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The recent completion of their genome-sequencing programs [START_REF] Ivens | The genome of the kinetoplastid parasite, Leishmania major[END_REF][START_REF] Berriman | The genome of the African trypanosome Trypanosoma brucei[END_REF] also revealed that they exhibit an unusually high complement of kinesins, with 54 putative kinesins, of which five are undoubtedly related to the microtubule (MT)-depolymerizing kinesin-13 family ( [START_REF] Wickstead | A ''holistic'' kinesin phylogeny reveals new kinesin families and predicts protein functions[END_REF] and unpublished data). The first protein of this kinesin-13 family on which we focused was a mitotic-centromere-associated kinesin (MCAK)-like protein that, as expected, localized to the nucleus and was involved in mitosis [START_REF] Dubessay | Cell cycle-dependent expression regulation by the proteasome pathway and characterization of the nuclear targeting signal of a Leishmania major Kin-13 kinesin[END_REF]. The second one, also annotated as MCAK-like in the genome database GeneDB (http://www.genedb.org) and here termed LmjKIN13-2, is encoded by gene LmjF13.0130 (EMBL accession number CT005252.1). It is a 730 amino acid protein that contains the highly conserved kinesin motor domain in internal position (residues 40-356 according to Pfam, score 8.2e-112). The alignment of the motor-domain sequence with that of nine other kinesin-13 members revealed the conservation of residues and motifs previously identified as strictly specific of the kinesin-13 family and involved in their depolymerizing activity (Figure S1 in the Supplemental Data available online) [START_REF] Ogawa | A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops[END_REF][START_REF] Shipley | Structure of a kinesin microtubule depolymerization machine[END_REF], in particular the KVD site (here KLD) necessary for MT depolymerization and the KEC site apparently essential for binding to MTs. This clearly classifies this protein among kinesin-13 members and makes it different from previously identified flagellar kinesins-kinesin-II, the ubiquitous molecular-motor-driving anterograde intraflagellar transport (IFT) [START_REF] Rosenbaum | Intraflagellar transport[END_REF], and KLP1, essential for flagellar motility [START_REF] Yokoyama | Regulation of flagellar dynein activity by a central pair kinesin[END_REF]that both belong to other kinesin families and are also present in trypanosomatids. Surprisingly, however, the sequence of the ''neck'' domain of the protein, adjacent to the motor domain and considered to be conserved in kinesin-13s [START_REF] Ovechkina | K-loop insertion restores microtubule depolymerizing activity of a ''neckless'' MCAK mutant[END_REF], is not conserved here. Sequence alignments show that this supposedly family-specific neck sequence is not present in the two other kinesin-13s from protozoa that have been published [START_REF] Dubessay | Cell cycle-dependent expression regulation by the proteasome pathway and characterization of the nuclear targeting signal of a Leishmania major Kin-13 kinesin[END_REF][START_REF] Shipley | Structure of a kinesin microtubule depolymerization machine[END_REF], in the kinesin-13 from Chlamydomonas, or in the other kinesin-13s of Leishmania (Figure S1, unpublished data). A recent phylogenetic analysis of the kinesin superfamily could distinguish two groups in kinesin-13s: the ''animal-specific'' MCAK/KIF2 subfamily and the ubiquitous and more ''ancestral'' KIF24 subfamily [START_REF] Miki | Analysis of the kinesin superfamily: Insights into structure and function[END_REF]. All protistan members of the kinesin-13 family included in this phylogenetic study belong to the latter. Our own alignment of KIF24 with MCAK subfamily members again failed to identify a conserved neck sequence in KIF24 (not shown), suggesting that this feature is actually not part of the KIF24 subfamily.

The next most closely related family to kinesin-13s is the kinesin-8 family, which exhibits both a plus-enddirected MT-depolymerase activity and a translocation activity but does not possess the kinesin-13-specific motifs. Interestingly, whereas the less ''ancestral'' yeast Saccharomyces cerevisiae lacks kinesin-13 family members and hence appears to only rely upon kinesin-8s for MT depolymerization [START_REF] Walczak | Kinesin-8s: Motoring and depolymerizing[END_REF], L. major lacks kinesin-8 members [START_REF] Wickstead | A ''holistic'' kinesin phylogeny reveals new kinesin families and predicts protein functions[END_REF] but has more kinesin-13s-suggesting that different organisms have evolved varying strategies for performing similar cell-biological functions relying upon kinesins.

LmjKIN13-2 Localizes to the Flagellum

The LmjKin13-2 gene was introduced into the expression vectors pTH6nGFPc and pTH6cGFPn [START_REF] Dubessay | Cell cycle-dependent expression regulation by the proteasome pathway and characterization of the nuclear targeting signal of a Leishmania major Kin-13 kinesin[END_REF]. After transfection into L. major cells, both vectors are maintained episomally and allow the constitutive expression of a recombinant protein bearing the GFP either at the N-or the C-terminal end. Surprisingly, expression of both GFP-fused proteins allowed their visualization essentially at the distal tip and the basis of the flagellum and, when more pronounced, along the length of the flagellum, the cytoplasm being only slightly decorated (Figure 1, Movie S1). When we substituted the GFP with the less bulky c-Myc tag, the localization, revealed by immunofluorescence, proved similar, whether the tag was in the N-or C-terminal position (Figure S2). The recombinant protein was never observed at the nucleus level, particularly at the mitotic spindle (Figure S3), despite its primary annotation as an MCAK. Moreover, no phenotypic changes concerning mitosis or in vitro cellular growth were observed, in L. major cells overexpressing the protein or in T. brucei cells subjected to RNAi (see below), strongly suggesting that LmjKIN13-2 is not involved in mitotic division.

LmjKIN13-2 Overexpression Induces Short-13 Flagellum Phenotypes

The second remarkable observation with this recombinant expression was that more than 90% of the cells exhibited a phenotype consisting of a significant reduction of the flagellar length (FL) (Figures 1, 2A, and2B). Thus, the FL in the mid-log growth phase was reduced to 52% and 70% of its value in the wild-type strain in the cell lines expressing LmjKIN13-2-GFPc and GFPn-LmjKIN13-2, respectively (p < 0.0001 in both cases) (Table S1). This was completed by a modification of the cell morphology, with a short, and often stumpy, cell body (Figure 1). Identical phenotypes were obtained with the c-Myc-tagged protein and, more importantly, with the nontagged full-length recombinant protein (Table S1). This shows that the phenotype was not caused by protein-function impairment due to end tagging. Also of note is the fact that flagellum motility was retained in the mutant cells (Movie S1). All these data strongly suggest that LmjKIN13-2 is a flagellar protein involved in FL control.

Flagella are dynamic organelles that undergo continuous turnover [START_REF] Marshall | Intraflagellar transport balances continuous turnover of outer doublet microtubules: Implications for flagellar length control[END_REF]. FL is thought to be primarily controlled through changes in the ratio of IFT-dependent tubulin assembly versus disassembly and hence through the regulation of IFT [START_REF] Marshall | Cellular length control systems[END_REF][START_REF] Marshall | Intraflagellar transport balances continuous turnover of outer doublet microtubules: Implications for flagellar length control[END_REF][START_REF] Rosenbaum | Organelle size regulation: Length matters[END_REF]. This model was supported by the short-flagellum phenotypes obtained a variety of systems including trypanosomes, after mutations affecting IFT proteins (reviewed in [START_REF] Scholey | Intraflagellar transport[END_REF][START_REF] Kohl | Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes[END_REF]). Nevertheless, this does not preclude a complementary regulation model, also partly supported by the analysis of shortflagellum mutants [START_REF] Erdman | Interacting protein kinases involved in the regulation of flagellar length[END_REF][START_REF] Asleson | Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: A new longflagella locus and extragenic suppressor mutations[END_REF][START_REF] Cuvillier | LdARL-3A, a Leishmania promastigote-specific ADPribosylation factor-like protein, is essential for flagellum integrity[END_REF][START_REF] Marshall | Size control in dynamic organelles[END_REF][START_REF] Berman | A novel MAP kinase regulates flagellar length in Chlamydomonas[END_REF][START_REF] Wiese | Protein kinase involved in flagellar-length control[END_REF][START_REF] Wilson | Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii[END_REF][START_REF] Bengs | LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana[END_REF] and based on a signaling pathway yet to be identified (see below). Here, we report the effect of a protein that, being a kinesin-13, can directly promote flagellar disassembly by catalyzing MT depolymerization [START_REF] Wordeman | Microtubule-depolymerizing kinesins[END_REF].

Flagellum Shortening Is Due to the Depolymerizing Activity of LmjKIN13-2 All members of the kinesin-13 family that could be tested to date, and particularly their representative members, XKCM1 in Xenopus [START_REF] Desai | Kin I kinesins are microtubule-destabilizing enzymes[END_REF][START_REF] Kline-Smith | The microtubuledestabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells[END_REF] and MCAK in mammals [START_REF] Wordeman | Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis[END_REF][START_REF] Hunter | The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATPhydrolyzing complex at microtubule ends[END_REF], have been shown to effectively depolymerize MTs in vitro. The same has been found for the protozoan PfKinI of Plasmodium falciparum [START_REF] Shipley | Structure of a kinesin microtubule depolymerization machine[END_REF] as well as for the mammalian KIF2A, which apparently plays a nonmitotic role in the development of the nervous system by suppressing extension of superfluous branches at the cell edge of postmitotic neurons [START_REF] Homma | Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension[END_REF]. In the kinesin-13 family, at least two class-specific motifs have been described within the motor domain as essential for MT-depolymerizing activity. The most significant one is the KVD finger. Mutational studies on the PfKinI catalytical core, exchanging KVD for three alanine residues, completely abolished depolymerizing activity, whereas the ATPase and MT-binding activities were intact. A second class-specific set of residues, the KEC motif, was also shown to be essential for depolymerization through MT binding [START_REF] Shipley | Structure of a kinesin microtubule depolymerization machine[END_REF].

We therefore mutagenized these two sites in LmjKIN13-2 and expressed the mutant proteins as GFP-fusion proteins in L. major. The replacement of the first motif (here KLD, position 75 of the motor domain [MD]) by three alanines was sufficient to restore wildtype morphology (Figures 2C and3A, Table S1). This mutation also caused the loss of of the mutated protein in the flagellum, this protein being located only at the flagellar base. Alanine replacement in the KEC motif (position 292 of the MD) partially restored the wild-type phenotype and gave the same localization as the KLD mutation (Figure 3B, Table S1). With each of these mutations, the flagellum was significantly longer than the short-flagellum phenotype caused by the expression of the full-length recombinant kinesin (p < 0.0001). These results show that MT depolymerization is the basis for the observed effect of LmjKIN13-2 on FL.

Because the neck of kinesin-13s is known to be essential for efficient MT depolymerization in mammalian MCAKs [START_REF] Ogawa | A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops[END_REF][START_REF] Ovechkina | K-loop insertion restores microtubule depolymerizing activity of a ''neckless'' MCAK mutant[END_REF], we also constructed a mutant where most of the N-terminal part of LmjKIN13-2 (residues 1-30) was deleted. A GFP-fused version of this mutant localized to the flagellum like the full-length recombinant LmjKIN13-2 (not shown), and its overexpression also yielded a short-flagellum phenotype (Table S1). This suggests that, as suspected for P. falciparum PfKinI [START_REF] Moores | A mechanism for microtubule depolymerization by KinI kinesins[END_REF], this domain may not be essential for the depolymerizing activity of this kinesin-a hypothesis that might apply to other ''ancestral'' kinesin-13s of the KIF24 subfamily.

RNAi Knockdown of the Ortholog of LmjKIN13-2 Induces an Increase in Flagellar Length RNA interference (RNAi) is not functional in Leishmania but is efficient in T. brucei. Therefore, we constructed an RNAi vector to inhibit the expression of Tb11.02. 2260, the exact ortholog of LmjKIN13-2 in T. brucei (see Supplemental Data). From 4 days of induction, a significant increase of the mean FL was observed as compared with noninduced transformants (Figure 4). No in vitro cell-growth impairment was noted (not shown). In order to control for possible off-target effects of the RNAi, we performed a second RNAi experiment directed to another portion of the gene that does not overlap with the portion used in the first experiment. A similar FL increase was then obtained (Figure S4). These data strongly suggest that LmjKIN13-2 activity is present at steady state and therefore coexists with constitutive disassembly as well as IFT in a complex FL-control process. This also supposes some degree of regulation of this activity in order to maintain a balance between shortening and lengthening of the flagellum.

Long-flagellum phenotypes have been reported previously, essentially following mutations of protein-kinase genes [START_REF] Erdman | Interacting protein kinases involved in the regulation of flagellar length[END_REF][START_REF] Asleson | Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: A new longflagella locus and extragenic suppressor mutations[END_REF][START_REF] Berman | A novel MAP kinase regulates flagellar length in Chlamydomonas[END_REF][START_REF] Wilson | Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii[END_REF][START_REF] Bengs | LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana[END_REF]. Thus, the alternative model of FL control exposed above has gained support from the identification of a MAP-kinase cascade where loss of function yielded flagella of altered length, particularly in Leishmania [START_REF] Erdman | Interacting protein kinases involved in the regulation of flagellar length[END_REF][START_REF] Berman | A novel MAP kinase regulates flagellar length in Chlamydomonas[END_REF][START_REF] Wiese | Protein kinase involved in flagellar-length control[END_REF][START_REF] Bengs | LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana[END_REF]. Similar data have been obtained in Chlamydomonas with a NIMA-related kinase that was found to regulate FL by promoting flagellar disassembly [START_REF] Bradley | A NIMA-related kinase, Cnk2p, regulates both flagellar length and cell size in Chlamydomonas[END_REF]. Nevertheless, the substrates of these kinases remain unknown. Kinesins are well known to be subject to regulation via specific phosphorylation events [START_REF] Wordeman | Microtubule-depolymerizing kinesins[END_REF]. Hence, although this remains speculative, a future working hypothesis would be that LmjKIN13-2 be a substrate of such a regulating cascade.

The data presented here are novel in two ways. They are the first report of an MCAK-like protein localized to a eukaryotic flagellum. More importantly, they also constitute the first report of an effector protein that would be directly involved in the process of FL control, through the depolymerization of axoneme MTs. Obviously, more data need to be gathered before a complete picture of the part played by this protein in FL regulation emerges-e.g., its interactions with other known flagellar proteins or whether it is truly involved in a feedback system. Still, kinesin-13 family members are ubiquitous proteins with a conserved MT-depolymerizing function in almost all eukaryotes studied to date. Kinesin LmjKIN13-2 might thus be one of the missing pieces in the FL-regulation puzzle. Indeed, our data do not contradict but complement the existing FL-control models [START_REF] Marshall | Cellular length control systems[END_REF][START_REF] Rosenbaum | Organelle size regulation: Length matters[END_REF] in an aspect based upon a direct intervention in MT dynamics.

Supplemental Data

Experimental Procedures, four figures, one table, and one movie are available at http://www.current-biology.com/cgi/content/full/17/9/ 778/DC1/. 

Figure 1 .

 1 Figure 1. LmjKIN13-2 Shows an Unusual Localization at the Flagellum and Induces Short-Flagellum Phenotypes (A) Typical morphology of a wild-type L. major ''Fiedlin'' promastigote cell in log-phase growth viewed in phase-contrast microscopy. The scale bar represents 10 mm. (B) Images of L. major cells expressing LmjKIN13-2-GFPc (the protein fused to GFP at its C-terminal end) viewed in fluorescence (left) and phase-contrast (right) microscopy. LmjKIN13-2-GFPc (green) localizes essentially at the flagellum. The nucleus (N) and the kinetoplast (K), which is the single mitochodrial DNA located near the basal body of the flagellum, are stained with DAPI (blue). The mutant cells exhibit demonstrative morphological phenotypes, with a shortened flagellum and a short and often ovoid cell body, as well as, in some cells, an elongation of the posterior end (thick arrowhead). The scale bar represents 10 mm. (C) Images of L. major cells expressing GFPn-LmjKIN13-2. Phenotypes in this line were similar to those observed in (B). The cells exhibiting the most intense flagellar fluorescence were mainly predividing and dividing cells (visible here from the presence of the nascent daughter flagellum, nf). N indicates the nucleus and K indicates the kinetoplast. The scale bar represents 10 mm.

Figure 2 .

 2 Figure 2. Histograms of Flagellar Lengths in Wild-Type and Mutant L. major Promastigote Cells (A) Wild-type Friedlin cell line. The abscissa shows groups of flagellar lengths in microns and the ordinate shows the number of cells as percentages. Typically, 200 flagella were measured for each cell line. All flagella were measured at the same stage of growth (see Supplemental Data). (B) Transformant cloned cell line expressing LmjKIN13-2-GFPc, showing a very high proportion of short flagella. (C) Transformant cloned cell line expressing LmjKIN13-2-GFPc mutated at the KLD site (DKLD/AAA), showing restoration of the wildtype phenotype.

Figure 3 .

 3 Figure 3. Mutations of LmjKIN13-2 at the KLD and KEC Sites Restore the Wild-Type Phenotype (A) Images of L. major cells expressing LmjKIN13-2-GFPc mutated at the KLD site (DKLD/AAA) viewed in phase-contrast (left) and fluorescence (right) microscopy. Promastigotes exhibit typical wild-type long flagella and slender cell bodies. LmjKIN13-2-GFPc (green) did not decorate the flagellum but instead showed a cytoplasmic localization with preferential accumulation at the anterior pole of the cell. K indicates the DAPI-stained (blue) kinetoplast DNA and N indicates DAPI-stained nucleus. The scale bar represents 10 mm. (B) Images of L. major cells expressing LmjKIN13-2-GFPc mutated at the KEC site (DKEC/AAA). The wild-type morphology appeared to be restored, and the phenotype is as in (A). A loss of localization at the flagellum was also noted. The scale bar represents 10 mm.

Figure 4 .

 4 Figure 4. RNAi Knockdown of the Ortholog of LmjKIN13-2 in Trypanosoma brucei Induces Flagellar Lengthening (A) Histogram of flagellar lengths in tetracyclin-induced (black bars) and noninduced (white bars) T. brucei transfected procyclic cells. Abscissa and ordinate are as in Figure 2. The flagellar measurements shown here were made after 6 days of induction. Two hundred cells were examined for each experimental condition. The mean flagellar lengths for tetracyclin-induced versus noninduced transformants were 22.5 6 2.9 mm and 19.3 6 2.7 mm (p < 0.0001). (B) Northern-blot analysis of RNAi of Tb11.02.2260, the ortholog of LmjKIN13-2, in T. brucei procyclic cells. Total RNA (10 mg/lane) isolated from transfected procyclic cells grown in the absence (2) or presence (+) of tetracyclin (1 mg/ml) for 5 days was electrophoresed, blotted, and probed at high stringency with a 454 bp and a 653 bp DNA fragment of the Tb11.02.2260 gene (kinesin-13, top) and the T. brucei GPI8 anchor-subunit gene Tb10.61.3060 (control, bottom), respectively.

Acknowledgments M.T. is a recipient of a fellowship from the French Ministry of National Education and Research (MENESR). We thank Fre ´de ´ric Bringaud (Universite Victor Segalen Bordeaux 2) for providing the T. brucei 29-13 cell line as well as advice for the RNAi. We acknowledge TrypanoFAN (director Mark Field) through whom we were able to get the RNAi vector. We also wish to thank Keith Gull (University of Oxford) for his generous gift of monoclonal antibodies KMX and ROD-1. We are finally grateful to Gilles Labesse (Centre de Biologie Structurale, Institut National de la Sante ´et de la Recherche Me ´dicale U554, Montpellier) for the bioinformatic analysis of LmjKIN13-2 and to Juliette Van Dijk (Centre de Recherche en Biochimie Macromole

´culaire, Centre National de Recherche Scientifique, Montpellier) for fruitful discussions.