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Abstract

Low costs, high reactivity and high quality products are necessary criteria for industries to achieve compet-

itiveness in nowadays market. In this context, reconfigurable manufacturing systems (RMSs) have emerged

to fulfill these requirements. RMS is one of the latest manufacturing paradigms, where machines compo-

nents, software or material handling units can be added, removed, modified or interchanged as needed and

when imposed by the necessity to react and respond rapidly and cost-e↵ectively to changing. This research

work addresses the multi-objective single-product multi-unit process plan generation problem in a reconfig-

urable manufacturing environment where three hybrid heuristics are proposed and compared namely: repet-

itive single-unit process plan heuristic (RSUPP), iterated local search on single-unit process plans heuristic

(LSSUPP) and archive-based iterated local search heuristic (ABILS). Single-unit process plans are gener-

ated using the adapted non-dominated sorting genetic algorithm (NSGA-II). Moreover, in addition to the

minimization of the classical total production cost and the total completion time, the minimization of the

maximum machines exploitation time is considered as a novel optimization criterion, in order to have high

quality products. To illustrate the applicability of the three approaches, examples are presented and the

obtained numerical results are analysed.

Keywords: Reconfigurable manufacturing system (RMS), process plan generation, multi-objective

optimization, NSGA-II, iterated local search.

1. Introduction

Manufacturing has always been a pilar of the global economy. In 2016, The World Bank Group stated

that manufacturing accounted for 17% of the global gross domestic product (GDP) (WorldBankGroup, 2016).

Today, customer satisfaction is a challenge for most manufacturing companies. Mass customization, a product

deployment concept that combines low price with extensive variation and adaptation, has emerged due to

its potential impact upon customer regarding the perceived value of the product (Tseng & Jiao, 2001).

Nevertheless, with the continuous demand for products incorporating new and complex functionalities, there

has been a lot of pressure on the manufacturing companies (ElMaraghy, 2008).



On the other hand, it is well known that, the dedicated manufacturing system/line (DMS/DML) involves

the production of one product at a time (Koren, 2010). Though it is cost e↵ective in the case of the bulk

production but lacks the variety. Where, flexible manufacturing system (FMS) involves production of variety

of products at the same time but it involves a lot of initial investments (Koren, 2010). A cost e↵ective response

to market changes requires a new manufacturing approach that not only combines the high throughput of

DML with flexibility of FMS, but also able to react to market changes quickly and e�ciently.

According to Koren , father of reconfigurable manufacturing systems (RMSs), DMLs are inexpensive but

their capacities are not fully utilized in several situations especially under the pressure of global competition,

thus they engender losses (Koren et al., 1999). Moreover, FMSs respond to product changes, but they are

not designed for structural changes. Hence, in both systems, a sudden market variation cannot be countered,

like demand fluctuation or regulatory requirements. RMS combines the high flexibility of FMS with the high

production rate of DML. It comprises the positive features of both systems, thanks to its adjustable structure

and design focus. Thus, in situations where both productivity and system responsiveness to uncertainties or

to unpredictable scenarios (e.g. machine failure, market change,...) are of a vital importance, RMS ensures

a high level of responsiveness to changes with a high performance. This can be achieved through six main

principles respectively customization, convertibility, scalability, integrability, modularity, and diagnosability.

Moreover, Koren suggested that in manufacturing systems, the key to responsiveness in markets as well as

to cope with changing market conditions that causes product demand and mix fluctuations, is to adjust the

production system capacity (Koren, 2006). He stressed that this adjustment is possible thanks to two types

of reconfiguration capabilities in manufacturing systems, which are functionality adjustment and production

capacity adjustment. These characteristics are achievable due to reconfigurable machine tool (RMT), which

is considered as one of the major components of RMS. With this reconfigurable structure, RMT provides

a customized flexibility and o↵ers a variety of alternatives features. However, planning, managing and

optimizing, in this context, are an-exponentially more complex tasks.

Recently, RMS became one of the most attractive research topics. Nevertheless, few works addressed the

multi-objective process plan generation problem in reconfigurable environments. Due to the lack of works on

this critical and challenging problem, in this paper, we consider the multi-objective multi-unit single-product

process plan generation problem. In addition to the minimization of the classical total production cost and

the total completion time, the minimization of the maximum machines exploitation time is considered as a

novel optimization criterion. It consists of minimizing the total processing time of the most used machine in

the process in order to prevent reliability issues and to have high quality products. To solve the problem,

we develop and compare three hybrid metaheuristics namely: repetitive single-unit process plan heuristic

(RSUPP), iterated local search on single-unit process plans heuristic (LSSUPP) and archive-based iterated

local search heuristic (ABILS). The developed approaches are inspired by a microscopical study of optimal

Pareto front solutions, generated with an iterative integer linear program for small instances of the problem.

The rest of the paper is organized as follows: Section 2 summarizes the related works to process plan
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generation for a RMS. Section 3 describes the problem under consideration. Section 4 presents the proposed

multi-objective mathematical formulation. Section 5 describes more in details the proposed three approaches.

Section 6 analyses the obtained numerical results. Section 7 concludes the paper with some future research

work directions.

2. Literature Review

Reconfigurable manufacturing system is a paradigm that answers many of the challenges that the market

nowadays imposes. Therefore, it has been a very active research field where multiple state of the arts have

been dedicated covering many areas, such as design, layout optimization, reconfigurable control, process

planning and production scheduling (Huang et al., 2019; Prasad & Jayswal, 2018; Moghaddam et al., 2018;

Gadalla & Xue, 2018; Bortolini et al., 2018; Maganha et al., 2018; Andersen et al., 2015; Renzi et al., 2014;

Babu et al., 2013; Bi et al., 2008). However, in this section, we will summarize the most related research

works dedicated to the process plan generation problems.

Swamidass (2000) defines the process planning (called also process plan generation) as “the preparatory

step before manufacturing, which determines the sequence of operations or processes needed to produce a part

or an assembly. This step is more important in job shops, where one-of-a-kind products are made or the

same product is made infrequently”. Jain & Jain (2001) stated that “process planning can be defined as the

systematic determination of methods and means to manufacture a component economically and competitively”.

ElMaraghy (2007) insisted that “we need to associate the evolutions, reconfigurations and reconfigurable

process plans to changes and evolutions of manufacturing systems and products”. Nallakumarasamy et al.

(2011) considered the process plan as “the activity that decides the sequence, which the manufacturing process

must follow”. Finally, Chaube et al. (2012) claimed that “process planning is complex and crucial activity

for enterprises, where the planning has to be carried out at both macro and micro levels. The macro-process

planning is concerned with selecting the best sequence of multiple di↵erent processing steps and set-ups as well

as the machines to perform the required operations. And the micro-process planning is concerned with the

optimization of each individual operation in order to determine the best process parameters”. At both levels,

the problem is known complex and has attract researches and industrials with very interesting contributions.

It becomes very complex when the manufacturing environment is reconfigurable.

Bruccoleri et al. (2005) proposed an agent-based approach with a negotation model for the production

planning activities in reconfigurable enterprises. The multi-agent system supports decentralized decisions

in enterprises characterized by complex, articulated and geographically distributed production capacities.

However, the main disadvantage of this approach concerns the increasing complexity due to the multi-agent-

system. In addition, it does not consider skills of RMS on the lowest planning level. Azab & ElMaraghy

(2007) considered reconfigurable process plans, where an existing process plan is reconfigured when a new

feature is added to an existing part, in order to avoid the generation of a new process plan. Reconfiguration

of process plan consists to include minor modifications to meet the requirements of the new part. A weighted
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ILP model is proposed where both the production cost and completion time are minimized. Furthermore,

Shabaka & ElMaraghy (2007) developed a new genetic algorithm based model to perform process plan in RMS

environment. The model simultaneously considers all process plan parameters such as machine assignment

and machine configurations.

Abbasi & Houshmand (2009) and Abbasi & Houshmand (2011) addressed the problem of production

planning of product families for a RMS where the orders arrive following the Poisson distribution. The orders

are lost if they are not available. To determine the optimum sequence of production tasks, corresponding

configurations, and batch sizes, they proposed a mixed integer nonlinear programming (MINLP) model.

Since the problem is NP-hard, tabu search and genetic algorithm based procedures are proposed to solve the

model. To illustrate the applicability of both the MINLP model and the procedures, numerical examples are

presented and the results analysed.

Musharavati & Hamouda (2012a,b) investigated the use of simulated-annealing-based algorithms in solv-

ing process planning problem for a reconfigurable manufacturing. They developed several variants of the

simulated annealing algorithms respectively a variant of the basic simulated annealing algorithm, a variant

of the simulated annealing algorithm coupled with auxiliary knowledge and a variant of the SA algorithm

implemented in a quasi-parallel architecture. The obtained experimental results showed the superiority of the

variants in comparison to a basic simulated annealing algorithm. Moreover, Maniraj et al. (2014) proposed

a two-phase-based ant colony optimisation approach to solve the process plan generation problem of a single

product flow-line in a reconfigurable context. In the first phase, priority-based encoding technique is applied

to find feasible operation clusters. Where, in the second phase, ant colony technique is used for minimis-

ing the total cost of the RMS. A case study is presented to demonstrate the applicability of the developed

approach. Recently, Battäıa et al. (2017b) proposed a joint formulation for process planning and system

configuration for design of rotary transfer machines for a mixed-model production of di↵erent parts. The

objective is to minimize the total system cost. Moreover, Battäıa et al. (2017a) developed a decision support

tool for the design of reconfigurable rotary machining systems with turrets used for producing several fami-

lies of parts. The tool captures an exhaustive set of constraints such as precedence, inclusion and exclusion.

They modelled the system using mixed integer programming formulation and proposed heuristics to take

e�cient decisions about part orientations, selection of machining modules, and configuration/reconfiguration

of working positions depending on the part families to be produced.

In a multi-objective context, Chaube et al. (2012) and Bensmaine et al. (2013) proposed an evolutionary-

based approach to solve the problem. Chaube et al. (2012) adapted the non-dominated sorting genetic

algorithm (NSGA-II) where two objectives are considered, respectively, the total completion time and manu-

facturing cost. Bensmaine et al. (2013) integrated the process plan generation with the design problem using

the same approach. They elaborated rich experimental comparisons and analyses based on the obtained

Pareto fronts. Furthermore, Bensmaine et al. (2014) proposed a new heuristic to deal with the integrated

process plan generation and operations scheduling (IPPS) problem for a RMS. The heuristic takes into ac-
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count the multi-configuration nature of machines to integrate both process planning and scheduling. The

obtained experimental results showed an advantage of the proposed heuristic over the sequential process plan-

ning and scheduling strategy. In the same context, Dou et al. (2016) considered the problem of integrating

both the optimal design of physical configuration (called configuration generation) and the proper scheduling

for reconfigurable flow line in which multiple parts within the same part family can be produced at the same

time. Two objectives are minimized respectively the total cost including capital cost and reconfiguration

cost and the total tardiness. To solve the problem, a multi-objective mixed integer programming model

(MO-MIP) is established first and an adapted version of the NSGA-II is developed second. They presented

an illustrative case study showing the applicability of the proposed NSGA-II.

More recently, Haddou Benderbal et al. (2018) developed an adapted version of the AMOSA to solve the

integrated design and process plan generation problem for RMS. In addition to the classical optimization

criteria, respectively, cost and time, the authors considered modularity as a third criterion. Xia et al.

(2018) extended the concept of reconfigurable process plan to a concept of reconfigurable machining process

planning which targets the process plan generation for a part family. Touzout & Benyoucef (2018a) solved the

sustainable process plan generation problem for a RMS, where the amount of greenhouse gases (GHG) emitted

during the manufacturing process is minimized in addition to the total production cost and completion time.

The authors developed an iterative multi-objective integer linear programming (I-MOILP) approach and

compared with adapted versions of the archived multi-objective simulated-annealing approach (AMOSA)

and the NSGA-II approach. And, they studied the influence of the probabilities of genetic operators on the

convergence of the adapted NSGA-II and illustrated the applicability of the three approaches using numerical

examples. Moreover, inspired by Touzout & Benyoucef (2018a) and a microscopical study of optimal Pareto

front solutions generated by an iterative integer linear program, Touzout & Benyoucef (2018b) developed three

hybrid-metaheuristics using an adapted version of AMOSA with 2�opt heuristic to solve the multi-objective

multi-unit process plan generation problem for a RMS.

Finally, from our literature review and as a natural extension of Touzout & Benyoucef (2018a) and Touzout

& Benyoucef (2018b) results, in this paper, we propose and compare three hybrid metaheuristics to solve the

multi-objective multi-unit process plan generation problem in a reconfigurable manufacturing environment.

The next section details the problem under consideration.

3. Problem Description

In this paper, we attempt to solve the multi-objective multi-unit process plan generation problem for a

single-product type in a reconfigurable manufacturing environment. Three optimization criteria are consid-

ered:

(i) The total production cost.

(ii) The total completion time.
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(iii) The maximum exploitation time. It consists of minimizing the total processing time of the most used

machine in the process in order to prevent reliability issues and to have high quality products.

3.1. Single-unit Process Plan

Let us consider a part to be manufactured. A part is composed of features and each feature contains

an amount of operations to be achieved. The di↵erent operations are linked with each other by precedence

constraints (e.g. Figure 1) and are represented by a set of tools as well as a tool approach directions (TADs)

(i.e. x±, y±, z±) that are needed to perform them. We can see that the resulting graph G = {V,A} is an

acyclic graph.

Figure 1: A precedence graph for the required operations

A RMS is composed of a set of RMTs. A machine in this case is represented by, respectively, a set of

tools and configurations. Each configuration provides TADs. Table 1 shows the required TADs and tools for,

respectively, operations and configurations of our example.

In this context, we can define, for each operation i, a set of triplets Ki. A triplet k 2 Ki in this case is

defined by, respectively, the index of its machine (indexM), the index of its configuration (indexC) and the

index of its tool (indexT ).

Therefore, in our case, the process plan generation problem can be defined as the problem of determining

a chronological sequence of operations to be performed as well as the triplets to perform each operation of

the sequence. Table 2 illustrates a generated process plan for our example.

3.2. Multi-unit Process Plan

Now, let us consider that there are U units of the same product to be manufactured. A multi-unit process

plan is a sequence of single-unit process plans. Table 3 presents an example of a generated multi-unit process
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Table 1: Required TADs and Tools for our example

OP

x+ x� y+ y� z+ z� Tools

M — C

OP1 x x x 9

OP2 x x 1

OP3 x x 6

OP4 x x x 3

OP5 x x 5

M1

C1 x x x x

1, 5, 6, 9

C2 x x

C3 x x x

C4 x

M2 C1 x x x x 1, 5, 6, 9

M3 C1 x x x x 1, 3, 9

M4

C1 x x x

1, 6, 9C2 x x

C3 x

M5 C1 x x x x 1, 3, 5

Table 2: An illustrative example of a process plan

Operations OP3 OP5 OP1 OP2 OP4

Machines M4 M1 M2 M3 M3

Configurations C1 C1 C1 C1 C1

Tools T6 T5 T9 T1 T3

plan.

For this problem, we can distinguish three types of costs and times:

(i) Costs and times related to operations: the processing cost and the processing time to realise operation

i with triplet k.

(ii) Costs and times related to machines: the cost and the time to change a configuration or a tool for a

machine j.

(iii) Costs and times of transfer: the cost and the time to transfer a product from one machine to another.

The problem of process plan generation in RMS is NP-Hard. In fact, the proof is simple since by

eliminating the aspect where for each operation, an optimal machine, configuration and tool need to be

designated, the problem can be reduced to the well-known optimization problem the travelling salesman

problem (TSP). Operations in this case will represent the nodes of the network and the objective will be to
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Table 3: An illustrative example of a 5-unit process plan

Unit 1

Operations OP3 OP5 OP1 OP2 OP4

Machines M4 M1 M3 M3 M3

Configurations C1 C1 C1 C1 C1

Tools T6 T5 T9 T1 T3

Unit 2

Operations OP5 OP2 OP3 OP1 OP4

Machines M1 M2 M4 M3 M3

Configurations C1 C1 C1 C1 C1

Tools T5 T1 T6 T9 T3

Unit 3

Operations OP5 OP3 OP1 OP2 OP4

Machines M1 M4 M3 M3 M3

Configurations C1 C1 C1 C1 C1

Tools T5 T6 T9 T1 T3

Unit 4

Operations OP5 OP2 OP3 OP1 OP4

Machines M1 M2 M4 M3 M3

Configurations C1 C1 C1 C1 C1

Tools T5 T1 T6 T9 T3

Unit 5

Operations OP5 OP3 OP1 OP2 OP4

Machines M1 M4 M3 M3 M3

Configurations C1 C1 C1 C1 C1

Tools T5 T6 T9 T1 T3

find the optimal route. The multi-unit process plan generation is therefore a general case for the single-unit

process plan generation problem.

4. Mathematical Formulation

Throughout the next section, the following notations are used:

4.1. Data

Parameters :

O : Set of operations

n : Number of operations

U : Number of units

u : Index of unit

i, i
0 : Index of operation

Pi : Set of predecessors operations

t, t
0 : Index of triplet

8



j, j
0 : Index of position in the sequence

M : Set of machines

m,m
0 : Index of machine

Tm : Set of available triplets with machine m

T : Set of triplets, where: T = Ti [ Tm

k, l : Index of configuration

tl, tl
0 : Index of tool

Production costs :

CCMm,m0 : Cost of changing machine per time unit

CCCtl,tl0 : Cost of changing configuration per time unit

CCTtl,tl0 : Cost of changing tool per time unit

CPi,t : Cost of processing per time unit

Time :

TCMm,m0 : Time of changing machine

TCCtl,tl0 : Time of changing configuration

TCTtl,tl0 : Time of changing tool

TPi,t : Time of processing

4.2. Decision variables

To formulate our problem, the following decision variables are needed:

x
t,u
i,j = 1 if the i

th operation of the u
th unit is processed at the j

th position using the t
th triplet, 0

otherwise.

y
m,u
j,t = 1 if the mth machine is using the tth triplet at the jth position of the uth unit, 0 otherwise.

cm
u
j,m,m0 = 1 if between position j � 1 and j of the u

th unit, there has been a change between

machines m and m
0, 0 otherwise.

cc
m,u
j,t,t0 = 1 if between position j � 1 and j of the u

th, there has been a change between triplet t

and t
0 of machine m, 0 otherwise.

4.3. Objectives

f
c
, f

t and f
e are, respectively, the total production cost, the completion time and the maximum exploita-

tion time, where:
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f
c

=

UP
u=1

nP
j=1

P
i2O

P
t2Ti

x
t,u

i,j
⇥ CPi,t ⇥ TPi,t +

UP
u=1

nP
j=1

P
m2M

P
m02M

cm
u

j,m,m0 ⇥ CCMm,m0 ⇥ TCMm,m0 +

UP
u=1

nP
j=1

P
m2M

P
t2tm

P

t02tm
0
cc

m,u

j,t,t0 ⇥ TCT
IT t,IT t0 ⇥ (CCC

ICt,ICt0 + CCT
IT t,IT t0 )

f
t
=

UP
u=1

nP
j=1

P
i2O

P
t2Ti

x
t,u

i,j
⇥TPi,t+

UP
u=1

nP
j=1

P
m2M

P
m02M

cm
u

j,m,m0⇥TCMm,m0+
UP

u=1

nP
j=1

P
m2M

P
t2tm

P

t02tm
0
cc

m,u

j,t,t0⇥

(TCC
ICt,ICt0 + TCT

IT t,IT t0 )

f
e
= max

m2M

P
u2U

P
t2Tm

P
i,j2O

x
t,u

i,j
⇥ TPi,t

4.4. Model

Our problem can be formulated as the following Multi-Objective Integer Linear Program (MOILP). Note

that the MOILP can generate both a multi-unit and single unit (i.e. if U = 1) process plans.

10



MOILP

min f
c

min f
e

min f
t

s.t.

P
i2O

P
t2Ti

x
t,u

i,j
= 1 8j = 1...n, 8u = 1...U (1)

nP
j=1

P
t2Ti

x
t,u

i,j
= 1 8i 2 O, 8u = 1...U (2)

P
t2Ti

x
t,u

i,j
⇥ |Pi| 

P
i02Pi

j�1P
j0=1

P
t02Ti0

x
t
0
,u

i0,j0 8i 2 O, 8j = 1...n, 8u = 1...U (3)

P
t2Tm

y
m,u

j,t
= 1 8j = 1...n, 8m 2 M, 8u = 1...U (4)

y
m,u

j,t
� x

t,u

i,j
8j = 1...n, 8m 2 M, 8t 2 Tm, 8u = 1...U (5)

P
i2O

x
t,u

i,j
+ x

t
0
,u

i,j�1  ct
u

j,IMt,IMt0 + 1 8j = 2...n, 8t, t0 2 T, 8u = 1...U (6)

y
m,u

j,tt
+ y

m,u

j�1,t0  cc
m,u

j,t,t0 + 1 8j = 2...n, 8m 2 M, 8t, t0 2 Tm, 8u = 1...U (7)

P
t,t02Tm

cc
m,u

j,t,t0 = 1 8j = 1...n, 8m 2 M, 8u = 1...U (8)

P
i2O

x
t,u

i,1 + x
t
0
,u�1

i,n
 ct

u

1,IMt,IMt0 + 1 8t, t0 2 T, 8u = 2...U (9)

y
m,u

1,tt
+ y

m,u�1
n,t0  cc

m,u

1,t,t0 + 1 8m 2 M, 8t, t0 2 Tm, 8u = 2...U (10)

P
u2U

P
t2Tm

P
i,j2O

x
t,u

i,j
⇥ TPi,t  f

e 8m 2 M (11)

Constraint (1) states that one operation is processed at each position of the process plan. Constraint (2)

states that each operation is processed once. Constraint (3) states that an operation is processed if and only

if all its predecessors operations are already processed. Constraint (4) states that each machine is using one

configuration and one tool at once. Constraint (5) states which configuration and tool are used at position

j for machine m. Constraints (6),(7),(9) and (10) state, respectively, if there’s a change of machine and a

change of configuration and/or tool between positions j�1 and j. Constraint (8) states that there’s only one
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change of configuration between positions j�1 and j. Finally, constraint (11) states the maximal exploitation

time.

The MOILP will be excluded from the numerical experiments because of its high complexity for the

multi-unit case. However, we used it to generate optimal solutions and study them microscopically. From

our observations, an optimal multi-unit process plan can be:

(i) A repetition of an optimal single-unit process plan

(ii) A sequence of optimal single-unit process plans

(iii) A sequence of neighbours of optimal single-unit process plans

5. Proposed Approaches

In the following, inspired from the above observations, we will describe in details the developed approaches

as well as the approach used to generate single-unit process plans.

5.1. Adapted Non Dominated Sorting Genetic Algorithm II (NSGA-II)

The non dominated sorting genetic algorithm (NSGA-II) is a population-based evolutionary algorithm

proposed by Deb et al. (2002). Starting with a randomized initial population called the parent population

of a given size, for each iteration of NSGA-II, a new population called child population is generated by ap-

plying genetic operators (i.e. mutation, crossovers...) with specified probabilities. The parent population of

iteration iter + 1 is the result of an elitist procedure applied to parentPopulationiter [ childPopulationiter.

This elitist procedure is ensured by a fast non-dominated sorting algorithm, as well as a crowding distance

sorting.

A description of our approach is proposed in Algo. 1. Furthermore, for clear descriptions of the used

coded process plan as well as the mutation and the crossover operators, refer to Touzout & Benyoucef (2018a).

More detailed descriptions of the fast non dominated sorting and the crowding distance sorting algorithms

are also presented in Deb et al. (2002).

5.2. RSUPP: A repetitive single-unit process plan metaheuristic

RSUPP is a hybrid-metaheuristic that uses NSGA-II to generate a single unit Pareto front. A Pareto

front of multi-unit process plans is then generated by the repetition of each single-unit process plan for each

unit. A description of RSUPP is presented in Algo. 2.
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Algorithm 1: Adapted NSGA-II

1: input data

2: initialize populationSize, iteration, pmutation, mutationRatio, pcrossover

3: randomize parentPopulation

4: for iter = 1 : iteration do

5: generate childPopulation from parentPopulation

6: population = parentPopulation [ childPopulation

7: F = fastNonDominatedSorting(population)

8: for l = 1 : size(F ) do

9: if size(newPopulation)+size(Fl) < populationSize then

10: newPopulation+ = Fl

11: else

12: crowdingDistanceSorting(Fl)

13: for k = 1 : size(Fl) do

14: if size(newPopulation) < populationSize then

15: newPopulation+ = F
k
l

16: else

17: break;

18: end if

19: end for

20: end if

21: end for

22: parentPopulation = newPopulation

23: end for

24: return parentPopulation
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Algorithm 2: RSUPP

1: input data

2: set an empty archive

3: solve the single-unit problem using Algo. 1

4: for current� p in archive(single� unit) do

5: set MU : a multi-unit process plan

6: for u = 1...U do

7: MUu = current� p

8: end for

9: if MU is non dominated and /2 archive then

10: add MU

11: remove dominated MUs in regards to MU

12: end if

13: end for

14: return archive

5.3. ILSSUPP: An iterated local search on single-unit process plans metaheuristic

Similarly to the first step of RSUPP, ILSSUPP generates an optimal or near optimal Pareto front for

the single-unit process plan problem. A multi-unit process plan in this case will be a combination of several

single-unit process plans. An adaptation of the well-known traveling salesman problem heuristic 2 � opt

(Croes, 1958) will be performed in order to find the best combinations. A more detailed description of the

algorithm is presented in Algo. 3.

5.4. ABILS: An archive-based iterated local search metaheuristic

The idea behind ABILS is to utilize the archives of RSUPP and ILSSUPP, which are potentially a subset

of the optimal Pareto front from our observations, to either generate better solutions or enlarge the size of the

Pareto front. This goes through applying a re-adaptation of the 2 � opt algorithm. The di↵erence between

the 2� opt of ABILS and ILSUPP is that for the former, it is applied at a microscopical level (i.e., for each

unit, the neighbours of the single-unit process plan are generated). A simple illustration of the algorithm is

presented in Algo. 4.

It is important to state that, for large-sized instances, ABILS and ILSSUPP can in fact be very time

consuming. Although the enumeration of the 2 � opt neighbours can be done in a polynomial time, the

approaches are still exponential because there’s no guarantee for when they will stop improving the solutions

of the archive. In this context, a time limit or a number of iterations as stopping conditions can be imagined.
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Algorithm 3: ILSSUPP

1: input data

2: set an empty archive

3: solve the single-unit problem using Algo. 1

4: current = a random multi-unit process plan

5: archive += current

6: for current in archive do

7: for new in 2� opt neighbours of current do

8: if new is non dominated and /2 archive then

9: add new

10: remove dominated MUs in regards to new

11: end if

12: end for

13: end for

14: return archive

Algorithm 4: ABILS

1: input data

2: set an empty archive

3: solve RSUPP and ILSSUPP

4: archive = archive(RSUPP ) + archive(ILSSUPP )

5: while still improving do

6: for current in archive do

7: for new in 2� opt neighbours of current do

8: if new is non dominated and /2 archive then

9: add new

10: remove dominated MUs in regards to new

11: end if

12: end for

13: end for

14: end while

15: return archive
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6. Experimental Results & Analyses

The experiments were conducted with a 2.7 GHz Intel Core i5 processor and 8GB RAM and the meta-

heuristics were implemented with Java. Due to the lack of benchmarks in the literature related to process

plan generation in a reconfigurable manufacturing environment, the experiments are performed with ran-

domly generated instances and for U = 5. An instance is identified by the number of operations, the number

of machines and its index. It is denoted by: nbOperations nbMachines indexInstance.

Based on the results of Touzout & Benyoucef (2018a), where the sensitivity of the parameters of NSGA-II

for the single unit case were compared, we use the parameters that showed the best performance overall, and

they are as follows: mutation = 90%, crossover = 10%, population-size = 40 and iteration=1000.

Although the optimality or the enumeration of the whole pareto fronts of the single-unit process plans

generated with NSGA-II is not proven, we can see that the results of these experiments are in accordance to

the phenomena observed in Section 4 when optimal pareto fronts generated with MOILP were microscopically

studied.

We can distinguish three analyses from Figures 2:12.

Observation 1: From Figure 7, we can see that ABILS didn’t produce any new process plans that

dominates or are non dominated by the ones generated by RSUPP and ILSSUPP. This doesn’t necessarily

mean that the latter process plans (i.e. a repetition of an optimal single-unit process plan or a sequence of

optimal process plans) are optimal but it strengthens however the idea that they are.

Observation 2: From Figures 3, 5, 6, 9, 10 and 11, we observe that ABILS produced new process plans

that are non dominated by the ones generated by RSUPP and ILSSUPP. This means that ABILS is able to

enrich the pareto fronts.

Observation 3: Finally, from Figures 2, 3, 4, 5, 6, 8, 11 and 12, we notice that ABILS produced new

process plans that dominates either some process plans from the pareto front (e.g. Figures 3, 5, 6, 8 and 11)

or the whole pareto front (e.g. Figures 2, 4 and 12) generated by RSUPP or ILSSUPP. Therefore, in this

case, ABILS have two roles: generating good process plans and cleaning the pareto fronts from bad ones.
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Figure 2: Parento fronts of instance 5 5 1

Figure 3: Parento fronts of instance 5 5 4
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Figure 4: Parento fronts of instance 10 5 1

Figure 5: Parento fronts of instance 10 5 2
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Figure 6: Parento fronts of instance 10 5 5

Figure 7: Parento fronts of instance 15 5 2
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Figure 8: Parento fronts of instance 15 5 3

Figure 9: Parento fronts of instance 15 5 5
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Figure 10: Parento fronts of instance 20 5 1

Figure 11: Parento fronts of instance 20 5 3
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Figure 12: Parento fronts of instance 20 5 4

7. Conclusions

Reconfigurable manufacturing system is a paradigm that answers many of the challenges that the market

nowadays imposes. Moreover, RMS is designed to overcome the shortcomings of traditional manufacturing

systems in a rapid and cost-e↵ective way. In this paper, we presented and compared three hybrid metaheuris-

tics for the multi-objective single-product multi-unit process plan generation in a reconfigurable manufac-

turing environment. Three criteria were considered, respectively, the total production cost, the completion

time and the maximum exploitation time for machines. We presented a rich panel of experimental results

and analyses to demonstrate the quality of the developed approaches. The obtained results are promising

and can be viewed as a preliminary study for the integrated process plan and scheduling problem (IPPS) in

reconfigurable manufacturing environment.

For future works, shortly, we expect to use other local search-based metaheuristics such as tabu search

or an adapted version of the travelling salesman problem heuristic k-Opt instead of the adapted 2-opt.

Furthermore, metaheuristics, such as ant colony optimization and particle swarm optimization, can be also

used and compared to analyse and discuss possible results improvements for the considered problem. Finally,

other criterion such as greenhouse gas (GHG) emission for sustainability purposes is a promising research

direction.
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Battäıa, O., Dolgui, A., & Guschinsky, N. (2017b). Integrated process planning and system configuration for mixed-model machining

on rotary transfer machine. International Journal of Computer Integrated Manufacturing, 30 , 910–925.

Bensmaine, A., Dahane, M., & Benyoucef, L. (2013). A non-dominated sorting genetic algorithm based approach for optimal machines

selection in reconfigurable manufacturing environment. Computers & Industrial Engineering, 66 , 519–524.

Bensmaine, A., Dahane, M., & Benyoucef, L. (2014). A new heuristic for integrated process planning and scheduling in reconfigurable

manufacturing systems. International Journal of Production Research, 52 , 3583–3594.

Bi, Z. M., Lang, S. Y., Shen, W., & Wang, L. (2008). Reconfigurable manufacturing systems: the state of the art. International Journal

of Production Research, 46 , 967–992.

Bortolini, M., Galizia, F. G., & Mora, C. (2018). Reconfigurable manufacturing systems: Literature review and research trend. Journal

of manufacturing systems, 49 , 93–106.

Bruccoleri, M., Nigro, G. L., Perrone, G., Renna, P., & La Diega, S. N. (2005). Production planning in reconfigurable enterprises and

reconfigurable production systems. CIRP Annals-Manufacturing Technology, 54 , 433–436.

Chaube, A., Benyoucef, L., & Tiwari, M. K. (2012). An adapted nsga-2 algorithm based dynamic process plan generation for a

reconfigurable manufacturing system. Journal of Intelligent Manufacturing, 23 , 1141–1155.

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations research, 6 , 791–812.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions

on evolutionary computation, 6 , 182–197.

Dou, J., Li, J., & Su, C. (2016). Bi-objective optimization of integrating configuration generation and scheduling for reconfigurable flow

lines using nsga-ii. The International Journal of Advanced Manufacturing Technology, 86 , 1945–1962.

ElMaraghy, H. A. (2007). Reconfigurable process plans for responsive manufacturing systems. In Digital enterprise technology (pp.

35–44). Springer.

ElMaraghy, H. A. (2008). Changeable and reconfigurable manufacturing systems. Springer Science & Business Media.

Gadalla, M., & Xue, D. (2018). An approach to identify the optimal configurations and reconfiguration processes for design of reconfig-

urable machine tools. International Journal of Production Research, 56 , 3880–3900.

Haddou Benderbal, H., Dahane, M., & Benyoucef, L. (2018). Modularity assessment in reconfigurable manufacturing system (rms)

design: an archived multi-objective simulated annealing-based approach. The International Journal of Advanced Manufacturing

Technology, 94 , 729–749.

Huang, S., Wang, G., & Yan, Y. (2019). Delayed reconfigurable manufacturing system. International Journal of Production Research,

57 , 2372–2391.

Jain, N., & Jain, V. (2001). Computer aided process planning for agile manufacturing environment. Agile Manufacturing: The 21st

Century Competitive Strategy, Elsevier, Oxford, (pp. 515–534).

23



Koren, Y. (2006). General rms characteristics. comparison with dedicated and flexible systems. In Reconfigurable manufacturing

systems and transformable factories (pp. 27–45). Springer.

Koren, Y. (2010). The global manufacturing revolution: product-process-business integration and reconfigurable systems volume 80.

John Wiley & Sons.

Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., & Van Brussel, H. (1999). Reconfigurable manufacturing

systems. CIRP annals, 48 , 527–540.

Maganha, I., Silva, C., & Ferreira, L. M. D. (2018). Understanding reconfigurability of manufacturing systems: An empirical analysis.

Journal of Manufacturing Systems, 48 , 120–130.

Maniraj, M., Pakkirisamy, V., & Parthiban, P. (2014). Optimisation of process plans in reconfigurable manufacturing systems using ant

colony technique. International Journal of Enterprise Network Management, 6 , 125–138.

Moghaddam, S. K., Houshmand, M., & Fatahi Valilai, O. (2018). Configuration design in scalable reconfigurable manufacturing systems

(rms); a case of single-product flow line (spfl). International Journal of Production Research, 56 , 3932–3954.

Musharavati, F., & Hamouda, A. (2012a). Enhanced simulated-annealing-based algorithms and their applications to process planning

in reconfigurable manufacturing systems. Advances in Engineering Software, 45 , 80–90.

Musharavati, F., & Hamouda, A. (2012b). Simulated annealing with auxiliary knowledge for process planning optimization in reconfig-

urable manufacturing. Robotics and Computer-Integrated Manufacturing, 28 , 113–131.

Nallakumarasamy, G., Srinivasan, P., Raja, K. V., & Malayalamurthi, R. (2011). Optimization of operation sequencing in capp using

superhybrid genetic algorithms-simulated annealing technique. ISRN Mechanical Engineering, 2011 .

Prasad, D., & Jayswal, S. (2018). Reconfigurability consideration and scheduling of products in a manufacturing industry. International

Journal of Production Research, 56 , 6430–6449.

Renzi, C., Leali, F., Cavazzuti, M., & Andrisano, A. (2014). A review on artificial intelligence applications to the optimal design

of dedicated and reconfigurable manufacturing systems. The International Journal of Advanced Manufacturing Technology, 72 ,

403–418.

Shabaka, A., & ElMaraghy, H. A. (2007). Generation of machine configurations based on product features. International Journal of

Computer Integrated Manufacturing, 20 , 355–369.

Swamidass, P. M. (2000). Encyclopedia of production and manufacturing management. Springer Science & Business Media.

Touzout, F. A., & Benyoucef, L. (2018a). Multi-objective sustainable process plan generation in a reconfigurable manufacturing envi-

ronment: exact and adapted evolutionary approaches. International Journal of Production Research, (pp. 1–17).

Touzout, F. A., & Benyoucef, L. (2018b). Sustainable multi-unit process plan generation in a reconfigurable manufacturing environment:

A comparative study of three hybrid-meta-heuristics. In 2018 IEEE 23rd International Conference on Emerging Technologies and

Factory Automation (ETFA) (pp. 661–668). IEEE volume 1.

Tseng, M. M., & Jiao, J. (2001). Mass customization, handbook of industrial engineering. Technology and Operation Management, .

WorldBankGroup (2016). World bank group, manufacturing, value added (% of gdp). URL:

https://data.worldbank.org/indicator/NV.IND.MANF.ZS.

Xia, Q., Etienne, A., Dantan, J.-y., & Siadat, A. (2018). Reconfigurable machining process planning for part variety in new manufacturing

paradigms: Definitions, models and framework. Computers & Industrial Engineering, 115 , 206–219.

24


