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In this paper, the problem of the blind separation of complex-valued Satellite-AIS data for marine surveillance is addressed. Due to the specific properties of the sources under consideration: they are cyclo-stationary signals with two close cyclic frequencies, we opt for spatial quadratic time-frequency domain methods. The use of an additional diversity, the time delay, is aimed at making it possible to undo the mixing of signals at the multi-sensor receiver. The suggested method involves three main stages. First, the spatial generalized mean Ambiguity function of the observations across the array is constructed. Second, in the Ambiguity plane, Delay-Doppler regions of high magnitude are determined and Delay-Doppler points of peaky values are selected. Third, the mixing matrix is estimated from these Delay-Doppler regions using our proposed non-unitary joint zero-(block) diagonalization algorithms as to perform separation.

INTRODUCTION

This paper concerns the spatial automatic identification system (S-AIS) dedicated to marine surveillance by satellite. It covers a larger area than the terrestrial automatic identification system [START_REF] Tetreault | Use of the automatic identification system (ais) for maritime domain awareness (mda)[END_REF], [START_REF]International Association of Maritime Aids to Navigation and Lighthouse Authorities (IALA), IALA guidelines on the universal automatic identification system (AIS)[END_REF]. The idea of switching to satellite monitoring was introduced because of the fast and dynamic development of the marine traffic [START_REF] Høye | Space-Based AIS Reception for Ship Identification[END_REF][START_REF] Wahl | New possible roles of small satellites in maritime surveillance[END_REF][START_REF] Eriksen | Maritime traffic monitoring using a space-based ais receiver[END_REF]. It was an emergency to adopt a method that operates a global monitoring with reliability, efficiency and robustness. However, this generalization to space involves several phenomena. Among these phenomena, we found:

1. The speed of the satellite movement generates the Doppler effect which creates frequency offsets at the S-AIS signals [START_REF] Burzigotti | Advanced receiver design for satellite-based ais signal detection[END_REF],

2. The propagation delay of the signals and their attenuation due to the satellite altitude [START_REF]Improved Satellite Detection of AIS[END_REF],

3. When a wide area is covered by the satellite, it certainly includes several traditional AIS cells. In fact, the time propagation of signals transmitted from vessels to the satellite vary according to the position of the Journal Homepage: http://www.iaescore.com/journals/index.php/IJECE IJECE ISSN: 2088-8708 1733 ships and the maximum coverage area of the satellite antenna. Due to these two problems, it mainly affects the organizational mechanism of S-AIS signals. It results a collision data, as illustrated in the Figure 1, issued by vessels located in different AIS cells but received at the antenna of the same satellite [START_REF] Tunaley | An analysis of ais signal collisions[END_REF], [START_REF] Yang | Collision and detection performance with three overlap signal collisions in space-based ais reception[END_REF].

For this reason, we present new approaches to address this problem where the Doppler effect and the propagation delay are also taken into consideration. In fact, to solve the collision problem, few works have focused on blind separation of sources (BSS) methods [START_REF] Prevost | Interference mitigation and error correction method for ais signals received by satellite[END_REF], [START_REF] Zhou | Multi-user leo-satellite receiver for robust space detection of ais messages[END_REF]. In [START_REF] Zhou | Multi-user leo-satellite receiver for robust space detection of ais messages[END_REF], Zhou et al. present a multi-user receiver equipped with an array of antennas embedded in Low Orbit Earth (LEO) satellite. The principle of this receiver is to exploit spatial multiplexing in a nonstationary asynchronous context. Indeed, the authors consider the equation below:

X = HG (S Φ) + N, (1) 
where is the Schur-Hadamard operator, X = [x 1 , x 2 , . . . ,

x P N ] ∈ C M ×P N , x n = x(nT s ), 1 ≤ n ≤ P N , is the observation matrix, H = [h 1 , . . . , h d ] ∈ C M ×d is the matrix of antenna response, G = diag{g 1 , g 2 , . . . , g d } ∈ R d×d contains the power of the sources, S = [s H 1 , s H 2 , . . . , s H d ] H ∈ C d×P N
is the matrix of sources and

Φ =      1 ϕ 1 1 . . . ϕ P N -1 1 1 ϕ 1 2 . . . ϕ P N -1 2 . . . . . . . . . . . . 1 ϕ 1 d . . . ϕ P N -1 d     
, where ϕ k = e j2π∆f k Ts contains the Doppler frequencies of the sources.

The principle of this method is based on joint diagonalization (JD) of matrices in order to reconstruct the S-AIS sources from separation matrix estimation [START_REF] Van Der Veen | An analytical constant modulus algorithm[END_REF]. However, because of the very specific properties of the S-AIS signals (complex and cyclo-stationary with two close cyclic frequencies), we opt for spatial quadratic time-frequency domain methods. Our aim is reshaping the collision problem into BSS problem more simpler than (1). We will show how another type of decomposition matrix named joint zero-diagonalization (JZD) of matrices set resulting from spatial quadratic time-frequency distributions allows the restitution of S-AIS sources.

TRANSMISSION SCHEME 2.1. AIS Frame

The AIS frame is a length of 256 bits and occupies one minute. It is divided into 2250 time slots where one slot equals 26.67 ms [START_REF] Chang | Study of ais communication protocol in vts[END_REF]. Its structure as illustrated in Figure 2 contains a training sequence (TS) consisting zero and one which takes 24 bits. The start flag (SF) and the end flag (EF) for information takes 8 bits. A Frame ISSN: 2088-8708 Check Sequence (FCS) (or 16 bits Cyclic Redundancy Code (CRC)) is added to the data information (168 bits) in which a zero is inserted after every five continuous one. The binary sequence {a k } 0≤k≤K of the AIS frame takes the values {-1, +1} since the NRZI encoding is used. Moreover, the modulation specified by S-AIS standard is Gaussian Minimum Shift Keying (GMSK) [START_REF] Linz | Efficient implementation of an i-q gmsk modulator[END_REF]. The encoded message is modulated and transmitted at 9600 bps on 161.975 MHz and 162.025 MHz frequencies carrier. 

GMSK modulation

The resulting sequence after the bit stuffing and NRZI coding procedure is modulated with GMSK which is a frequency-shift keying modulation producing constant-envelope and continuous-phase. Hence, the signal can be written as s g (t) = +∞ k=0 a k g(t -kT s ), where a k are the transmitted symboles, T s is the symbol period and g(t) = 2π log 2 B exp -2 log 2 (πBt) 2 represents the shaping Gaussian filter where B is the bandwidth of the Gaussian filter. The GMSK modulation is described by the bandwidth-time (BT) product where S-AIS uses BT= 0.4 and T s = 1 9600 s). Making the signal on one of the frequencies carrier f c , produces a signal of spectral characteristic which is adapted to the band-pass channel transmission. The GMSK signal is, thus, expressed as : s(t) = {e -j(2πfct+φ(t)) } = I(t) cos(2πf c t) -Q(t) sin(2πf c t), where {•} is the real part of a complex number, φ(t) = 2πh +∞ k=0 a k g(t -kT s ) is the instantaneous phase of s g (t) where, in the AIS system, the modulation index is theoretically equal to h = 0.5 [START_REF] Prevost | Joint phase-recovery and demodulation-decoding of ais signals received by satellite[END_REF], I(t) (resp. Q(t)) modulates the frequency carrier in phase (resp. in phase quadrature). All steps of the GMSK modulation can be presented in the Figure 3.
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Figure 3. GMSK modulator scheme.

PROBLEM STATEMENT: COLLISION & BSS IN INSTANTANEOUS CONTEXT 3.1. Mathematical model of collision problem

The collision problem can be simply expressed as follows:

x(t) = J j=1 h j s j (t -τ j ) e -i2π∆fj t + n(t), (2) 
IJECE Vol. 9, No. where x(t) is the received signal by the satellite, s j is the transmitted signal by the j -th vessel, h j , τ j and ∆f j are respectively the coefficients of the channel, the delay and the Doppler shift corresponding to the j -th vessel with J is the number of vessels and n(t) is an additive stationary white Gaussian noise, mutually uncorrelated, independent from the s j , with the variance σ 2 n .

Reshape the collision problem into BSS problem

We show, here, that (2) can be written in BSS nomenclature in which the delay and the Doppler shift caused by the satellite speed are considered. However, before any reformulation, we notice that the mixing matrix considered for S-AIS application is an instantaneous mixture due to the absence of obstacles in the ocean. Thus, we set J = n, the collision problem can be easily modeled in a BSS problem as follows:

x(t) = Hs(t) + n(t), (3) 
where

H is a (m × n) mixing matrix, s(t) = [s 1 (t), s 2 (t), . . . , s n (t)] T is a (n × 1) sources vector with s j (t) = s j (t-τ j ) exp{-i2π∆f j t}, ∀j = 1, . . . , n and x(t) = [x 1 (t), x 2 (t), . . . , x m (t)] T , n(t) = [n 1 (t), n 2 (t), . . . , n m (t)]
T are respectively the (m × 1) observations and noises vectors. The superscript (.) T denotes the transpose operator.

Our developments are based on the following assumptions: Assumption A: The noises n j (t) for all j = 1, . . . , m are stationary, white, zero-mean, mutually uncorrelated random signals and independent from the sources with variance σ 2 n . Assumption B: For each s j of the n sources, there Delay-Doppler points of only one source is present in the Ambiguity plane. Assumption C: The number of sensors m and the number of sources n are both known and m ≥ n to deal with an over-determined model (the under-determined case is outside of the scope in this paper).

PRINCIPLE OF THE PROPOSED METHODS BASED ON THE SPATIAL GENERALIZED MEAN AMBIGUITY FUNCTION

We show, here, how the algorithms proposed in [START_REF] Cherrak | Non-unitary joint zeroblock diagonalization of matrices using a conjugate gradient algorithm[END_REF], [START_REF] Cherrak | Nouvel algorithme de zéro-bloc diagonalisation conjointe par approche de levenberg-marquardt[END_REF] adresses the problem of the separation of instantaneous mixtures of S-AIS data. The principle of the proposed methods are based on three main steps: first, the SGMAF of the observations across the array is constructed. Second, in the Ambiguity plane, Delay-Doppler regions of high magnitude are determined and Delay-Doppler points of peaky values are selected. Third, the mixing matrix is estimated from these Delay-Doppler regions so as to perform separation and to undo the mixing of signals at the multi-sensor receiver.

The Spatial Generalized Mean Ambiguity Function

With regard to BSS, it has been shown that spatial time-frequency distributions are an effective tool when signature of the sources differ in certain points of the time-frequency plan [START_REF] Belouchrani | Blind source separation based on time-frequency signal representations[END_REF]. However, in the cyclo-stationary sources case, the Delay-Doppler frequency domain seems to be a more natural field for the re-estimation of sources than the time-frequency domain. As mentioned in [START_REF] Amin | Blind time-frequency analysis for source discrimination in multisensor array processing[END_REF], the approaches based on information derived from spatial Ambiguity function (SAF) or on SGMAF should be used. In fact, for any vectorial complex signal z(t), the SGMAF is expressed as [START_REF] Hlawatsch | Temps-fréquence et traitement statistique[END_REF][START_REF] Kozek | On the transfer function calculus for underspread ltv channels[END_REF][START_REF]Matched weyl-heisenberg expansions of nonstationary environments[END_REF]:

Āz (ν, τ ) = ∞ -∞ r z (t, τ )e -j2πνt dt = E { z, s τ,ν z } , (4) 
where (s τ,ν z) is the operator of elementary Delay-Doppler translations of z defined by

(s τ,ν z)(t) = z (t -τ ) e j2π(t-τ )ν and r z (t, τ ) = R z t + τ 2 , t -τ 2 = E z t + τ 2 z H t -τ 2 
, where R z (t, τ ) stands for the correlation matrix of z(t), E {.} stands for the mathematical expectation operator and superscript (.)

H denotes the conjugate transpose operator. Āz (ν, τ ) characterizes the average correlation of all pairs separated by τ in time and by ν in frequency [START_REF] Kozek | On the transfer function calculus for underspread ltv channels[END_REF], [START_REF]Matched weyl-heisenberg expansions of nonstationary environments[END_REF]. Notice that the diagonal terms of the matrix Āz (ν, τ ) are called auto-terms, while the other ones are called cross-terms.
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Selection of peaky Delay-Doppler points

Under the linear data model in (3), the SGMAF of observations across the array at a given Delay-Doppler point is a (m × m) matrix admits the following decomposition:

Āx (ν, τ ) = H Ās (ν, τ )H H + Ān (ν, τ ), = H Ās (ν, τ )H H + R n (τ ), (5) 
where Ās (ν, τ ) represents the (n × n) SGMAF of sources defined similarly to Āz (ν, τ ) in ( 4) and

R n (τ ) = σ 2 n α(τ )I m with α(ν) = ∞ -∞ e -j2πνt
dt and I m is the m × m identity matrix. It is known that the matrix Ās (ν, τ ) for any τ and ν has no special structure. However, there are some Delay-Doppler points where this matrix has a specific algebraic structure :

• Diagonal, for points where each of them corresponds to a single auto-source term for all source signals,

• Zero-diagonal for points where each of them correspond to all two by two cross-source term (this structure is exploited because the signature of the sources differ in certain points of the Delay-Doppler plan on the zero-diagonal part (as shown in section 5.).

Our aim is to take advantage of these properties of the Āx (t, ν) in ( 5) since the element of this is no more (zero) diagonal matrices due to the mixing effect in order to estimate the separation matrix B (the pseudo-inverse of matrix H) and restore the unknown sources. We use the detector suggested in [START_REF] Fadaili | Nonorthogonal joint diagonalization/zero diagonalization for source separation based on time-frequency distributions[END_REF] (denoted C Ins ) for the instantaneous mixture considered without pre-whitening of the observations. The idea is to find "useful" Delay-Doppler points which consists in keeping Delay-Doppler points with a sufficient energy, then using the rank-one property to detect single cross-source terms (we don't make any assumptions on the knowledge of cyclic frequencies) in the following way:

     Āx (t, ν) > 1 , λ max Āx (t, ν) Āx (t, ν) -1 > 2 , (6) 
where 1 , 2 are (sufficiently) small positif values and λ max {.} is the largest eigenvalue of a matrix.

Non-unitary joint zero-(block) diagonalization algorithms (NU -JZ(B)D)

The matrices belonging to the set M (whose size is denoted by N m (N m ∈ N * )) all admit a particular structure since they can be decomposed into H Ās (ν, τ )H H with Ās (ν, τ ) a zero-diagonal matrix with only one non null term on its zero-diagonal. One possible way to recover the mixing matrix B is to directly joint zerodiagonalize the matrix set M. It has to be noticed that the recovered sources (after multiplying the observations vector by the estimated matrix B) are obtained up to a permutation (among the classical indetermination of the BSS). Hence, two BSS methods can be derived. The first called JZD CG DD algorithm based on conjugate gradient approach [START_REF] Cherrak | Non-unitary joint zeroblock diagonalization of matrices using a conjugate gradient algorithm[END_REF]. The second JZD LM DD algorithm based on Levenbreg-Marquardt scheme [START_REF] Cherrak | Nouvel algorithme de zéro-bloc diagonalisation conjointe par approche de levenberg-marquardt[END_REF].

To tackle that problem, we propose here, to consider the following cost function [START_REF] Cherrak | Non-unitary joint zeroblock diagonalization of matrices using a conjugate gradient algorithm[END_REF], [START_REF] Cherrak | Nouvel algorithme de zéro-bloc diagonalisation conjointe par approche de levenberg-marquardt[END_REF],

C ZBD (B) = Nm i=1 Bdiag (n) {BM i B H } 2 F
, where the matrix operator Bdiag (n) {.} is defined as follows:

Bdiag (n) {M} =     M 11 0 12 . . . 0 1r 0 21 M 22 . . . 0 2r . . . . . . . . . . . . 0 r1 0 r2 . . . M rr     ,
where M is a N × N (N = n(L + L ) where L is the order of the FIR filter and L is the number of delays considered when the convolutif mixture is considered) square matrix whose block components M ij for all i, j = 1, . . . , r are n i × n j matrices (and n 1 + . . . + n r = N ) denoting by n = (n 1 , n 2 , . . . , n r ). Note that when L = 0, L = 1 we find the instantaneous model since Āx are no more matrices but scalars. Thus, it leads to the minimization of the following cost function: IJECE ISSN: 2088-8708 1737

C ZD (B) = Nm i=1 Diag{BM i B H } 2 F , (7) 
where M i = Āx i is the i -th of the N m matrices belonging to M. We suggest to use conjugate gradient and Levenberg-Marquardt algorithms [START_REF] Cherrak | Non-unitary joint zeroblock diagonalization of matrices using a conjugate gradient algorithm[END_REF], [START_REF] Cherrak | Nouvel algorithme de zéro-bloc diagonalisation conjointe par approche de levenberg-marquardt[END_REF] to minimize the cost function given by Equation . [START_REF]Improved Satellite Detection of AIS[END_REF] in order to estimate the matrix B ∈ C n×m . It means that B is re-estimated at each iteration m (denoted B (m) or b (m) when the vector b (m) = vec B (m) is considered). The matrix B (or the vector b) is updated according to the following adaptation rule for all m = 1, 2, . . .

Conjugate gradient approach

b (m+1) = b (m) -µ (m) d (m) B , d (m+1) B = -g (m+1) + β (m) d (m) B , ( 8 
)
where µ is a positive small factor called the step-size, d B is the direction of search, β is an exact line search and [START_REF] Cherrak | Non-unitary joint zeroblock diagonalization of matrices using a conjugate gradient algorithm[END_REF] how the optimal step-size µ opt , ∇ a C ZD (B)

g = vec (∇ a C ZD (B)) is the vectorization of the complex gradient matrix G = ∇ a C ZD (B) = 2 Nm i=1 [Diag{BM i B H }BM H i + Diag{BM i B H } H BM i (see the proof provided in
and β are calculated at each iteration).

Levenberg-Marquardt approach b (m) = b (m-1) -H (m-1) e + λI m 2 -1 g (m-1) , (9) 
where [.] -1 denotes the inverse of a matrix, λ is positive a small damping factor,

I m 2 is the m 2 × m 2 identity matrix, H e = H eB,B * = A00+A T 11 2 H eB * ,B * = A01+A T 01 2 H eB,B = A10+A T 10 2 H eB * ,B = H eB,B * T
is the Hessian matrix of C ZD (B) composed of four complex matrices with:

A 00 = M T i B T ⊗ I N T T Boff (B * M * i ⊗ I N ) + M * i B T ⊗ I N T T Boff B * M T i ⊗ I N + M * i ⊗ OffBdiag (n) {BM i B H } +M T i ⊗ OffBdiag (n) {BM H i B H } = A * 11 , (10) 
A 10 =K T N,M I N ⊗ M i B H T T Boff (B * M * i ⊗ I N ) + K T N,M I N ⊗ M H i B H T T Boff B * M T i ⊗ I N = A * 01 , (11) 
where the operator ⊗ denotes the Kronecker product, K N,M is a square commutation matrix of size N M × N M and T Boff = I N 2 -T Diag , is the N 2 × N 2 "transformation" matrix, with T Diag = diag{vec(BDiag{1 N })}, 1 N is the N × N matrix whose components are all ones, diag{a} is a square diagonal matrix whose diagonal elements are the elements of the vector a, I N 2 = Diag{1 N 2 } is the N 2 × N 2 identity matrix, and Diag{A} is the square diagonal matrix with the same diagonal elements as A.

Summary of the proposed methods

The proposed methods JZD CG DD and JZD LM DD combine the NU -JZD algorithms which are JZD CG and JZD LM together with the detector C Ins . Its principles are summarized below: Data: Consider the Nm matrices of set M : { Āx 1 , Āx 2 , . . . , Āx Nm }, stopping criterion , step-size µ (for conjugate gradient), max. number of iterations Mmax Result: Estimation of joint zero diagonalizer B initialize: B (0) ; λ (0) ; m = 0; D (0) (for conjugate gradient);

COMPUTER SIMULATIONS

Computer simulations are performed to illustrate the good behavior of the suggested methods and to compare them with the same kind of existing approach denoted by JZD Chabriel DD proposed in [START_REF] Chabriel | Algebraic joint zero-diagonalization and blind sources separation[END_REF] with the Delay-Doppler point C Ins detector. We consider m = 3 mixtures of n = 2 frames of 256 bits correspond to two vessels with different characteristics. The frames are generated according to the S-AIS recommendation as mentioned in the Figure 2 (see also [START_REF] Zhou | Multi-user leo-satellite receiver for robust space detection of ais messages[END_REF], [START_REF] Prevost | Interference mitigation and error correction method for ais signals received by satellite[END_REF]). These frames are encoded with NRZI and modulated in GMSK with a 

The real part and the imaginary part of their SGMAF is given on the left and on the right of the Figure 4 respectively. Then, the SGMAF of the observations x is then calculated by ( 5) and finally the 100 resulting SGMAF are averaged. We have chosen 1 = 0.07 and 2 = 0.08 for the detector C Ins in order to construct the set M to be joint zero-diagonalized. The signal-to-noise ratio SNR is defined by SNR = 10 log( 1

σ 2 N
) of mean 0 and variance σ 2 n . The selected Delay-Doppler points using the proposed detector are represented in the Figure 5 for SNR = 10 dB and 100 dB. To measure the quality of the estimation, the ensuing error index is used [START_REF] Moreau | A generalization of joint-diagonalization criteria for source separation[END_REF] :

The SGMAF of the source 1 

I(T) = 1 n(n -1)   n i=1   n j=1 T i,j 2 F max T i, 2 F -1   + n j=1   n i=1 T i,j 2 F max T ,j 2 F -1     , (13) 
where (T ) i,j for all i, j ∈ 1, . . . , n is the (i, j)-th element of T = BH. The separation is perfect when the error index I(•) is close to 0 in a linear scale (-∞ in a logarithmic scale). All the displayed results have been averaged over 30 Monte-Carlo trials. We plot, in the Figure 6, the evolution of the error index versus the SNR in order to emphasize the influence of this in the quality of the estimation. All algorithms are initialized using the same initialization suggested in [START_REF] Chabriel | Algebraic joint zero-diagonalization and blind sources separation[END_REF]. First, we can deduce from the Figure 4 that the diversity in the Delay-Doppler regions is obtained on the zero-diagonal part which supports the use of zero diagonalization algorithms. Then, our analysis are examined on the Figure 6 according to noiseless and noisy contexts . For the noiseless context (when SNR=100 dB), the JZD CG DD and JZD LM DD reach approximately -64 dB and -60 comparing with JZD Chabriel DD method which reaches -20 dB. From this comparison, we have checked the validity of the good behavior of JZD CG DD and JZD LM DD compared to the JZD Chabriel DD approach. Moreover, we observe that the JZD LM DD based on the computation of exact Hessian matrices is more efficient than the JZD CG DD approach. Even in a difficult (noisy) context (for example SNR=15 dB), we note that the best results are generally obtained using the JZD LM DD (-36 dB) then JZD CG DD (-33 dB) especially the JZD LM DD algorithm based on the computation of exact Hessian matrices. It may be concluded that the approaches exploiting the Delay-Doppler diversity of S-AIS signals seem rather promising. Due to its robustness to the noise, it seems to be able to solve the problem of BSS (i.e the collision problem) in a marine surveillance context. 

Figure 1 .

 1 Figure 1. Collision problem: The AIS signals from two different SO-TDMA cells received to the satellite antenna at the same time.

Figure 2 .

 2 Figure 2. AIS Frame.

4. 3 .

 3 Construction of M (set of Delay-Doppler matrices of the observations across the array at the chosen Delay-Doppler points)

ISSN 10 ,

 10 B (m+1) -B (m) 2 F ≤ ) ou (m ≥ Mmax)); Levenberg-Marquardt repeat Calculate g (m)Calculate the diagonal of He Calculate b (m+1) Calculate the error e(m) = 1 Nm C ZD (B (m+1) ) m = m + 1; if e (m) ≥ e (m-1) then λ (m) = λ (m-1) e (m) = e (m-1) else λ (m) = 10λ (m-1) end until (( B (m+1) -B (m) 2 F ≤ ) ou (m ≥ Mmax));bandwidth-bit-time product parameter BT= 0.4. The transmission bit rate is = 9600 bps and the order gaussian filter is OF= 21. The frequency carrier of the first source (resp. the second source) is 161.975 MHz (resp. 162.025 MHz), taking into account a delay of 10 ms and a Doppler shift of 4 kHz (resp. a delay of 0 ms and the Doppler shift of 0 Hz). These sources correspond to 1400 time samples which are mixed according to a mixture matrix H whose components stands for:

Figure 4 .

 4 Figure 4. Left : The SGMAF real part of the S-AIS sources. Right : The SGMAF imaginary part of the S-AIS sources.

Figure 5 .

 5 Figure 5. Delay-Doppler points selected with the detector C Ins . left : SNR=100 dB. right : SNR=10 dB.

Figure 6 .

 6 Figure 6. Comparison of the different methods: evolution of the error index I(T) in dB versus SNR.
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CONCLUSION

In this paper, we have shown that the blind source separation based on SGMAF can be performed. We have considered complex-valued S-AIS data for marine surveillance which can be received at the same time-slot in where the collision of these data is caused. In addition, it is presented that the collision problem can be reshaped into BSS problem. Moreover, it is shown that proposed BSS methods are established thanks to an automatic single cross-term selection procedure combined with two NU -JZD algorithms denoted Conjugate Gradient and Levenberg-Marquardt which are based on the minimization of a least-mean-square criterion. Finally, we deduced that the JZD LM DD and JZD CG DD offer the best performances even in noisy contexts. As perspective, a question needing analysis is to study more realistic and complex cases in which the number of S-AIS messages received at the antenna embedded in the satellite would be much higher and mixing models could also be considered.