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Abstract: A robust synergetic controller using different observers is developed to drive an anaerobic
digestion biogas plant. The latter, a highly nonlinear process requires prohibitive cost sensors.
Furthermore, some variables are downright immeasurable rendering control an intricate challenge.
Only biogas flow which can be effectively measured, due to an easily integrated low cost sensor,
will be considered available and used in this work. The proposed synergetic controller depends on
immeasurable system states, thus observers will be used for state estimation. Substrate and biomass
concentrations required in the synergetic control law will be obtained via three virtual sensors
developed for a one stage fermentation process model. The model, used in this paper, consider the
mechanization phase responsible for the biogas production because the objective is to improve the
amount of methane produced. A simulation study of the biogas plant control with the proposed
technique is compared to a classic PID (Proportional, Integral and Derivative) approach. Comparative
studies are provided for observation and control via computer simulations.

Keywords: Anaerobic digestion; synergetic control; soft sensor; methane; renewable energy

1. Introduction

Anaerobic digestion (AD) is a biotechnological process widely used and a promising method to
solve some energy and ecological problems in the agriculture and the agro-industry.

Production of biogas via anaerobic fermentation has been recently one of the most interesting
research topics for two essential reasons: Elimination of organic waste (ecological aspect) and renewable
power production (energetical aspect). The renewable energy produced in gas form is coined biogas in
which methane constitutes the main component. This biotechnological process is described by a two
stages reaction diagram expressed by a second order nonlinear model.

Biogas production by fermentation of organic material takes place in bioreactors tanks
continuously stirred. The organic material is cleaned up by microorganisms producing biogas
essentially composed of methane, carbon dioxide and compost in the absence of oxygen [1–3]. Different
biogases with non-methane content can also be produced through this bioprocess [4] but will not
be addressed in this work. Biogas is an additional source of energy which can possibly back up
dwindling fossil fuels sources. Besides it has an indirect positive effect in the reduction of greenhouse
gas emission, yet this complex process can become unstable in open-loop configuration and production
of biogas may even exhaust itself if left without control.
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Many factors enter in the biogas production among which the biodegradable organic matter
content of the raw material subjected to anaerobic digestion, the sub-layer pH and temperature of the
digester process [2]. An equally significant issue consists in the control approach applied to supervise
the global biogas production process, which is to be addressed in this paper.

Implementation of the proposed synergetic control law based on the nonlinear system model
entails the knowledge of the complete state vector of the system. Thus, it is necessary to reconstruct
the state vector, using virtual sensors, i.e., observers, to generate the proposed control law. Observers
are used in conjunction with a robust synergetic controller to address both robustness and variable
unavailability issues in a tracking problem in a biogas production process.

This seemingly simple biogas process has revealed to be a challenging control topic, not only
because it exhibits high nonlinearity features, but the controllers proposed in the literature rely on a
problematic to a non-measurable system variable.

The contribution in this work lies in the fact that both biomass and substrate concentrations are
estimated through different virtual sensors while the only really measurable variable relied upon,
in the development of the control laws, is the output gas flow Q which is indeed readily available.
Further enhancement comes from the synergetic control approach used, which is as robust as SMC
(sliding mode control) but without the chattering problem.

Observers are used in conjunction with a robust synergetic controller to address both robustness
and variable unavailability issues in a tracking problem in a biogas production process.

The rest of the paper is organized as follows: First, process description is briefly recalled followed
by a brief synergetic control section. Introduction of three observers and their corresponding synergetic
control laws of a biogas plant are then developed. The results of the simulation are presented and
discussed in subsequent sections.

2. Process Description

2.1. Process Outline

These processes are carried out in continuously stirred tank bioreactors (CSTR); Figure 1 gives a
basic layout of such a plant. The organic matter is depolluted by microorganisms into biogas (methane
and carbon dioxide) and digestate in the absence of oxygen. The liquid medium contains cells and the
substrates which are needed for the cell growth and cell production. The feed D is used to control the
substrate concentration.
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Figure 1. Bioreactor basic schematics.

Well-mixed conditions are obtained through continuous stirring with a mechanical agitator. The
produced cells are kept in the bioreactor where several control loops ensure that important process
parameters, such as pH and temperature, stay close to specified operating conditions. The stirrer speed
is often used to be kept constant as long as the liquid medium level is high enough; keeping good
mixing in the reactor, the stirrer speed, N, does never fall never below a minimum value.
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Cell metabolism can be described by different specific rates of growth µ, among which the Monod
type will be used in this paper.

2.2. Process Modeling

Different mathematical models of AD exist in the specialized literature: One-stage, Three-stage
and Five-stage model.

The model for the description of the AD process used in this study is the basic one-stage proposed
in References [5–8] devoted to modeling anaerobic digestion obtained by fermentation.

The dynamics of the anaerobic digestion system represented by the model is illustrated by the
following first order differential equations system:{

dX
dt = (µ(S)− D)X
dS
dt = −k1µ(S)X + D(Si − S)

, (1)

Q = k2µ(S)X, (2)

µ = µm
S

S + ks
. (3)

X is the concentration of the bacterial population (or biomass) (g/L), S is the substrate
concentration of complex organic materials in the bioreactor (g/L), Si is the inlet substrate concentration
(g/L), k1 and k2 are positive constant yield coefficients. D is the dilution rate and µ is the specific
bacterial growth expressed by Equation (3). D and µ are both expressed in day−1.

The measured output flow rate Q, in biogas (methane) is given by Equation (2). It’s expressed in
L/day.

The last Equation (3) expresses the growth rate of methanogen bacteria that is obtained through the
Monod model. µm is the maximum specific growth rate (day−1) and ks is a saturation parameter (g/L).

Specific values used in this work are given by:

k1 = 6.7, k2 = 16.8, Si = 7.4 g/L, µm = 0.35 day−1, ks = 2.3 g/L.

X, S, Q, µ(S) are always positive values. D is defined as the ratio of the flow to the volume of the
bioreactor [1],

D =
Qin
V

=
dV
dt
V

; D ≥ 0.

The plant model can be written in the following standard form:{
dx(t)

dt = f0(x, u, t)
y = C(S)x

, (4)

where x is the state vector defined by: x =

(
X
S

)
, f0(x, µ, t) =

(
µX− DX
−k1µX + (Si − S)D

)
, u is the

control input: u = D and C(S) = (k2µ(S)0) .
The initial conditions are calculated at the equilibrium point given by Q0 = 0.453 L/day and

D0 = 0.025 day−1 [5]. By replacing in the Equation (1), we obtain at the equilibrium: (µ0 − D0)X0 = 0
and −k1µ0X0 + D0(Si − S0) = 0.

The bacterial concentration although small is never zero at startup, so: µ0 = D0 = 0.025 day−1.
Replacing µ0 by its value in Equation (3), leads to: 0.35 S0

S0+2.3 = 0.025
The resolution of this equation gives:

S0 = S(0) = 0.1769 g/L. (5)
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Replacing S0 by its value, leads to: −6.7 ∗ 0.025 ∗ X0 + 0.025(7.4− 0.1769) = 0
The resolution of this equation gives:

X0 = X(0) = 1.0781 g/L. (6)

2.3. Reference Process Modeling Analysis

The anaerobic fermentation process modeling has attracted interest as early as 1976 as can be
seen in Reference [9] which tackled animal waste digestion modeling. Ensuing work of Bastin and
Dochain [10] who proposed a one-stage reaction model for methane fermentation process formalized
by a nonlinear second order system much used in the specialized literature. The methane fermentation
process is a complex system with many time varying parameters, as well as variables that cannot be
accurately measured if at all. Furthermore, the specific bacteria growth rate can take three different
forms as proposed in Reference [10] and can greatly impact simulation results. Nevertheless, models
based on Monod bacteria growth rate have been used extensively in biogas production control
algorithms reinforced by Simeonov’s work [11] in which Monod, Contois, and Haldane bacteria
growth rates were investigated in a thorough experimental study assessing positively the second
order nonlinear model developed in Reference [10] and used in this paper. Indeed, the author in
Reference [11] concludes that the model is suitable for control algorithms testing when considering
continuous biogas fermentation.

This simple nonlinear model has been extensively used since then to evaluate control algorithms,
such as extremum seeking [6], SMC [7,12–14], composite adaptive control [5], Hinf control [15], and
fuzzy logic control [16].

More complex models, such as three and five stage reaction scheme models, exist, but only
one-stage model using Monod’s growth rate form will be considered in this paper as continuous
methane production is envisaged.

3. Bioreactor Control

CSTR is often a preferred way of methane production because the additional substrate is well
integrated into agricultural cultures during the fermentation process.

3.1. Synergetic Control

Consider a nonlinear SISO dynamic process of any dimension described by Equation (4).
The development of the synergetic control starts with the choice of a macro variable Ψ [17–19],

which contains the desired control constraints, as well as the performance specifications:

Ψ = ψ(x, t). (7)

Ψ is the macro-variable and ψ(x, t) is a function of the state variables and the time chosen by
the designer.

The synergetic control forces the system to evolve on the domain chosen by the user:

ψ = 0. (8)

The macro-variable is forced to evolve in a desired way through a chosen constraint indicated by
Equation (10) according to the desired dynamics for the evolution of ψ.

T
.
ψ + ψ = 0T > 0. (9)

T is the convergence speed. Differentiation of the macro-variable gives:

dψ(x, t)
dt

=
dψ(x, t)

dx
dx
dt

. (10)
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The substitution of Equation (10) in Equation (9) leads to writing:

T
dψ(x, t)

dt
f0(x) + ψ(x, t) = 0. (11)

By solving Equation (11) the control law can thus be obtained as a function of the state vector, the
macro-variable, the convergence speed and time.

u = h(x, ψ(x, t), T, t) (12)

Applying this approach to the underlying bioprocess starts by a choice of a synergetic
macro-variable defined by:

Ψ = e = Qd −Q, (13)

where Qd represents constant desired gas flow output.
Expressing the constraints of Equation (9) with the synergetic macro-variable defined by Equation

(13) gives:
T
( .

Qd −
.

Q
)
+ e = 0. (14)

Calculation of
.

Q: .
Q = k2

( .
µX + µ

.
X
)

, (15)

.
Q = k2

(
µm

.
S(ks + S)− µm

.
SS

(ks + S)2 X + µ(µX− DX)

)
. (16)

Basic simplification steps lead to:

.
Q = k2X

(
µm

.
Sks

(ks + S)2 + µ2 − µD

)
. (17)

Using: B = µm

(S+ks)
2

One can rewrite Equation (17) as:

.
Q = k2X

(
B

.
Sks + µ2 − µD

)
. (18)

Replacing
.
S by its value:

.
Q = k2X

(
−Bk1µXks + BDSiks − BDSks + µ2 − µD

)
. (19)

Porting Equation (19) in Equation (14), gives:

T
.

Qd − Tk2X
(
−Bk1µXks + BDSiks − BDSks + µ2 − µD

)
+ e = 0, (20)

T
.

Qd − Tk2Xµ(−Bk1Xks + µ)− Tk2XD(BSiks − BSks − µ) + e = 0. (21)

Straightforward steps lead to the controller of Equation (22):

D =
T

.
Qd − Tk2Xµ(−Bk1Xks + µ) + e

Tk2X(BSiks − BSks − µ)
(22)

It is to be noted that biomass concentration X is never null.

Synergetic control stability proof
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Stability of the closed loop system can be proved using the following Lyapunov function:

V =
1
2

ψ2. (23)

The derivative of the Lyapunov function is given by:

.
V = ψ

.
ψ. (24)

From the constraints of Equation (9) one obtains:

.
ψ =

−ψ

T
. (25)

Replacing Equation (25) in Equation (24) leads to:

.
V =

−ψ2

T
< 0, for ψ 6= 0. (26)

The closed loop system is thus stable under synergetic control.

3.2. PID Control

A standard PID (Proportional, Integral and Derivative) controller, widely used in industry [20]
will be used in this paper with the aim of comparison. The controller in this case can be expressed by
the following relation:

Dpid = kpe(t) + ki

∫
e(τ)dτ + kd

de(t)
dt

. (27)

As defined before for the fermentation process e(t) expresses the error between the desired biogas
output flow Qd and the actual plant output Q.

The PID gains used in this paper are taken from reference [5] for comparative purposes.

kp = 4, ki = 1.5 and kd = 2

The desired trajectory of the output is selected in the form of steps of increasing heights for 200 days [5]:
0.45 L/day before 30 days; 1 L/day between 30 days and 60 days; 1.5 L/day between 60 days and

90 days; 1.8 L/day between 90 days and 120 days; 2.1 L/day between 120 days and 200 days.

3.3. Simulation Results

Simulation is carried out under the environment Matlab/Simulink for a 200 days period using
PID and synergetic controllers. The system is simulated using Equations (1)–(3), (5), (6), (22) and (27),
process parameters, given in Section 2.2, and PID parameters, given in Section 3.2.

It is evident, as can be noted from Figure 2, that good tracking occurs under both controllers,
using the parameters of the PID mentioned above given in Reference [5] and T = 0.01 for the synergetic
approach. It is observed that PID control provides a faster response than the proposed approach at
transitions and in the event of reference variations. Besides PID control presents elevated peaks at
transitions. Overall synergetic performance, such as response time and steady-state error are improved
compared to PID.

On the other hand, PID control signal requires much more dilution rate D at transitions time than
when synergetic control is used as can be seen in Figure 3c. Indeed, the highest level of required flow
rate (6.1/day) for synergetic control occurs at 120 days but reaches a much higher level (61/day) for
PID control lasting for 0.01 day(≈15min).Thus, the value of these peaks is more reasonable with the
synergetic control. These results have been obtained making the assumption that the complete system
state vector was readily available and used in the control laws used; however, the state vector is not
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completely measurable. A more realistic approach would be therefore to rely on an observer devoted
to the estimation of both concentrations X and S. Different observers are introducing in the ensuing
sections and simulation results discussed.
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4. Observers Based Control

In practice it is not possible to measure on-line the different bacterial concentrations or their
specific growth rates. Other biochemical variables important for the AD processes are too costly
to be measured. In practice, only the biogas flow rate can be easily measured on-line. One of
the most promising ways to solve this problem is the design of software sensors for estimating
biochemical variables on the basis of an AD mathematical model and some easily measured process
parameters [8,13,21].

Hence in this paper, only the use of reliable gas sensor will be exploited in the control of this
biotechnological process, other required state variables will be estimated through different observers
(Figure 4).

Energies 2018, 11, x FOR PEER REVIEW  8 of 19 

 
 

In practice it is not possible to measure on-line the different bacterial concentrations or their specific 
growth rates. Other biochemical variables important for the AD processes are too costly to be measured. 
In practice, only the biogas flow rate can be easily measured on-line. One of the most promising ways 
to solve this problem is the design of software sensors for estimating biochemical variables on the basis 
of an AD mathematical model and some easily measured process parameters [8,13,21]. 

Hence in this paper, only the use of reliable gas sensor will be exploited in the control of this 
biotechnological process, other required state variables will be estimated through different observers. 

 
Figure 4. Control based on observer state estimation. 

As with most applications, biogas production does not offer readily accessible variables for the 
direct measure to empower developed control law; the latter requires nevertheless high cost sensors not 
often accurate or always available. These drawbacks on top of difficulties in maintenance and eventual 
induced stochastic errors are often mitigated by the use of algorithms coined observers designed to 
replace hard sensors efficiently. Such observers are used to estimate substrate S  and biomass X  of the 
bioreactor previously described. 

 Different observers for this kind of process have been proposed in the literature but these 
observers rely on measurements made on the substrate which is not only very costly but may be less 
efficient than gas flow measurement. 

Furthermore, it is practically impossible to measure on-line different bacterial concentrations or 
specific growth rates [21]. Other biochemical variables are too expensive to be measured. In practice, 
the biogas flow rate sensor is not expensive and it is easily integrated in the process. So, it’s the only 
measured variable and virtual sensors are used in the following section to estimate bacterial and 
substrate concentrations variables. 

4.1. Observer with linear feedback 

Observer dynamics are given by Equation (28). The estimated state vector x̂  is computed using the 
plant model, to which a linear corrective term is added [8], to ensure the convergence of the state 
estimate x̂  to the system state x.  

Defining the output estimation error ˆy yε = −  then the observer may be written as: 

( ) ( )
( )

dx f x g x u L
dt
y h x

ε
= + +


 =

ˆ ˆ ˆ

ˆ ˆ
, (28)

where, L  is the observer gain.  
Using the observer above onto the biogas process, where ˆQ Q Q= −

 ( )Q ε= , leads to Equation (29). 

Biomass, substrate concentration and biogas flow rate estimations are given by Equation (29): 

Figure 4. Control based on observer state estimation.

As with most applications, biogas production does not offer readily accessible variables for the
direct measure to empower developed control law; the latter requires nevertheless high cost sensors not
often accurate or always available. These drawbacks on top of difficulties in maintenance and eventual
induced stochastic errors are often mitigated by the use of algorithms coined observers designed to
replace hard sensors efficiently. Such observers are used to estimate substrate S and biomass X of the
bioreactor previously described.

Different observers for this kind of process have been proposed in the literature but these observers
rely on measurements made on the substrate which is not only very costly but may be less efficient
than gas flow measurement.

Furthermore, it is practically impossible to measure on-line different bacterial concentrations or
specific growth rates [21]. Other biochemical variables are too expensive to be measured. In practice,
the biogas flow rate sensor is not expensive and it is easily integrated in the process. So, it’s the only
measured variable and virtual sensors are used in the following section to estimate bacterial and
substrate concentrations variables.

4.1. Observer with Linear Feedback

Observer dynamics are given by Equation (28). The estimated state vector x̂ is computed using
the plant model, to which a linear corrective term is added [8], to ensure the convergence of the state
estimate x̂ to the system state x.

Defining the output estimation error ε = y− ŷ then the observer may be written as:{
dx̂
dt = f (x̂) + g(x̂)u + Lε

ŷ = h(x̂)
, (28)

where, L is the observer gain.
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Using the observer above onto the biogas process, where Q̃ = Q − Q̂
(

Q̃ = ε
)

, leads to
Equation (29). Biomass, substrate concentration and biogas flow rate estimations are given by Equation
(29): 

dX̂
dt =

(
µ
(
Ŝ
)
− D

)
X̂ + L1Q̃

dŜ
dt = −k1µ

(
Ŝ
)
X̂ + D

(
Si − Ŝ

)
+ L2Q̃

Q̂ = k2µ
(
Ŝ
)
X̂

. (29)

Global stability proof

After observation, e defined in the control section becomes e = Qd − Q̂ which can be written
e = Qd − Q̂ + Q−Q. Steady state as has already been proven Qd −Q = 0 so e = Q− Q̂ = Q̃.

Observation errors are given by Equation (30):
X̃ = X− X̂
S̃ = S− Ŝ
Q̃ = Q− Q̂ = k2(µ(S)X− µ(Ŝ)X̂)

. (30)

Introducing a new variable given by Equation (31)

Z̃ =
1
k1

S̃. (31)

The error dynamics can be rewritten as:
.

X̃ = (µ(S)− D)X̃− (µ(Ŝ)− µ(S))X̂− L1Q̃
.
S̃ = −k1µ(S)X̃− DS̃− k1(µ(S)− µ(Ŝ))X̂− L2Q̃
.
Z̃ = 1

k1

.
S̃ = −µ(S)X̃− DZ̃− (µ(S)− µ(Ŝ))X̂− L2

k1
Q̃

. (32)

Choosing the following Lyapunov function:

Vg =
1
2

αZ̃2 +
1
2

βX̃2 +
1
2

γQ̃2. (33)

Its derivative is given by:
.

Vg = αZ̃
.
Z̃ + βX̃

.
X̃ + γQ̃

.
Q̃. (34)

Making use of Equation (32) into Equation (34) leads to:

.
Vg = αZ̃

(
−µ(S)X̃− DZ̃− (µ(S)− µ(Ŝ))X̂− L2

k1
Q̃
)
+ βX̃

(
(µ(S)− D)X̃− (µ(Ŝ)− µ(S))X̂− L1Q̃

)
− γ

T Q̃2. (35)

Noting that:

Q̃ = k2µ(S)X− k2µ(Ŝ)X̂ = k2µ(S)X− k2µ(Ŝ)X̂− k2µ(S)X̂ + k2µ(S)X̂ = k2µ(S)X̃ + k2
(
µ(S)− µ(Ŝ)

)
X̂. (36)

So:
1
k2

Q̃− µ(S)X̃ =
(
µ(S)− µ(Ŝ)

)
X̂. (37)

Porting Equation (37) into Equation (35) gives:

.
Vg = αZ̃

(
−DZ̃− 1

k2
Q̃− L2

k1
Q̃
)
+ βX̃

(
−DX̃ +

1
k2

Q̃− L1Q̃
)
− γ

T
Q̃2, (38)

.
Vg = −αDZ̃2 − βDX̃2 − Z̃Q̃

(
α

k2
+

αL2

k1

)
− X̃Q̃

(
− β

k2
+ βL1

)
− γ

T
Q̃2. (39)
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This can be written as:

.
Vg = −

(
Z̃ X̃ Q̃

)
M1

 Z̃
X̃
Q̃

. (40)

With:

M1 =


αD 0 1

2

(
α
k2
+ αL2

k1

)
0 βD 1

2

(
− β

k2
+ βL1

)
1
2

(
α
k2
+ αL2

k1

)
1
2

(
− β

k2
+ βL1

)
γ
T

. (41)

For
.

V < 0 it is necessary that the symmetric matrix M1 be positive definite.
For M1 positive definite, it is necessary that the main minors of M1 are positive [22].

∆1a = αD

αD > 0 for α > 0

∆2a =

∣∣∣∣∣ αD 0
0 βD

∣∣∣∣∣ = αβD2

αβD2 > 0 for α > 0 and β > 0

∆3a =

∣∣∣∣∣∣∣∣∣
αD 0 1

2

(
α
k2
+ αL2

k1

)
0 βD 1

2

(
− β

k2
+ βL1

)
1
2

(
α
k2
+ αL2

k1

)
1
2

(
− β

k2
+ βL1

)
γ
T

∣∣∣∣∣∣∣∣∣
∆3a = αD

(
γ

T
βD− 1

4

(
− β

k2
+ βL1

)2
)
− βD

1
4

(
α

k2
+

αL2

k1

)2

∆3a > 0 so, αD

(
γ

T
βD− 1

4

(
− β

k2
+ βL1

)2
)
− βD

1
4

(
α

k2
+

αL2

k1

)2
> 0

γ

T
D− β

4

(
− 1

k2
+ L1

)2
− α

4

(
1
k2

+
L2

k1

)2
> 0

For simplification purpose the following steps are taken:

α = β and

L1 =
L2

k1
. (42)

This leads to:
γ

T
D− α

2

(
1

k22 +

(
L2

k1

)2
)

> 0

using
2γD
αT

>
1

k22 give :

0 < L2 < k1

√
2γD
αT
− 1

k22 (43)

Stability is thus guaranteed with gains defined by Equations (42) and (43).
A nonlinear robust observer based on sliding mode techniques will be recalled in the

ensuing section.



Energies 2019, 12, 430 11 of 18

4.2. Sliding Mode Observers

As stated above only Q measurements are available, estimates of both biomass and substrate
concentrations will be obtained via a first order sliding mode observer.

4.2.1. First Order Sliding Mode Observer (FOSMO)

The sliding mode observer [23,24] is given by:{
dx̂
dt = f (x̂) + g(x̂)u + K1ε + Lsignσ

ŷ = h(x̂)
. (44)

The used term of correction is proportional to the discontinuous function sign applied to the

output error where sign(σ) is defined by: sign(σ) =

{
1siσ > 0
−1siσ < 0

Applying FOSMO to the biogas process lead to:{
dX̂
dt =

(
µ
(
Ŝ
)
− D

)
X̂ + K1Q̃ + L1asign(σ)

dŜ
dt = −k1µ

(
Ŝ
)
X̂ + D

(
Si − Ŝ

)
+ K1Q̃ + L2asign(σ)

(45)

Q̂ = k2µ(Ŝ)X̂ (46)

where L1a, L2b and K1 are observer gains and σ = Q̃ is the sliding surface [23,24].

Global stability proof

Introduction of the variable Z̃. defined by Equation (31), Equation (32) can be written for this
observer as: 

.
X̃ = (µ(S)− D)X̃− (µ(Ŝ)− µ(S))X̂− K1Q̃− L1asignQ̃
.
S̃ = −k1µ(S)X̃− DS̃− k1(µ(S)− µ(Ŝ))X̂− K1Q̃− L2bsignQ̃
.
Z̃ = 1

k1

.
S̃ = −µ(S)X̃− DZ̃− (µ(S)− µ(Ŝ))X̂− K1

k1
Q− L2b

k1
signQ̃

Choosing Lyapunov function Vg, Equation (33), and proceeding in the same manner as before for
.

Vg Equations (34) and (35), one can write:

.
Vg = αZ̃

(
−DZ̃− 1

k2
Q̃− K1

k1
Q̃− L2a

k1
sign(Q̃)

)
+ βX̃

(
−DX̃ +

1
k2

Q̃− K1Q̃− L1asign(Q̃)

)
− γ

T
Q̃2,

(47)

.
Vg = −αDZ̃2− αZ̃Q̃

(
1
k2

+
K1

k1

)
− α

L2a

k1
Z̃sign(Q̃)− βDX̃2− βX̃Q̃

(
− 1

k2
+ K1

)
− βL1aX̃sign(Q̃)− γ

T
Q̃2.

Eliminating the sign function using sign(Q̃) = Q̃
|Q̃| .

And noting that Q̃ is small but not null lead to:

.
Vg = −αDZ̃2 − αZ̃Q̃

 1
k2

+
K1

k1
+

L2a

k1

∣∣∣Q̃∣∣∣
− βDX̃2 − βX̃Q̃

− 1
k2

+ K1 +
L1a∣∣∣Q̃∣∣∣
− γ

T
Q̃2, (48)

.
Vg = −

(
S̃ X̃ Q̃

)
M2

 S̃
X̃
Q̃

, (49)
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With : M2 =


αD 0 α

2

(
1
k2
+ Q̃

k1
+ L2a

k1|Q̃|

)
0 βD β

2

(
− 1

k2
+ K1 +

L1a
|Q̃|

)
α
2

(
1
k2
+ K1

k1
+ L2a

k1|Q̃|

)
β
2

(
− 1

k2
+ K1 +

L1a
|Q̃|

)
γ
T

.

For
.

Vg < 0, it is necessary that the matrix M2 be positive definite.
For M2 positive definite, it is necessary that the main minors of M2 be positive.

∆1b = αD

αD > 0 for α > 0

∆2b =

∣∣∣∣∣ αD 0
0 βD

∣∣∣∣∣ = αβD2

αβD2 > 0 for α > 0 and β > 0

∆3b =

∣∣∣∣∣∣∣∣∣∣∣∣

αD 0 α
2

(
1
k2
+ K1

k1
+ L2a

k1|Q̃|

)
0 βD β

2

(
− 1

k2
+ K1 +

L1a
|Q̃|

)
α
2

(
1
k2
+ K1

k1
+ L2a

k1|Q̃|

)
β
2

(
− 1

k2
+ K1 +

L1a
|Q̃|

)
γ
T

∣∣∣∣∣∣∣∣∣∣∣∣
∆3b = αD

γ

T
βD− 1

4

− β

k2
+ βK1 +

βL1a∣∣∣Q̃∣∣∣
2
− βD

1
4

 α

k2
+

αK1

k1
+

αL2a

k1

∣∣∣Q̃∣∣∣
2

∆3b > 0

Such that :
γ

T
D− β

4

− 1
k2

+ K1 +
L1a∣∣∣Q̃∣∣∣
2

− α

4

 1
k2

+
K1

k1
+

L2a

k1

∣∣∣Q̃∣∣∣
2

> 0

Some simplification steps taken before are carried out a gain:

Forα = β, K1 = 0,

L1a =
L2a

k1
. (50)

Leading to :
γ

T
D− α

2

 1
k22 +

 L2a

k1

∣∣∣Q̃∣∣∣
2
 > 0

For
2γD
αT

>
1

k22

The gain may be obtained by Equation (51):

0 < L2a < k1

√
2γDQ̃2

αT
− Q̃2

k22 (51)

Stability is thus guaranteed with gains defined by Equations (50) and (51).
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4.2.2. Sliding Mode Observer with PD Based Surface

In this section, the proposed sliding surface is PD (Proportional derived). Proceeding as before,
the observer gain term is replaced by L1b for the first state variable X and L2b for the second state
variable S. {

dX̂
dt =

(
µ
(
Ŝ
)
− D

)
X̂ + K2Q̃ + L1bsign(σ)

dŜ
dt = −k1µ

(
Ŝ
)
X̂ + D

(
Si − Ŝ

)
+ K2Q̃ + L2bsign(σ)

(52)

where σ = λQ̃ +
.

Q̃ is the new sliding surface [25].
Stability proof is similar to Section 4.2.1.
Interested readers in the observability of the bioprocess are referred to the excellent and detailed

work of Selişteanu [13].

5. Simulation and Results

For the bioprocess represented by Equations (1)–(3), simulation results are presented for the
synergetic controller given by Equation (24), the process parameters used in Section 2, T = 0.01, L1 = 5,
L2 = 33.5, L1a = 2, L2a = 13.4, λ = 50, L1b = 2, L2b = 13.4.

The observer based synergetic control is obtained by replacing X by X̂, S by Ŝ, µ(S) by µ(Ŝ), as
well as B by B̂ in Equation (22) for all the virtual sensors written as (53):

D =
T

.
Qd − Tk2X̂µ̂

(
−B̂k1X̂ks + µ̂

)
+ (Q̂−Qd)

Tk2X̂
(

B̂Siks − B̂Ŝks − µ̂
) (53)

Simulation of the biogas process control using:
a) Linear feedback observer based synergetic control.
Starting with Q̃(0) 6= 0 as shown in Figure 5a good tracking occurs under the proposed observer

based synergetic controller. As previously found the control signal in Figure 5b although vitiated with
peaks at transitions show much lower magnitude values as opposed to the PID approach. Rapidly
dwindling estimation errors for both concentrations X and S are given in Figure 5c,d.

b) First order sliding mode observer based synergetic control.
c) Sliding mode observer with PD based surface based synergetic control.
Simulation results for biogas output flow rate, biomass and substrate concentration obtained for

three observers under the proposed control approach used are given in Figures 5–7 showing good
overall tracking performance. Figure 5a, Figure 6a, Figure 7a show that the three observers act in the
same way on biogas flow rate evolution. Figures 5b, 6b and 7b show the control effort necessary to
achieve the desired tracking. It is to be noted that the magnitude of the synergetic control signal is
much lower than under PID control for all observers. Estimation errors magnitude orders are similar
for the three observers used as can be seen in Figure 8a, and faster response time for the SMO based
proposed control technique this comes out with chattering as expected. As anticipated response time
using the two type of SMO is faster than that obtained with the linear feedback observer (Figure 8a).



Energies 2019, 12, 430 14 of 18

Energies 2018, 11, x FOR PEER REVIEW  14 of 19 

 
 

 

 

(a) 

 

 

 (b) 

 
(c) 

 
(d) 

Figure 5. Linear feedback observer based synergetic controller. (a) Time evolution biogas flow rate; (b) control 
signal evolution; (c) error of the bacterial concentration evolution; (d) error of the substrate concentration evolution. 

Starting with 0 0( )Q ≠ as shown in Figure 5a good tracking occurs under the proposed observer 
based synergetic controller. As previously found the control signal in Figure5b although vitiated with 
peaks at transitions show much lower magnitude values as opposed to the PID approach. Rapidly 
dwindling estimation errors for both concentrations X and S are given in Figure 5c,d. 

b) First order sliding mode observer based synergetic control.  
  

Figure 5. Linear feedback observer based synergetic controller. (a) Time evolution biogas flow rate;
(b) control signal evolution; (c) error of the bacterial concentration evolution; (d) error of the substrate
concentration evolution.



Energies 2019, 12, 430 15 of 18
Energies 2018, 11, x FOR PEER REVIEW  15 of 19 

 
 

 
(a) 

 
(b) 

  

(c) 
 

(d) 

Figure 6. Anaerobic digestion first order sliding mode observer based synergetic controller. (a) Biogas flow rate; 
(b) control signal evolution; (c) estimation error of the concentration of the bacterial population X; (d) estimation 
error of the concentration of the substrate S. 

c) Sliding mode observer with PD based surface based synergetic control.  

 

 (a) 
  

(b) 

Figure 6. Anaerobic digestion first order sliding mode observer based synergetic controller. (a)
Biogas flow rate; (b) control signal evolution; (c) estimation error of the concentration of the bacterial
population X; (d) estimation error of the concentration of the substrate S.

Energies 2018, 11, x FOR PEER REVIEW  15 of 19 

 
 

 
(a) 

 
(b) 

  

(c) 
 

(d) 

Figure 6. Anaerobic digestion first order sliding mode observer based synergetic controller. (a) Biogas flow rate; 
(b) control signal evolution; (c) estimation error of the concentration of the bacterial population X; (d) estimation 
error of the concentration of the substrate S. 

c) Sliding mode observer with PD based surface based synergetic control.  

 

 (a) 
  

(b) 

Figure 7. Cont.



Energies 2019, 12, 430 16 of 18
Energies 2018, 11, x FOR PEER REVIEW  16 of 19 

 
 

  

(c) 

  

(d) 

Figure 7. Anaerobic digestion sliding mode observer with PD based surface under a synergetic controller. (a) Biogas 
flow rate evolution; (b) control signal; (c) error of the concentration of the bacterial population X ; (d) error of the 
concentration of the substrate S. 

Simulation results for biogas output flow rate, biomass and substrate concentration obtained for 
three observers under the proposed control approach used are given in Figures 5–7 showing good 
overall tracking performance. Figures 5a, 6a, 7a show that the three observers act in the same way on 
biogas flow rate evolution. Figures 5b, 6b and 7b show the control effort necessary to achieve the desired 
tracking. It is to be noted that the magnitude of the synergetic control signal is much lower than under 
PID control for all observers. Estimation errors magnitude orders are similar for the three observers 
used as can be seen in Figure 8a, and faster response time for the SMO based proposed control technique 
this comes out with chattering as expected. As anticipated response time using the two type of SMO is 
faster than that obtained with the linear feedback observer (Figure 8a). 

 

 
(a) 

   

Figure 7. Anaerobic digestion sliding mode observer with PD based surface under a synergetic
controller. (a) Biogas flow rate evolution; (b) control signal; (c) error of the concentration of the bacterial
population X; (d) error of the concentration of the substrate S.

Energies 2018, 11, x FOR PEER REVIEW  16 of 19 

 
 

  

(c) 

  

(d) 

Figure 7. Anaerobic digestion sliding mode observer with PD based surface under a synergetic controller. (a) Biogas 
flow rate evolution; (b) control signal; (c) error of the concentration of the bacterial population X ; (d) error of the 
concentration of the substrate S. 

Simulation results for biogas output flow rate, biomass and substrate concentration obtained for 
three observers under the proposed control approach used are given in Figures 5–7 showing good 
overall tracking performance. Figures 5a, 6a, 7a show that the three observers act in the same way on 
biogas flow rate evolution. Figures 5b, 6b and 7b show the control effort necessary to achieve the desired 
tracking. It is to be noted that the magnitude of the synergetic control signal is much lower than under 
PID control for all observers. Estimation errors magnitude orders are similar for the three observers 
used as can be seen in Figure 8a, and faster response time for the SMO based proposed control technique 
this comes out with chattering as expected. As anticipated response time using the two type of SMO is 
faster than that obtained with the linear feedback observer (Figure 8a). 

 

 
(a) 

   

Energies 2018, 11, x FOR PEER REVIEW  17 of 19 

 
 

(b) (c) 

Figure 8. Comparison between three observers (a) Error evolution of biogas flow rate measured, and biogas flow 
rate estimated with the virtual sensors; (b) evolution of the real biomass and estimated biomass with three 
observers; (c) evolution of the real substrate and estimated substrate for three observers.  

Figure 8b and 8c shows the chattering phenomenon for the two sliding mode observers. 
Switching/chattering of sliding mode observation signals crossing the sliding mode surfaces is an 
important characteristic in all current sliding mode observation systems. To eliminate the chattering, 
the property of the zero-error convergence is to replace the sign function by the sigmoid function in 
sliding mode observation and also control signals. Nevertheless, this phenomenon is less important 
when introducing PD surface. 

6. Conclusion  

Among the multiple sources of renewable energy, biogas is produced by anaerobic digestion. The 
controlled use of this natural phenomenon makes it possible to recover organic waste while producing 
biogas that can replace natural gas for many applications. 

In this paper, the synergetic approach has been proposed for trajectory tracking in the context of 
the fermentation of organic waste in a biogas bioreactor.  

Contrarily to many other published works in which bacterial and substrate concentrations are used 
in the control algorithms, in this work a more realistic approach, based on effectively measurable  
biogas flow rate, is developed based on synergetic control methodology.  
Simulation results compared to a typical PID control show not only the improvement in response time 
and static error, but a drastic reduction in the control signal occurs as well. 

 Synergetic control depends on the substrate and biomass concentrations that are not easily 
measurable, that which justifies the use of virtual sensors. Thus, three observers have been used in 
conjunction with the proposed approach in tracking a nonlinear trajectory showing acceptable 
performances. Substrate concentration estimation allows possible to estimate the growth rate of 
methanogen bacteria. 

Finally, we summarize the perspectives in four main areas: 
• Optimization of the control parameters via meta-heuristic techniques; 
• Use of the three and five stage process models; 
• Use of higher order sliding mode observers in order to eliminate the chattering phenomenon 

caused by the sliding mode observers used; 
• Experimental validation should be carried out to assess the soundness of the studied control 

algorithm and the effectiveness of all the proposed observers. 
 

Author Contributions: B.H. and S.S. built the simulation model, H.M.N. proposed the controller M.K.N. and N.A. 
proposed the observers and studied the stability. All the authors analyzed the results and revised the paper. 

Figure 8. Comparison between three observers (a) Error evolution of biogas flow rate measured,
and biogas flow rate estimated with the virtual sensors; (b) evolution of the real biomass and
estimated biomass with three observers; (c) evolution of the real substrate and estimated substrate for
three observers.

Figure 8b,c shows the chattering phenomenon for the two sliding mode observers.
Switching/chattering of sliding mode observation signals crossing the sliding mode surfaces is an
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important characteristic in all current sliding mode observation systems. To eliminate the chattering,
the property of the zero-error convergence is to replace the sign function by the sigmoid function in
sliding mode observation and also control signals. Nevertheless, this phenomenon is less important
when introducing PD surface.

6. Conclusions

Among the multiple sources of renewable energy, biogas is produced by anaerobic digestion. The
controlled use of this natural phenomenon makes it possible to recover organic waste while producing
biogas that can replace natural gas for many applications.

In this paper, the synergetic approach has been proposed for trajectory tracking in the context of
the fermentation of organic waste in a biogas bioreactor.

Contrarily to many other published works in which bacterial and substrate concentrations are
used in the control algorithms, in this work a more realistic approach, based on effectively measurable
biogas flow rate, is developed based on synergetic control methodology.

Simulation results compared to a typical PID control show not only the improvement in response
time and static error, but a drastic reduction in the control signal occurs as well.

Synergetic control depends on the substrate and biomass concentrations that are not easily
measurable, that which justifies the use of virtual sensors. Thus, three observers have been used
in conjunction with the proposed approach in tracking a nonlinear trajectory showing acceptable
performances. Substrate concentration estimation allows possible to estimate the growth rate of
methanogen bacteria.

Finally, we summarize the perspectives in four main areas:

• Optimization of the control parameters via meta-heuristic techniques;
• Use of the three and five stage process models;
• Use of higher order sliding mode observers in order to eliminate the chattering phenomenon

caused by the sliding mode observers used;
• Experimental validation should be carried out to assess the soundness of the studied control

algorithm and the effectiveness of all the proposed observers.

Author Contributions: H.B. and S.S. built the simulation model, M.N.H. proposed the controller K.N.M. and A.N.
proposed the observers and studied the stability. All the authors analyzed the results and revised the paper.
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