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Abstract 22	
 23	
 Several studies have demonstrated that LncRNAs can play major roles in cancer 24	
development. The creation of a catalogue of LncRNAs expressed in T cell acute 25	
lymphoblastic leukemia (T-ALL) is thus of particular importance. However, this task is 26	
challenging as LncRNA expression is highly restricted in a time and space manner and may 27	
thus greatly differ between samples. We performed a systematic transcript discovery in RNA-28	
Seq data obtained from T-ALL primary cells and cell lines. This led to the identification of 29	
2560 novel LncRNAs. After the integration of these transcripts into a large compendium of 30	
LncRNAs (n=30478) containing both known LncRNAs and those previously described in T-31	
ALLs, we then performed a systematic genomic and epigenetic characterization of these 32	
transcript models demonstrating that these novel LncRNAs share properties with known 33	
LncRNAs. Finally, we provide evidences that these novel transcripts could be enriched in 34	
LncRNAs with potential oncogenic effects and identified a subset of LncRNAs coregulated 35	
with T-ALL oncogenes. Overall, our study represents a comprehensive resource of LncRNAs 36	
expressed in T-ALL and might provide new cues on the role of lncRNAs in this type of 37	
leukemia. 38	
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Introduction 48	
 49	

Long non-coding RNAs (LncRNAs) are a novel class of untranslated RNA species 50	
defined as transcripts with poor coding potential and size above 200 nucleotides[1,2]. They 51	
can lie in both sense and antisense direction of exonic or intronic elements, or in intergenic 52	
regions (a subclass termed ‘long intergenic non coding RNAs’, LincRNA), or even in the 53	
promoter regions of coding [3]. LncRNAs are transcribed by RNA polymerase II and mirror 54	
the features of protein-coding genes, such as polyadenylation and splicing, without 55	
containing a functional open reading frame. They are often transcribed at lower abundance 56	
than coding genes and in a more tissue-specific manner. In this regard, the function of these 57	
transcripts is suggested to be particularly important to shape cell identity. Several studies 58	
have demonstrated that lncRNAs are functional and regulate both the expression of 59	
neighboring genes and distant genomic sequences by a variety of mechanisms [4]. A growing 60	
number of examples also demonstrated that LncRNAs play a major role in cancer 61	
development by acting on different levels of regulation to disrupt cellular regulatory 62	
networks including proliferation, immortality and motility [5]. 63	
 64	
 T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer 65	
arising from the transformation of T cell [6,7]. Cytogenetic and global transcriptomic 66	
analyses led to the classification of T-ALL into molecular groups characterized by the 67	
abnormal expression of specific transcription factors (TAL; LMO1/2; TLX1/3; LYL; HOXA; 68	
MEF2c, respectively) and their block of differentiation at specific stages [8,9]. Although, the 69	
outcome of T-ALLs has globally improved by modern poly-chemotherapy, T-ALL remains 70	
of poor prognosis notably in relapsing cases. A major obstacle to understanding the 71	
mechanisms of T-ALL oncogenesis is the heterogeneous cellular and molecular nature of the 72	
disease, which is driven by a complex interplay of multiple oncogenic events. In this context, 73	
LncRNA signatures have been shown to define oncogenic subtypes [10] and several 74	
LncRNAs regulated by key T-ALL oncogenes have been identified [11–14].  75	
  76	
 The time and space restricted expression of LncRNAs makes it challenging to 77	
envision the creation of a complete catalog of LncRNAs. Yet such a catalog appears as a 78	
prerequisite to better characterize LncRNAs involved in pathological processes. We thus 79	
performed systematic transcripts discovery in a collection of T-ALL samples [15] and 80	
integrate previously created catalogs into a non-redundant set. The subsequent list of 81	
LncRNAs was thoroughly characterized regarding genomic structure and epigenetic features. 82	
Finally, we set up a strategy to prioritize LncRNAs having potential oncogenic effects. This 83	
approach allowed us to point out LncRNA candidates potentially relevant in the leukemia 84	
pathogenesis.  85	
 86	
 87	
 88	
 89	
 90	
 91	



Material and methods 92	

 93	
De novo LncRNAs discovery 94	
RNA-Seq experiment from Atak et al. [15], were retrieved in BAM format from European 95	
Genome-phenome Archive under accession number EGAS00001000536. The alignments 96	
(BAM files) were provided to cufflinks (v2.2.1) which aims at assembling reads 97	
into  transcript models. Cufflinks was used with default settings, except for arguments “-j/- 98	
pre-mrna-fraction” (set to 0.6) and “-a/--junc-alpha” (set to 0.00001) in order to reduce the 99	
number of intronic transcripts (that may correspond to fragments of immature transcripts) and  100	
to include well-supported exons into transcript models [16]. The transcript models obtained 101	
from the 50 samples (31 primary T-ALL patients, 18 T-ALL cell lines and 1 pool of 5 102	
thymuses) were subjected to a cleaning procedure using bedtools (v2.17.0) in order to remove 103	
all transcripts described in hg19 RefSeq annotation (Illumina iGenomes web site) [17]. 104	
Cuffcompare v2.1.1 was then used to merge all files and remove transcript model redundancy 105	
[18]. The subsequent gtf file was then filtered to eliminate any transcript model defined in 106	
RefSeq, Gencode V19 and new lincRNAs discovered by Trimarchi and his coworkers [11]. 107	
Transcripts expression levels were estimated using cufflink ('-G' option) and only those with 108	
FPKM greater than 1 in at least one sample were kept. Filters on transcripts size (at least 200 109	
nucleotides as defined for LncRNAs), number of exons (at least 2 exons) and poor coding 110	
potential (CPAT score lower than 0.2) as expected from LncRNAs [19] were subsequently 111	
applied.  112	
  113	
Genomic annotation of transcripts 114	

The subsequent gtf, including all transcripts categories, (Dataset 1) was then used to 115	
perform genomic annotation. All analyses were done using R software or Python scripts. 116	
 117	
Assessment of LncRNA Tissue Specificity  118	

We processed a set of fastq files corresponding to 20 human tissues (SRA accession 119	
number SRP056969). After read mapping (tophat2), the genes expression levels were 120	
quantified using Cuffdiff [18]. The gene expression specificity of each gene was computed 121	
across all tissues using the tau score [20]:  122	
 123	

 124	
Where (i) n corresponds to the number of samples, (ii) xi corresponds to the expression level 125	
(log2-transformed FPKM values) in condition i (iii) and max(xi) corresponds to the 126	
maximum expression level through all tissues. 127	
 128	
Epigenetic characterization of LncRNA 129	

 The ChIP-Seq datasets obtained from thymus and 3 T-ALL cell lines (DND41, Jurkat 130	
and RPMI-8402) and corresponding to H3K4me3 and H3K27ac were obtained from 131	
ENCODE and GEO databases. The H3K4me3 and H3K27ac ChIP-Seq in RPMI-8402 cell 132	
line were sequenced in our laboratory (SRA accession numbers SRX3437292 and 133	
SRX3437293, see Table S1). To measure the ChIP-Seq signal around the TSS ([-3000, 134	
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+3000] pb) we focused on genes with FPKM above 1. Coverage analyses were performed 135	
using a Python script making calls to the pyBigWig python library.  136	

 137	
Search for potential oncogene 138	

We computed the variance of Log2-transformed FPKM values as a score to find 139	
genes displaying high dispersion of expression levels across samples. Pearson’s correlation 140	
coefficients were computed, using R software, between the top 10% variants LncRNAs and 141	
known coding T-ALL oncogenes to bring out coding-noncoding pairs.  142	
 143	
LncRNA expression analyses  144	

Total RNA was extracted using TRIzol (Invitrogen) according to the manufacturer’s 145	
instruction. 1 µg of RNA was treated with 1 U of DNase I (Ambion) and incubated at 37˚C 146	
for 30 min. DNAse I was then inactivated (15mM of EDTA and incubation at 75˚C for 10 147	
minutes). DNase-treated RNAs were reversed transcribed using SuperScript II (Invitrogen) 148	
and oligo (dT) or random primers according to the manufacturer’s instruction. Control 149	
genomic DNA was purified from RPMI-8402 cells using the DNeasy Kit (Qiagen) according 150	
to the manufacturer’s specifications. Sequences of primers used for PCR of LncRNA 151	
XLOC_00017544_Atak, XLOC_00009269_Atak and XLOC_00012823_Atak are provided in 152	
Table S2. PCR using 1 µL of cDNA was performed with Herculase II Fusion kit (Agilent, 153	
Waldbronn, Germany) following manufacturer instructions. Amplifications were carried out 154	
with 40 cycles (95˚C for 1 minute, denaturation at 95˚C for 20 seconds, annealing for 20 155	
seconds, extension at 68˚C for 1 minutes), followed by a final extension step (68˚C for 4 156	
minutes).  157	
 158	
Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) 159	

The qPCR with Power SYBR green mix (Thermo Fisher) was performed on a 160	
Mx3000P real-time PCR system. Each reaction was performed with 2µl of cDNA. GAPDH 161	
was used as reference for normalization.  162	
 163	
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 165	
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Results 178	
 179	
Building a catalog of LncRNAs expressed in T-ALLs 180	
 181	

In order to get an exhaustive catalog of LncRNAs expressed in T-ALLs we first 182	
performed a systematic transcript discovery on 50 RNA-Seq samples (a pool of 5 normal 183	
thymuses, 31 T-ALLs primary blasts and 18 T-ALLs cell lines) previously described by Atak 184	
et al [15] (Figure 1A). De novo transcripts were filtered and only multi-exonic transcripts 185	
with size greater than 200 bp, FPKM greater than 1 and coding potential lower than 0.2 were 186	
kept. This transcript models were then merged with known LncRNAs obtained from 187	
GENCODE version 19 [21] and T-ALL LncRNAs described by Trimarchi et al [11]. The 188	
final catalog contains a non-redundant list of 30478 LncRNAs. This encompasses 26092 189	
from GENCODE (LncRNA_Known), 1826 LncRNAs from the Trimarchi dataset 190	
(LncRNA_Trimarchi) and 2560 new LncRNAs from the Atak dataset (LncRNA_Atak). The 191	
corresponding GTF file is provided as supplementary (Dataset 1).  192	
   193	
Genomic characterization  194	
 195	

We next performed a thorough genomic comparison of the three different sets of 196	
LncRNA transcripts obtained from GENCODE, Trimarchi et al and our own analysis of Atak 197	
et al RNA-Seq data. They will be denoted hereafter as LncRNA_Known, 198	
LncRNA_Trimarchi and LncRNA_Atak respectively. Throughout the analysis, these three 199	
sets of LncRNAs were compared to coding transcripts (mRNA) in order to underlie their 200	
specific properties. Figure 1B shows that the number of exons differs between mRNA 201	
transcripts (which mainly contain 5 exons or more) and the three sets of LncRNAs. This 202	
underscores the unusual exonic structure of LncRNAs that tends to be limited to two exons as 203	
already reported by others [21].Note that the de novo LncRNA_Atak dataset lack mono-204	
exonic transcripts as they were discarded during the filtering process. Regarding transcript 205	
size, the reference LncRNAs were found to be shorter than mRNAs (average size of 0.8 KB 206	
compared to 2.5 KB) as observed by Derrien et al [21]. The mean size of de novo 207	
LncRNA_Atak was close to that of the reference (LncRNA_Known) validating our 208	
procedure of transcript reconstruction (Figure 1C). In contrast, the mean size of LncRNAs 209	
defined by Trimarchi et al were greater (4 kb) than the mean size of mRNAs (2.5 kb), which 210	
may point out an intrinsic difference in the procedure used for reconstruction of underlying 211	
transcript models. Concerning chromosomal distribution, the LncRNAs tend to be similarly 212	
spread throughout the chromosomes while several differences were observed (Figure 1D). 213	
LncRNA_Trimarchi dataset is enriched in transcripts from chromosome 13 and Y while 214	
depleted of transcripts located on chromosome 19. Such a result may probably highlight the 215	
representation of some particular tumor karyotypes and gender distribution in the samples 216	
used by Trimarchi et al. In contrast, the proportion of LncRNAs from LncRNAs_Atak 217	
dataset is very similar throughout the chromosomes although their representation is slightly 218	
increased on chromosome 21 and 22. LncRNAs are generally classified based on their 219	
location with respect to protein-coding genes. We defined five types of LncRNAs (Figure 220	
1E): (i) ‘Intergenic’, transcribed outside of any known coding gene; (ii) ‘Divergent’, 221	



produced in promoter regions of coding genes on opposite strand; (iii) ‘Convergent’ whose 222	
transcription ends in 3' regions of coding genes on opposite strand (iv) “Sense” and  (v) 223	
“Antisense” whose transcription takes place inside the gene body of a coding gene in sense 224	
or antisense direction, respectively. Regarding these five classes, the composition of 225	
LncRNA_Atak dataset was rather close to the reference with 55.38% and 55.56% of 226	
intergenic transcripts respectively although less transcripts were classified as divergent 227	
(6.57% versus 14.44% for GENCODE) and more transcripts were labelled as antisense 228	
(32.30% versus 21.34%) (Figure 1F). In contrast, the Trimarchi dataset was found to be 229	
mainly composed of intergenic transcripts (90.47%) and divergent transcripts (8.12%) since 230	
the other classes were discarded during the building steps of the catalog [11]. 231	
 232	
LncRNAs expression in T-ALL and thymus 233	
 234	

We next intended to assess the expression of these LncRNAs in several sample 235	
groups including normal thymus, T-ALL cell lines and patient samples. We computed, for 236	
each transcript, its median expression level across each sample group (Figure 2A). In 237	
agreement with the weak expression level of LncRNAs reported earlier [21], the mRNAs 238	
were more highly expressed than any of the three LncRNA sets. Transcripts from 239	
LncRNA_Atak were found to be more highly expressed than LncRNA_Known in Thymus 240	
and T-ALL patients while slightly less expressed in cell lines. Of note, however, weaker 241	
expression was observed in the LncRNA_Trimarchi dataset suggesting that the lack of 242	
accuracy in transcript reconstruction step may also impair proper quantification of these 243	
transcripts. LncRNAs are known to be highly tissue specific compared to mRNAs. To verify 244	
this, we computed the tau tissue-specificity score [20] using a public RNA-Seq dataset 245	
encompassing 20 human tissues [22]. This score ranges from 0 for housekeeping genes to 1 246	
for highly tissue-specific genes. As expected, mRNAs displayed a bimodal signal with a 247	
major fraction of genes behaving as ubiquitous genes and a minor fraction having high. In 248	
contrast, a clear shift toward high tissue-specificity scores were observed for LncRNAs 249	
regardless of the underlying groups (Figure 2B). Moreover, assessment of expression in 250	
individual tissues demonstrated a strong bias for thymus-specific LncRNAs in the 251	
LncRNA_Trimarchi and LncRNA_Atak dataset (Supplementary Figure S1). This also 252	
underlines that while LncRNA_Atak were selected against LncRNA_Trimarchi, numerous 253	
LncRNAs with strong expression bias in the thymus remained to be discovered. Altogether, 254	
these results underscore the enrichment that exists in our catalog for LncRNA biases toward 255	
tissue-specificity.  256	
 257	
Functional annotation 258	

Many LncRNAs have been shown to regulate the expression of neighbor genes in cis 259	
[11,23,24]. Therefore, to characterize the functional relevance of the LncRNA sets we 260	
performed a functional annotation of their closest neighbor genes using GREAT [25]. For the 261	
LncRNA_Known class, significant enrichment was observed for annotation terms related to 262	
ubiquitous processes including ‘genes expression’ and ‘metabolism’ (Figure 3A). In contrast, 263	
for the LncRNA_Trimarchi set, annotation terms related to immune system were 264	



significantly enriched, including: ‘regulation of interleukin 4 production’, ‘leukocyte 265	
activation’ and ‘T cell receptor V(D)J recombination’ (Figure 3B). In the same way, closest 266	
genes for LncRNA_Atak dataset were related to ‘negative regulation of Notch signaling 267	
pathway’ or ‘regulation of leukocyte degranulation’ for instance (Figure 3C). This indicates 268	
that both LncRNA_Atak and LncRNA_Trimarchi datasets are enriched for LncRNAs located 269	
close to coding genes having major role in normal immune processes and leukemia 270	
development. As some LncRNA have been shown to regulate protein-coding genes in cis, 271	
this would suggest that some of our newly discovered transcripts could potentially act on key 272	
genes regulating immune response and oncogenic processes.   273	
 274	
Epigenetic features of LncRNAs 275	
 276	

LncRNAs are known to share epigenetic features with coding genes. Both H3K4me3 277	
and H3K27ac have been described as epigenetic marks strongly associated to the promoter 278	
region of expressed genes. In order to compare epigenetic features across all transcript sets, 279	
we used H3K4me3 and H3K27ac ChIP-Seq obtained from normal thymus and three T-ALL 280	
cell lines (DND41, RPMI-8402 and Jurkat). We filtered LncRNAs and mRNAs based on 281	
their expression in the corresponding samples by selecting transcripts with FPKM above 1. 282	
Using ChIP-seq datasets for H3K4me3 and H3K27ac, we then computed the number of reads 283	
falling in binned regions around the promoter (defined as [-3000, 3000] pb around the TSS) 284	
for each gene. The mean number of reads for each bin across all genes of a class was used to 285	
compute the meta profile shown in Figure 4. Although the results slightly differ between the 286	
samples, the LncRNAs and mRNAs sets displayed consistent epigenetic profiles. A striking 287	
difference is observed for the LncRNA_Trimarchi set, which display high levels of H3K27ac 288	
likely indicating a location bias toward enhancer regions [26]. 289	
 290	
Experimental validation expression of three LncRNAs in RPMI-8402, and Jurkat cell 291	
lines 292	
 293	

We next aimed at validating the expression of de novo identified LncRNAs from the 294	
LncRNA_Atak dataset. We selected three LncRNAs (XLOC_00017544_Atak, 295	
XLOC_00009269_Atak and XLOC_00012823_Atak) located on chromosome 9, 2 and 3 and 296	
containing 5, 8 and 2 exons respectively (see Dataset 1 for coordinates). RNA-Seq and ChIP-297	
Seq signals indicated that all three LncRNAs were expressed in RPMI-8402 and Jurkat cell 298	
lines (Figure 5A). This result was confirmed for the 3 candidates by RT-PCR performed on 299	
RNA isolated from RPMI-8402, and Jurkat cell lines. PCR products corresponding to DNA 300	
fragments of expected sizes were observed in all three cases (Figure 5B).  301	
 302	
Variability of gene expression among T-ALL samples predict potential oncogenic 303	
LncRNAs  304	
 305	

T cell transformation is related to many genomic and chromosomal abnormalities, 306	
which can lead to aberrant gene transcription [6,27]. Many of the described oncogenes are 307	
not expressed in normal T cell development [28–30] and only restricted to a subset of T-ALL 308	



samples. Therefore, it is expected that the expression of these oncogenes should be associated 309	
with a high variance across leukemic samples. Based on this hypothesis, we aimed at mining 310	
our LncRNA dataset for potentially new oncogenes using the variance as a proxy.  311	
 312	

We first computed the variance of coding genes across T-ALL cell lines and patient 313	
samples and check our ability to recover known T-ALL oncogenes [28]. As depicted in 314	
Figure 6A, typical leukemia oncogenes (TAL1, TLX1, TLX3, HOXA9, NKX3-1, LMO2) 315	
were ranked within the top 10 % of genes with the highest variance in the cell lines and 316	
patients. A statistical analysis demonstrated that both in cell lines and patients, leukemia 317	
oncogenes have significantly higher variance compared to non-oncogenic genes or to a 318	
random list of genes matched for expression distribution (Figure 6B). The same prioritizing 319	
strategy was applied to LncRNAs in order to identify potential oncogene candidates. 320	
Strikingly, numerous LncRNAs known for their implication in cancer (e.g. H19, XIST, 321	
LUNAR1, MIAT and NEAT1) were ranked within the top 10% of LncRNAs displaying the 322	
highest variance in both cell lines and patients. Interestingly, several de novo LncRNAs from 323	
the Atak dataset, including the 3 LncRNAs validated in Figure 5, were found among the 324	
highest variable transcripts (Figure 6C). Moreover, the variance of LncRNA_Atak list was 325	
found to be significantly higher when compared to the two other sets, suggesting that it may 326	
be enriched for potential oncogenic LncRNAs (Figure 6D). As an example, we validated the 327	
variable expression of XLOC_00000871_Atak, one of the LncRNAs with the highest variance 328	
in both T-ALL patients and cell lines (Figure 6B and S2), by RT-qPCR across a panel of T-329	
ALL cell lines (Figure 6E).   330	
 331	
Correlation between T-ALL oncogenes and LncRNAs 332	
 333	

To address the possibility that some of the highly variable LncRNAs might be 334	
associated with the regulation of key oncogenes, we computed the expression correlation 335	
between the 10% of LncRNAs with highest variance and the set of known T-ALL oncogenes 336	
and retrieved the correlated gene-lncRNA pairs. 60.5 % (1146) and 59% (1116) of these 337	
LncRNAs were correlated (r > 0,5) with at least one oncogene in T-ALL cell lines and 338	
patients, respectively (Supplementary dataset 2-3). For instances, the expression of 339	
LUNAR-1 (XLOC_LNC_TALL01_Trimarchi), a Notch1-regulated LncRNA in T-ALL (11), 340	
was highly correlated with NOTCH1 (r=0.75; Supplementary dataset 2-3). About 14% 341	
(patients) to 17% (cell lines) of the correlated gene-lncRNA pairs were located within the 342	
same chromosome, while 10% were separated by less than 1 Mb (Supplementary Figure 343	
S3), suggesting potential cis-regulation for a substantial number of oncogenes. Thirty percent 344	
of correlated LncRNAs come from the LncRNA_Atak dataset, with some being highly 345	
correlated with T-ALL oncogenes (Figure 7A). Two examples are shown in Figure 7B-C. 346	
Interestingly, some T-ALL oncogenes, such as EML1 and OLIG2 (Figure 7B-C), correlated 347	
with several LncRNAs and form complex regulatory networks (Supplementary Figure S4). 348	
Altogether, these results suggest that some LncRNA from the LncRNA_Atak set might be 349	
potential regulators of oncogenic genes in T-ALL and pave the way for more detailed studies. 350	

 351	
 352	



Discussion 353	
 354	

LncRNAs are transcribed weakly in a large fraction of the genome and display 355	
remarkably restricted expression in a space and time-dependent manner [2], making 356	
challenging to draw up an exhaustive list of transcripts expressed in all cellular conditions. 357	
This is especially true in the case of tumor cells were genomic alterations are expected to 358	
alter transcriptional programs, generally leading to large heterogeneous cancer subtypes [6]. 359	
In order to establish a comprehensive catalogue of LncRNAs expressed in T-ALL, we 360	
analyzed a set of 50 RNA-Seq samples produced by Atak et al. [15] (31 primary T-ALL 361	
patients, 18 T-ALL cell lines and 1 pool of 5 thymuses) and performed de novo transcript 362	
discovery in order to systematically identify transcript models. This approach led to the 363	
discovery of 2560 novel LncRNAs. Subsequently, we perform a deep characterization of the 364	
genomic and epigenetic properties of these transcripts and showed they are comparable to 365	
previously identified LncRNAs.  366	
  367	

Several approaches have been suggested to identify functionally relevant LncRNAs, 368	
including guilty-by-association or correlation-based approaches [31]. Master oncogenes in T-369	
ALL are generally ectopically expressed in a restricted number of patients resulting in highly 370	
variable expression among tumor samples. Indeed, genes displaying high variance throughout 371	
the T-ALL samples were demonstrated to be significantly enriched in known T-ALL 372	
oncogenes. We thus used the expression variance as a proxy to estimate oncogenic potential 373	
of the LncRNA expressed in T-ALL. We observed that LncRNAs with known implication in 374	
cancer (e.g. LUNAR1) were ranked among those with the highest variance. Interestingly, 375	
many newly identified LncRNAs were found to have highly variable expression. Combined 376	
variance and correlation analysis also suggest that a fraction of these LncRNAs could have 377	
oncogenic properties by functionally interacting with known oncogenes. 378	
 379	

One of the key features of LncRNAs is that their expression pattern is highly tissue 380	
and cell type specific [2]. This is consistent with our finding that de novo LncRNAs 381	
discovered in T-ALL demonstrated high tissue-specificity (Figure 2) and that many 382	
LncRNAs found in T-ALL are expressed in few leukemic samples and (Figure 6). 383	
Consequently, molecules targeting either their expression or their interactions with chromatin 384	
or protein complexes would represent therapeutic targets able to kill cancer cells while 385	
sparing normal cells [5]. Additionally, correlation of expression patterns with leukemia 386	
progression and outcome could led to novel prognosis markers and help classification and 387	
stratification of the patients.   388	

 389	
T-ALL comprises several molecular subgroups characterized by the aberrant 390	

expression of distinct oncogenic transcription factors, unique gene expression signatures, and 391	
different prognoses [6]. While the existence of specific molecular subtypes of T-ALL has 392	
long been established, therapeutic strategies are applied uniformly across subtypes, leading to 393	
variable responses between patients coupled with high toxicity. Our comprehensive resource 394	
of LncRNAs expressed in T-ALL should allow further exploration of LncRNAs potentially 395	
involved in leukemia and provide new rationales for patients/risk stratification.  396	
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Legends to figures 409	
 410	
Figure 1: Genomic characterization of LncRNA transcripts. (A) Schematic illustration of 411	
the procedure used to create our LncRNA catalog. (B) Bar plots displaying the number of 412	
exons per transcript set. (C) Distribution of transcript sizes. Each vertical line indicates the 413	
mean transcript sizes of the corresponding set. (D) Chromosomal distribution of transcript 414	
sets. (E) Schematic illustration of LncRNAs categories. LncRNA exons appear as red and 415	
coding genes as blue. (F) Pie chart representing the fraction of LncRNA categories across the 416	
transcripts sets. 417	
 418	
Figure 2: Expression levels and tissue-specificity of LncRNAs classes. (A) Violin plot 419	
showing expression levels of transcripts. For each transcript, expression level was computed 420	
by calculating the median of its expression values among 31 T-ALL blasts, 18 T-ALL cell 421	
lines and a pool of 5 normal thymus. Wilcoxon test was used to assess differences. (B) 422	
Representative human tissues [22] were used to compute gene expression and assess tissue-423	
specificity of each transcript. The density plots shows the distributions of the tissue-424	
specificity score (see material and method section). Each vertical line indicates the mean 425	
tissue specificity score of the corresponding class.  426	
 427	
Figure 3: Functional annotation of neighboring genes for the LncRNAs. (A) 428	
LncRNA_Known. (B) LncRNA_Trimarchi. (C) LncRNA_Atak. The x-axis is corresponding 429	
to -log10(corrected p-value) and the y-axis shows the corresponding biological processes.  430	
 431	
Figure 4: TSS coverage plot of ChIP-Seq signal for H3K4me3 and. Signals are shown for 432	
the four transcript in one tissue (total thymus) and three human cell lines (DND41, RPMI-433	
8402 and Jurkat). 434	
 435	
Figure 5: Experimental validation of expression for three lncRNAs. (A) Integrated 436	
genomics viewer (IGV) screenshots displaying H3K4me3 ChIP-Seq signals as well as RNA-437	
Seq signals for genomic regions corresponding to XLOC_00017544_Atak, 438	
XLOC_00009269_Atak and   XLOC_00012823_Atak in RPMI-8402, and Jurkat cell lines. 439	
(B) PCR validation of XLOC_00017544_Atak, XLOC_00009269_Atak 440	
and   XLOC_00012823_Atak in RPMI-8402 and Jurkat cell lines. MALAT1 was used as 441	
positive control.  442	
 443	
Figure 6: New candidate oncogenes identification by variance. (A) Variance for coding 444	
genes in T-ALL cell lines and patients. (B) Box plots showing the distribution of variance of 445	



coding genes in T-ALL cell lines and patients. Wilcoxon test was used to assess differences. 446	
(C)Variance of non-coding genes in T-ALL cell lines and patients. Arrows highlight 447	
leukemic oncogenes.  (D) Box plots showing the distribution of variance of non-coding in T-448	
ALL cell lines and patients. Wilcoxon test was used to assess differences. (E) Variability of 449	
XLOC_00000871_Atak expression normalized against the GAPDH gene (n = 20) in thymus 450	
and cell lines.  451	

Figure 7:  Co-expression between oncogenes and LncRNAs from Atak dataset. (A): 452	
Heatmaps showing the correlation between oncogenes (columns) and the most correlated 453	
transcript from the LncRNA_Atak dataset (rows). Correlation are shown both for cell lines 454	
(left panel) and patients (right panel). (B) Screenshots obtained from IGV displaying two 455	
examples of strong co-expression between an oncogene and a LncRNA from the Atak 456	
dataset. Tracks corresponding to cell lines are shown in red while patients are shown in 457	
green. (C) Scatter plots showing the expression of pairs oncogene-LncRNA_Atak in cell 458	
lines (red) and patients (green). 459	

 460	
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