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Résumé. Cet article s’intéresse à l’apprentissage multivue par des méthodes à noyaux
et d’apprentissage de métriques. Dans ce cadre, nous considérons MVML (multi-view
metric learning), une méthode récemment développée, et nous proposons un algorithme
basé sur les séparateurs à vaste marge (SVM) qui apprend conjointement un classifieur
et des métriques entre les vues permettant ainsi de tenir compte des caractéristiques
multi-vues du problème d’apprentissage. Des expérimentations sur données réelles ont
été réalisées afin d’évaluer les performances de l’algorithme proposé.

Mots-clés. apprentissage de métriques multi-vues, SVM, méthodes à noyaux

Abstract. In this article we tackle the supervised multi-view learning problem with
kernel methods and metric learning. In this context we consider a recently developed
multi-view metric learning (MVML) framework, and propose a SVM-based algorithm
that jointly learns the classifier and metrics between views. These metrics permit taking
into account the multi-view characteristics of the learning problem. Experiments on real
data were performed to evaluate the performance of the proposed algorithm.

Keywords. multi-view learning, metric learning, SVM, kernel methods

1 Introduction

Multi-view learning refers to the learning framework where each data example is observed
under several views, e.g. a bird might be represented by both image and sound. In this
paper we consider a supervised multi-view learning problem in context of classification,
and thus denote our data to be {xi, yi}ni=1 on X × Y where Y is {−1, 1} and xi =
(x1

i , . . . ,x
v
i ). The views in a multi-view problem are often correlated, complementary

or redundant, or even contradictory. Thus, using all the views in a learning problem is
expected to be more beneficial than if individual views were used independently. One
of the first approaches in multi-view learning was co-regularization (Blum and Mitchell,
1998), where view agreement was used in context of semi-supervised learning. There
are many kernel-based approaches in multi-view learning, of these the simplest and most
known is the multiple kernel learning (MKL) framework (Xu et al., 2013), where a simple
linear combination of the kernel matrices from each view is learned.

More recently, vector-valued (or operator-valued) reproducing kernel Hilbert spaces
(RKHSs) have been introduced in the context of multi-view learning (Minh et al., 2016;
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Kadri et al., 2013). Unlike MKL, using vector-valued kernels allows modeling both within-
view and between-view interactions. Even though vector-valued kernels offer a good way
to model the view interactions, a central question that is already asked with scalar-valued
kernels is even more prominent in this context: how to construct the kernels? There exist
many schemes for learning separable vector-valued kernels (Dinuzzo et al., 2011), however
this class of kernels is restrictive. In the multi-view metric learning (MVML) introduced
by Huusari et al. (2018), a general vector-valued kernel matrix is learned jointly with the
classification/regression problem by introducing a metric matrix operating between the
views to the vector-valued kernel. The MVML was introduced with squared loss function.
It is possible to perform classification tasks with this loss, but a more suitable choice is
to use large margin classifiers or SVMs (Cortes and Vapnik, 1995).

2 Multi-view learning with matrix-valued kernels

Vector-valued RKHS were introduced by Micchelli and Pontil (2005) as a way to extend
kernel machines from scalar to vector outputs. As the name states, the functions in vector-
valued RKHS H output vectors, that is, the function z 7→ K(x, z)q belongs to H when
z,x ∈ X , q ∈ Rv and the kernel function is positive definite. Thus using the vector-valued
RKHS theory is especially useful in multi-task setting, where the outputs are the multiple
labels (Evgeniou et al., 2005). This framework is also suitable for multi-view learning,
where the outputs are combined after the learning step to give the final prediction (Kadri
et al., 2013), or then in a setting where a combination operator for combining the vector
into one label is either present in optimization problem, or learned with it (Minh et al.,
2016; Huusari et al., 2018).

As we are dealing with vector-valued functions, the kernel function between two data
samples outputs a matrix; in our case kernel is a function K(·, ·) : X ×X → Rv×v, where
v is the number of views. Intuitively, instead of one similarity value associated with the
two samples, our kernel outputs one value for every two-view combination.

A major theorem in kernel framework is the representer theorem. Similarly to the
scalar-valued case, the solution to a general learning problem with matrix-valued kernels
can be stated as f(x) =

∑
iK(xi,x)ci, where ci ∈ Rv (see for example Micchelli and

Pontil (2005) for details). Thus, by adding a combination operator W for combining the
outputs of the decision function f , we can write our general multi-view vector-valued
optimization problem as

arg min
f

n∑
i=1

V (yi,W (f(xi))) + λ‖f‖2H. (1)

= arg min
c1,...,cn∈Rv

n∑
i=1

V

(
yi,W

(
n∑
j=1

K(xi,xj)cj

))
+ λ

n∑
i,j=1

〈ci, K(xi,xj)cj〉. (2)
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There are many classes of matrix-valued kernels, most common are separable and
transformable (Alvarez et al., 2012). Another class of vector-valued kernels considered in
Huusari et al. (2018) is written as

K(xi,xj)lm =
〈
Φl(x

l
i), CXlXmΦm(xmj )

〉
, (3)

where Φl (resp. Φm) is the feature map associated with the scalar-valued kernel kl (resp.
km) defined on the view l (resp. m). MVML framework assumes that the operator
CXlXm : Hm → Hl can be written as CXlXm = ΦlAlmΦT

m where Φs = (Φs(x1), ...,Φs(xn))
with s = l,m. Thus the kernel matrix is K = HAH, where H = blockdiag(K1, · · · ,Kv),

1

and the matrix A = (Alm)vl,m=1 ∈ Rnv×nv encodes pairwise similarities between the views.
Substituting the MVML kernel to the optimization problem (2) and adding regular-

ization for metric matrix, we get a general MVML optimization problem

min
A,c

n∑
i=1

V (yi,w
THxi

AHc) + λ〈c,HAHc〉+ η‖A‖2F , (4)

where Hxi
∈ Rv×vn consists of the rows in H that correspond to xi, and w gives a linear

combination over the views. With the change of variables g = AHc we can write

min
A,g

n∑
i=1

V (yi,w
THxi

g) + λ〈g,A†g〉+ η‖A‖2F . (5)

Figure 1 illustrates the idea behind MVML framework. There MVML is compared to
MKL that considers only within-view dependencies, and to output kernel learning (OKL)
(Dinuzzo et al., 2011) where separable kernels are learnt. MVML is the only method
giving linear separation of the two classes. This means that it groups the data points into
groups based on their class, not view, and thus is able to construct a good approximation
of the initial data transformations by which we generated the second view.

Figure 1: Simple two-view dataset and its transformations - left: original data, left middle:
MKL, right middle: MVML, and right: OKL transformation. Only MVML shows a linear
separation of classes (blue/pale red) of the views (circles/triangles).

1Given a set of n× n matrices K1, · · · ,Kv, H = blockdiag(K1, · · · ,Kv) is the block diagonal matrix
satisfying Hl,l = Kl,∀l = 1, . . . , v.
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Algorithm 1 Multi-View Metric Learning with SVM loss

Initialize A � 0 and w
while not converged do

Solve for Lagrangian multipliers αi in Equation 7; update g via Equation 8
Solve for A as in original MVML

return A, g, w

3 Algorithm: MVML-SVM

In the previous work the MVML optimization problem (6) was solved with squared loss
function. As it is a general loss, the MVML could be applied in both regression and
classification problems. However it is not optimal for many classification problems, and
thus here we introduce MVML with hinge loss. This gives us the optimization problem

min
A,g

n∑
i=1

max(0, 1− yiwTHxig) + λ〈g,A†g〉+ η‖A‖2F . (6)

We see straight away that the solution for metric matrix A is exactly the same than for
the squared loss MVML, as the matrix is only present (directly) in the two regularizers.
Indeed, with any loss function in our framework, and with this change of variables, we
can solve for A always the same way. This means that we can also use the group-sparse
formulation of the regularization term as in Huusari et al. (2018).

To solve g we firstly introduce the slack variables ξi to the optimization problem.
Solving this requires then writing the dual problem with Lagrangian multipliers, and
then solving for the multipliers αi from

max
αi

l∑
i=1

αi −
1

2λ

l∑
i,j=1

αiαjyiyjw
THxi

AHT
xj

w, s.t. 0 ≤ αi ≤
1

n
, (7)

where we have set parameter C = 1
n
. Having the αi we can calculate

g =
1

2λ
A

l∑
i=1

αiyiH
T
xi

w. (8)

In the end we have an iterative algorithm calculating alternately g and A (Algorithm 1).
For computational efficiency, a Nyström approximation (Williams and Seeger, 2001) on
all one-view kernels is applied.

The Rademacher bound proved in Huusari et al. (2018) can be used with known results
(Mohri et al., 2012, chapter 8) to obtain a generalization bound for MVML-SVM.
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Table 1: Classification accuracies ± standard deviation. The number after the dataset
indicates the level of Nyström approximation on the kernels. The results for efSVM clas-
sification for Flower17-dataset are missing as only similarity matrices for each view were
provided. Last column reports the best result obtained when using only one view.

METHOD MVMLSVM MVMLSVMsp MVMLSVMCov MVMLSVM I OKL MLKR

Flower17 (6%) 74.66 ± 2.04 74.93 ± 2.15 75.64 ± 2.38 76.96 ± 2.35 68.73 ± 1.95 63.82 ± 2.51
Flower17 (24%) 77.43 ± 1.39 74.75 ± 2.14 77.79 ± 1.70 78.41 ± 1.75 76.76 ± 1.62 65.44 ± 1.36
uWaveG. (6%) 93.13 ± 0.18 93.29 ± 0.15 92.37 ± 0.22 91.63 ± 0.33 70.09 ± 1.07 71.09 ± 0.94
uWaveG. (24%) 93.32 ± 0.04 92.03 ± 0.04 91.15 ± 0.14 92.30 ± 0.02 76.65 ± 0.33 86.38 ± 0.31

METHOD lpMKL MUMBO efSVM lfSVM 1 view SVM

Flower17 (6%) 75.54 ± 2.61 75.27 ± 2.32 - 15.32 ± 1.94 11.59 ± 1.54
Flower17 (24%) 78.75 ± 1.58 76.47 ± 1.42 - 38.24 ± 2.31 22.79 ± 0.79
uWaveG. (6%) 92.34 ± 0.18 90.08 ± 0.42 80.00 ± 0.74 71.24 ± 0.41 56.54 ± 0.38
uWaveG. (24%) 92.85 ± 0.13 90.68 ± 0.33 84.07 ± 0.23 72.99 ± 0.06 58.01 ± 0.05

4 Experiments

We performed experiments with two multi-view classification datasets: Flower172 (7
views, 17 classes, 80 samples per class) and uWaveGesture3 (3 views, 8 classes, 896/3582
data samples for training/testing). Hyperparameters are cross-validated, and kernels are
Gaussian, with parameter σ as mean of the distances. Multi-class classification is done
with one-vs-all scheme (except for MUMBO). The results are displayed in Table 1, where
MVML-SVM is compared with standard SVMs on individual views and early- and late fu-
sion (meaning data concatenation and combining results from individual classifiers). OKL
(Dinuzzo et al., 2011) is a kernel learning method for separable kernels, and MLKR (Wein-
berger and Tesauro, 2007) is an algorithm for metric learnig in kernel setting. lpMKL is
the MKL algorithm introduced in Kloft et al. (2011). MUMBO is a multi-class boosting
based multi-view algorithm which is intended to reinforce the cooperation among views
(Koço and Capponi, 2011). For our MVML we have two ways of learning the metric
matrix, full and block-sparse, and two fixed choices (see Huusari et al. (2018) for details).
Our MVML-SVM obtains better accuracies than most of the other methods.

5 Conclusion

We have updated the multi-view metric learning framework that learns a regression solu-
tion and a metric between views, to a classification setting within SVM framework. Our
experiments on real datasets validate the approach.

2http://www.robots.ox.ac.uk/∼vgg/data/flowers/17.
3http://www.cs.ucr.edu/∼eamonn/time series data.
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