Riikka Huusari 
  
Hachem Kadri 
  
Cécile Capponi 
  
Support Vector Machine Framework for Multi-View Metric Learning

Keywords: apprentissage de métriques multi-vues, SVM, méthodes à noyaux multi-view learning, metric learning, SVM, kernel methods

Cet article s'intéresse à l'apprentissage multivue par des méthodes à noyaux et d'apprentissage de métriques. Dans ce cadre, nous considérons MVML (multi-view metric learning), une méthode récemment développée, et nous proposons un algorithme basé sur les séparateurs à vaste marge (SVM) qui apprend conjointement un classifieur et des métriques entre les vues permettant ainsi de tenir compte des caractéristiques multi-vues du problème d'apprentissage. Des expérimentations sur données réelles ont été réalisées afin d'évaluer les performances de l'algorithme proposé.

Introduction

Multi-view learning refers to the learning framework where each data example is observed under several views, e.g. a bird might be represented by both image and sound. In this paper we consider a supervised multi-view learning problem in context of classification, and thus denote our data to be {x i , y i } n i=1 on X × Y where Y is {-1, 1} and x i = (x 1 i , . . . , x v i ). The views in a multi-view problem are often correlated, complementary or redundant, or even contradictory. Thus, using all the views in a learning problem is expected to be more beneficial than if individual views were used independently. One of the first approaches in multi-view learning was co-regularization [START_REF] Blum | Combining labeled and unlabeled data with cotraining[END_REF], where view agreement was used in context of semi-supervised learning. There are many kernel-based approaches in multi-view learning, of these the simplest and most known is the multiple kernel learning (MKL) framework [START_REF] Xu | A survey on multi-view learning[END_REF], where a simple linear combination of the kernel matrices from each view is learned.

More recently, vector-valued (or operator-valued) reproducing kernel Hilbert spaces (RKHSs) have been introduced in the context of multi-view learning (Minh et al., 2016; [START_REF] Kadri | The multi-task learning view of multimodal data[END_REF]. Unlike MKL, using vector-valued kernels allows modeling both withinview and between-view interactions. Even though vector-valued kernels offer a good way to model the view interactions, a central question that is already asked with scalar-valued kernels is even more prominent in this context: how to construct the kernels? There exist many schemes for learning separable vector-valued kernels [START_REF] Dinuzzo | Learning output kernels with block coordinate descent[END_REF], however this class of kernels is restrictive. In the multi-view metric learning (MVML) introduced by Huusari et al. (2018), a general vector-valued kernel matrix is learned jointly with the classification/regression problem by introducing a metric matrix operating between the views to the vector-valued kernel. The MVML was introduced with squared loss function. It is possible to perform classification tasks with this loss, but a more suitable choice is to use large margin classifiers or SVMs [START_REF] Cortes | Support-vector networks[END_REF].

Multi-view learning with matrix-valued kernels

Vector-valued RKHS were introduced by [START_REF] Micchelli | On learning vector-valued functions[END_REF] as a way to extend kernel machines from scalar to vector outputs. As the name states, the functions in vectorvalued RKHS H output vectors, that is, the function z → K(x, z)q belongs to H when z, x ∈ X , q ∈ R v and the kernel function is positive definite. Thus using the vector-valued RKHS theory is especially useful in multi-task setting, where the outputs are the multiple labels [START_REF] Evgeniou | Learning multiple tasks with kernel methods[END_REF]. This framework is also suitable for multi-view learning, where the outputs are combined after the learning step to give the final prediction [START_REF] Kadri | The multi-task learning view of multimodal data[END_REF], or then in a setting where a combination operator for combining the vector into one label is either present in optimization problem, or learned with it (Minh et al., 2016; [START_REF] Huusari | Multi-view Metric Learning in Vector-valued Kernel Spaces[END_REF].

As we are dealing with vector-valued functions, the kernel function between two data samples outputs a matrix; in our case kernel is a function K(•, •) : X × X → R v×v , where v is the number of views. Intuitively, instead of one similarity value associated with the two samples, our kernel outputs one value for every two-view combination.

A major theorem in kernel framework is the representer theorem. Similarly to the scalar-valued case, the solution to a general learning problem with matrix-valued kernels can be stated as f (x) = i K(x i , x)c i , where c i ∈ R v (see for example [START_REF] Micchelli | On learning vector-valued functions[END_REF] for details). Thus, by adding a combination operator W for combining the outputs of the decision function f , we can write our general multi-view vector-valued optimization problem as arg min

f n i=1 V (y i , W (f (x i ))) + λ f 2 H . (1) 
= arg min

c 1 ,...,cn∈R v n i=1 V y i , W n j=1 K(x i , x j )c j + λ n i,j=1 c i , K(x i , x j )c j . (2) 
There are many classes of matrix-valued kernels, most common are separable and transformable [START_REF] Alvarez | Kernels for vectorvalued functions: A review[END_REF]. Another class of vector-valued kernels considered in Huusari et al. ( 2018) is written as

K(x i , x j ) lm = Φ l (x l i ), C X l Xm Φ m (x m j ) , (3) 
where Φ l (resp. Φ m ) is the feature map associated with the scalar-valued kernel k l (resp. k m ) defined on the view l (resp. m). MVML framework assumes that the operator C X l Xm : H m → H l can be written as 1and the matrix A = (A lm ) v l,m=1 ∈ R nv×nv encodes pairwise similarities between the views. Substituting the MVML kernel to the optimization problem (2) and adding regularization for metric matrix, we get a general MVML optimization problem min

C X l Xm = Φ l A lm Φ T m where Φ s = (Φ s (x 1 ), ..., Φ s (x n )) with s = l, m. Thus the kernel matrix is K = HAH, where H = blockdiag(K 1 , • • • , K v ),
A,c n i=1 V (y i , w T H x i AHc) + λ c, HAHc + η A 2 F , (4) 
where H x i ∈ R v×vn consists of the rows in H that correspond to x i , and w gives a linear combination over the views. With the change of variables g = AHc we can write min

A,g n i=1 V (y i , w T H x i g) + λ g, A † g + η A 2 F . (5) 
Figure 1 illustrates the idea behind MVML framework. There MVML is compared to MKL that considers only within-view dependencies, and to output kernel learning (OKL) [START_REF] Dinuzzo | Learning output kernels with block coordinate descent[END_REF] where separable kernels are learnt. MVML is the only method giving linear separation of the two classes. This means that it groups the data points into groups based on their class, not view, and thus is able to construct a good approximation of the initial data transformations by which we generated the second view. 

Algorithm 1 Multi-View Metric Learning with SVM loss

Initialize A 0 and w while not converged do Solve for Lagrangian multipliers α i in Equation 7; update g via Equation 8Solve for A as in original MVML return A, g, w 3 Algorithm: MVML-SVM

In the previous work the MVML optimization problem ( 6) was solved with squared loss function. As it is a general loss, the MVML could be applied in both regression and classification problems. However it is not optimal for many classification problems, and thus here we introduce MVML with hinge loss. This gives us the optimization problem min

A,g n i=1 max(0, 1 -y i w T H x i g) + λ g, A † g + η A 2 F . (6) 
We see straight away that the solution for metric matrix A is exactly the same than for the squared loss MVML, as the matrix is only present (directly) in the two regularizers. Indeed, with any loss function in our framework, and with this change of variables, we can solve for A always the same way. This means that we can also use the group-sparse formulation of the regularization term as in [START_REF] Huusari | Multi-view Metric Learning in Vector-valued Kernel Spaces[END_REF].

To solve g we firstly introduce the slack variables ξ i to the optimization problem. Solving this requires then writing the dual problem with Lagrangian multipliers, and then solving for the multipliers α i from max

α i l i=1 α i - 1 2λ l i,j=1 α i α j y i y j w T H x i AH T x j w, s.t. 0 ≤ α i ≤ 1 n , (7) 
where we have set parameter C = 1 n . Having the α i we can calculate

g = 1 2λ A l i=1 α i y i H T x i w. (8) 
In the end we have an iterative algorithm calculating alternately g and A (Algorithm 1). For computational efficiency, a Nyström approximation (Williams and Seeger, 2001) on all one-view kernels is applied. Our MVML-SVM obtains better accuracies than most of the other methods.

Conclusion

We have updated the multi-view metric learning framework that learns a regression solution and a metric between views, to a classification setting within SVM framework. Our experiments on real datasets validate the approach.

Figure 1 :

 1 Figure 1: Simple two-view dataset and its transformations -left: original data, left middle: MKL, right middle: MVML, and right: OKL transformation. Only MVML shows a linear separation of classes (blue/pale red) of the views (circles/triangles).

Table 1 :

 1 The Rademacher bound proved in[START_REF] Huusari | Multi-view Metric Learning in Vector-valued Kernel Spaces[END_REF] can be used with known results(Mohri et al., 2012, chapter 8) to obtain a generalization bound for MVML-SVM. Classification accuracies ± standard deviation. The number after the dataset indicates the level of Nyström approximation on the kernels. The results for efSVM classification for Flower17-dataset are missing as only similarity matrices for each view were provided. Last column reports the best result obtained when using only one view. Hyperparameters are cross-validated, and kernels are Gaussian, with parameter σ as mean of the distances. Multi-class classification is done with one-vs-all scheme (except for MUMBO). The results are displayed in Table1, where MVML-SVM is compared with standard SVMs on individual views and early-and late fusion (meaning data concatenation and combining results from individual classifiers). OKL[START_REF] Dinuzzo | Learning output kernels with block coordinate descent[END_REF]) is a kernel learning method for separable kernels, and MLKR (Weinberger and Tesauro, 2007) is an algorithm for metric learnig in kernel setting. lpMKL is the MKL algorithm introduced in[START_REF] Kloft | Lp-norm multiple kernel learning[END_REF]. MUMBO is a multi-class boosting based multi-view algorithm which is intended to reinforce the cooperation among views[START_REF] Koço | A Boosting Approach to Multiview Classification with Cooperation[END_REF]. For our MVML we have two ways of learning the metric matrix, full and block-sparse, and two fixed choices (see[START_REF] Huusari | Multi-view Metric Learning in Vector-valued Kernel Spaces[END_REF] for details).

	METHOD	MVMLSVM MVMLSVMsp MVMLSVMCov MVMLSVM I OKL	MLKR
	Flower17 (6%)	74.66 ± 2.04	74.93 ± 2.15	75.64 ± 2.38	76.96 ± 2.35	68.73 ± 1.95	63.82 ± 2.51
	Flower17 (24%) 77.43 ± 1.39	74.75 ± 2.14	77.79 ± 1.70	78.41 ± 1.75	76.76 ± 1.62	65.44 ± 1.36
	uWaveG. (6%) 93.13 ± 0.18	93.29 ± 0.15	92.37 ± 0.22	91.63 ± 0.33	70.09 ± 1.07	71.09 ± 0.94
	uWaveG. (24%) 93.32 ± 0.04 92.03 ± 0.04	91.15 ± 0.14	92.30 ± 0.02	76.65 ± 0.33	86.38 ± 0.31
	METHOD	lpMKL	MUMBO	efSVM	lfSVM	1 view SVM	
	Flower17 (6%)	75.54 ± 2.61	75.27 ± 2.32	-	15.32 ± 1.94	11.59 ± 1.54	
	Flower17 (24%) 78.75 ± 1.58 76.47 ± 1.42	-	38.24 ± 2.31	22.79 ± 0.79	
	uWaveG. (6%) 92.34 ± 0.18	90.08 ± 0.42	80.00 ± 0.74	71.24 ± 0.41	56.54 ± 0.38	
	uWaveG. (24%) 92.85 ± 0.13	90.68 ± 0.33	84.07 ± 0.23	72.99 ± 0.06	58.01 ± 0.05	
	4 Experiments				
	We performed experiments with two multi-view classification datasets: Flower17 2 (7
	views, 17 classes, 80 samples per class) and uWaveGesture 3 (3 views, 8 classes, 896/3582
	data samples for training/testing).				

Given a set of n × n matrices K 1 , • • • , K v , H = blockdiag(K 1 , • • • , K v ) is the block diagonal matrix satisfying H l,l = K l , ∀l = 1, . . . , v.

http://www.robots.ox.ac.uk/∼vgg/data/flowers/17.

http://www.cs.ucr.edu/∼eamonn/time series data.