydroperoxyhexadec-8(E)-enoic acidc (3) + Threo 7,10-dihydroxyhexadec-8(E)-enoic acid (21) Between the peroxyl and the carboxyl groups
9-Hydroperoxyhexadec-10(E)-enoic acidc (2) � Threo 9,12-dihydroxyhexadec-10(E)-enoic acid (24) Between the peroxyl and the methyl groups
8-Hydroperoxyhexadec-9(E)-enoic acidc (4) +a Threo 8,11-dihydroxyhexadec-9(E)-enoic acid (22) Between the peroxyl and the methyl groups
8-Hydroperoxyhexadec-9(Z)-enoic acidc (6) � Threo 8,11-dihydroxyhexadec-9(Z)-enoic acid (23) Between the peroxyl and the methyl groups
11-Hydroperoxyhexadec-9(E)-enoic acidc (1) +a Threo 8,11-dihydroxyhexadec-9(E)-enoic acid (22) Between the peroxyl and the carboxyl groups
11-Hydroperoxyhexadec-9(Z)-enoic acidc (5) � Threo 8,11-dihydroxyhexadec-9(Z)-enoic acid (23) Between the peroxyl and the methyl groups

12-Hydroperoxyoctadec-10(E)-enoic acidd (25) + Threo 9,12-dihydroxyoctadec-10(E)-enoic acid (31) Between the peroxyl and the carboxyl groups
11-Hydroperoxyoctadec-12(E)-enoic acidd (26) � Threo 11,14-dihydroxyoctadec-12(E)-enoic acid (32) Between the peroxyl and the methyl groups
10-Hydroperoxyoctadec-11(E)-enoic acidd (27) +b Threo 10,13-dihydroxyoctadec-11(E)-enoic acid (33) Between the peroxyl and the methyl groups
10-Hydroperoxyoctadec-11(Z)-enoic acidd (28) � Threo 10,13-dihydroxyoctadec-11(Z)-enoic acid (34) Between the peroxyl and the methyl groups
13-Hydroperoxyoctadec-11(E)-enoic acidd (29) +b Threo 10,13-dihydroxyoctadec-11(E)-enoic acid (33) Between the peroxyl and the carboxyl groups
13-Hydroperoxyoctadec-11(Z)-enoic acidd (30) � Threo 10,13-dihydroxyoctadec-11(Z)-enoic acid (34) Between the peroxyl and the methyl groups

a Source of the diol not defined (from 8- or 11-hydroperoxide?).
b Source of the diol not defined (from 10- or 13-hydroperoxide?).
c Palmitoleic oxidation products.
d Vaccenic acid oxidation products.

Table 3
Relative importance (%) of degradation processes of palmitoleic acid in sea ice, sinking particle and surficial bottom sediment samples collected in Davis Strait.

Degradation processes Sea ice
(0–1 cm)

Sinking particles
(trap 2 m)

Sinking particles
(trap 25 m)

Surface sediment
(0–1 cm)

Autoxidation 12.3 5.7 9.3 19.2
Photooxidation 9.3 4.2 1.4 19.9
Enzymatic 10S-DOX oxidation 47.6 52.1 48.0 13.2
Enzymatic hydration 4.9 15.5 20.0 8.6
Epoxidation (peroxygenase and autoxidation) 25.9 22.5 21.3 39.1
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of this enzyme on palmitoleic acid in diatoms to which the bacteria
are attached, is very unlikely, even in the case of lysis of both
organisms.
It may be noted that Z/E isomerisation of unsaturated fatty acids
can also be catalyzed non-enzymatically by Fe2+ ions (Holtwick
et al., 1997; Li and Han, 2008). The potential release of Fe2+ ions



during radical-induced damage of the active site of the bacterial
10S-DOX-like lipoxygenase (Fuch and Spiteller, 2014) and Z/E iso-
merase (a cytochrome C-type protein containing an ion Fe2+,
Holtwick et al., 1997) could thus be at the origin of the Z/E isomeri-
sation of palmitoleic acid in diatoms (Fig. 5).
4.3. Degradation of palmitoleic acid in superficial bottom sediments
from north of Davis Strait

The dominance of 10-hydroxyhexadec-8(E)-enoic acid (9) (aris-
ing from 10S-DOX-like lipoxygenase activity) among palmitoleic
acid oxidation products observed in the sediments investigated
(Fig. 1c) was also previously detected in several surficial sediments
collected in different zones of Arctic (Amiraux, 2017). It may be
attributed to a strong contribution of ice-derived OM released to
Arctic sediments during the first stage of ice melting and contain-
ing bacteria stressed by salinity. It is well known that the genera-
tion of radicals in the course of the lipoxygenase catalytic cycle can
act as a catalyst in autoxidation processes (Fuch and Spiteller,
2014). Moreover, when lipoxygenase activity becomes very high,
increasing amounts of free radicals may damage the active site of
these enzymes and release Fe2+ ions (Sato et al., 1992; Fuch and
Spiteller, 2014), which may very efficiently catalyze the reduction
of hydroperoxides to alkoxyl radicals (Schaich, 2005) and thereby
induce free radical oxidation chains. The increase of autoxidation
observed in surface sediments (Table 3) is thus likely initiated by
the 10S-DOX-like lipoxygenase activity present in sinking ice algae
(Amiraux et al., 2017).

In contrast, these sediments exhibit a higher proportion of pho-
tooxidation products of palmitoleic acid than the particles settling
during the early stages of ice melting (Table 3), suggesting the con-
tribution of an additional source of highly photooxidized sinking
material. Photooxidative damage is strongly dependent on the
physiological state of phototrophic cells (Nelson, 1993; Merzlyak
and Hendry, 1994). At the end of the ice melt process, downward
percolation of melt water strongly reduces the overall salinity in
brine channels, affecting the physiological state of ice algae and
increasing their susceptibility towards photooxidation (Amiraux
et al., 2017). A weak contribution of highly aggregated ice algae
settling during the end of ice melting, where palmitoleic photoox-
idation percentage was very high (mean value at 30 m: 60%;
Rontani et al., 2016) could thus explain the relatively high pho-
tooxidation state of palmitoleic acid observed in these sediments.
It was previously observed that strands of the under-ice diatom
Melosira arctica, which can cover up to 40–80% of the underside
of undisturbed ice floes (Syvertsen, 1991; Gutt, 1995) and contain
a high proportion of palmitoleic acid (Falk-Petersen et al., 1998),
are not used as food in the pelagic zone and sink rapidly to the sea-
floor (Boetius et al., 2013). A contribution of strongly photooxi-
dized M. arctica could thus also explain the high photooxidation
state of sedimentary palmitoleic acid. However, the high chloro-
phyll content measured in these algal deposits (Boetius et al.,
2013) (attesting to their very weak photooxidation state) allows
us to discard a significant contribution of this algal material to
the superficial bottom sediments analyzed. Despite its lower
aggregation and thus sedimentation rate, a weak contribution of
open water phytoplankton, which is strongly affected by photoox-
idation processes in summer in the Arctic (Rontani et al., 2012),
cannot be totally excluded.

The relatively similar palmitelaidic acid/palmitoleic acid ratios
observed in superficial bottom sediments and in the deeper sedi-
ment trap dominated by sympagic algae (Table 1) confirms the
strong contribution of sea ice-derived OM to bottom sediments, a
conclusion consistent with that derived following a previous anal-
ysis of vaccenic acid isomerisation in these samples (Amiraux et al.,
2017).

5. Conclusions

In the present work, we detected an intense 10S-DOX-like
lipoxygenase activity in sea ice, attributed to the involvement of
a specific bacterial enzymatic process under the hypersaline condi-
tions found in brine channels during the first stages of ice melting.
This enzymatic activity, well-known to produce radicals, is proba-
bly at the origin of the strong autoxidation of ice algal material
observed in the underlying sediments.

In the water column, the degradation of ice algal material
appeared to be very limited, probably due to the presence of bac-
teria stressed by salinity in the overlying sea ice or by the high free
fatty acid content of ice algae. The degradation of hydroperoxides
(arising from 10S-DOX-like lipoxygenase oxidation, photo- and
autoxidation in ice) involves peroxygenases, diol synthases,
hydroperoxide isomerases and abiotic processes (homolytic and
heterolytic cleavages, allylic rearrangement). The increasing hydra-
tase activity (a well-known detoxification process in bacteria)
observed in sinking particles, which attests to the toxicity of free
unsaturated FA of ice algae toward their attached bacteria, consti-
tutes another explanation of the relative preservation of ice algae
within the water column. Z/E isomerization of palmitoleic acid
was observed in the deeper trap and in surface sediments and
was attributed to Fe2+ ions released during the degradation of
active sites of bacterial lipoxygenases and Z/E isomerases. These
ions could then enhance autoxidation of ice algal material in the
underlying sediments.

Comparison of the profiles of palmitoleic acid degradation prod-
ucts in superficial bottom sediments and in sinking particles
allowed us to propose ice algae settling during the early stages of
ice melting as important contributors to Arctic sediments. A
weaker contribution of ice algal material, strongly photooxidized
at the end of sea ice melting, also seems likely. Due to their strong
aggregation and low remineralizing potential, ice algae seem to
contribute more significantly than open water phytoplankton to
the export of carbon to Arctic sediments.
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