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A B S T R A C T

Uniform experimental designs (Space Filling Designs) are now widely used with independent variables, partic-
ularly in numerical simulation. A lot of construction methods have been developed to uniformly cover the domain
of variables, but they remain rarely applied for the study of mixtures. In this article, we propose methods to build
space-filling designs for mixtures that can be used to modelize complex phenomena in formulation. Various al-
gorithms like Kennard and Stone, WSP, Strauss and Dmax algorithms, to construct these designs are detailed and
compared with respect to uniformity criteria.
1. Introduction

In many industries products are obtained by mixing two or more
components or ingredients, and the properties of the products depend on
the proportion of each ingredient in the mixture. Issues related to mix-
tures can thus be defined as the study of the influence of the relative
amounts of several components (called proportions) on the manifestations
of a physico-chemical phenomenon (called responses).

In the designs of experiments for mixtures, the factors studied are
therefore the proportions of each ingredient. These proportions have two
important properties: their values are dimensionless numbers - a value of
0.1 has the same signification whatever the nature of the component -
and the sum of all the proportions is equal to 1, which indicates that the
components of the mixture cannot be independently controlled.

We therefore have the following constraints:

xi � 0 and
Xq
i¼1

xi ¼ 1 for i ¼ 1; 2;&; q

where q is the number of components and xi is the proportion of
component i contained in the mixture.

As a result of these constraints, the experimental space is a regular
polyhedron, or simplex, with q vertices in a space with q-1 dimensions.

If the ingredients must comply with upper or lower limits, the space of
interest will be a sub-space of the initial simplex.
ys-Bruno).
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When the aim is to model a response and to study its behavior,
classical models of mixtures (Scheff�e model, etc.) and classical designs
such as the Scheff�e designs [1] [2] or D-optimal designs are commonly
used to estimate the coefficients of the model. However, whatever the
degree of the model, classical designs position the points at the periphery
of the experimental space and are potentially ill-adapted to deal with
irregularities inside the space. To limit these risks, we propose to explore
the whole experimental space by uniformly distributing points within it.

Numerous methods have been developed to distribute points uni-
formly throughout a space when all the parameters are independently
controlled (Space-Filling Designs [3–5]). Among these methods, we have
selected a small number based on different principles: some rely on
points selection (Kennard and Stone [6], and Wootton, Sergent,
Phan-Tan-Luu (WSP) algorithms [7]), others use the principle of repul-
sion between points (maximal entropy designs [8] or Strauss designs
[9]), while a new algorithm relies on step-by-step construction. All of
these methods can uniformly distribute points in a space for independent
variables, but somemodifications must be made if we want to apply them
to studies of mixtures and to take the specificities of these studies into
account. In this article, we will start by presenting the intrinsic criteria
through which the uniformity of a distribution of points can be assessed,
then we will provide details on the construction algorithms used and the
modifications made. Finally, we will compare the relative advantages
and disadvantages of the different methods used to construct uniform
designs for mixtures.
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2. Intrinsic uniformity criteria

To assess the quality of the structure of a set of points making up a
uniform experimental design, quantitative criteria must be used. Among
the available criteria, we retained criteria involving calculation of the
Euclidean distances. These criteria appeared relevant to us to assess the
quality of the distribution of points in a space with D dimensions.

- The Mindist criterion [10–12] defines the smallest distance between
any two points in a distribution:

Mindist ¼ min
xi2X

min
xj; j 6¼i2X

dist
�
xi; xj

�
(1)

where X ¼ fx1; x2;…; xNg⊂½0;1�D is a set of N points in D dimensions.
A high Mindist value is synonymous with a good distribution of the

points throughout the variables space. In contrast, distributions of points
Fig. 1. Kennard and Stone algorithm. a. and b. for independent variables with N¼
N¼ 15 points, d. with N¼ 20 points.
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with a lowMindist value have at least two very closely-spaced points that
could be qualified as a cluster. When clusters are present, the distribution
of points in the space is no longer ideal in terms of uniformity.

- The MeanMin criterion defines the mean of the minimal distances,
and provides information on the minimal distances between points:

MeanMin ¼ 1
N

XN
i¼1

min
j 6¼i

dist
�
xi; xj

�
(2)

A set of N points could be termed uniform if the MeanMin value is
large and close to the Mindist value.

- The coverage criterion [13] measures how much of the space is
covered by the points and characterizes the homogeneity of the dis-
tribution of the points:
7 points and N¼ 17 points respectively. Solutions for mixture variables c. with
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Cov ¼ 1
 
1 XN ðγi � γÞ2

!1=2

(3)

γ N i¼1

where, γi ¼ min
j6¼i

distðxi; xjÞ and γ ¼ 1
N

PN
i¼1γi.

This value provides information on the homogeneity of the minimal
distances between the points in the design and is a reflection of the
dispersal of the minimal distances. Thus, when a set of points has a high
coverage value, the distribution of the minimal distances is highly het-
erogeneous, indicating that some areas in the space are more densely
filled than others.

- The Standard Deviation of the minimal distances (independent of
the number of points in the ensemble).

σ ¼
 
1
N

XN
i¼1

ðγi � γÞ2
!1

2

(4)

with γi ¼ min
j6¼i

dist
�
xi; xj

�
and γ ¼ 1

N

XN
i¼1

γi

- The Audze-Eglais criterion (AE) [14] is a repulsion criterion, which
assimilates the points in a distribution to charged particles. AE is
calculated on the basis of the square of the Euclidean distance be-
tween points, which is inversely proportional to the magnitude of the
forces of repulsion:

AE ¼
XN�1

i¼1

XN
j¼iþ1

1

dist
�
xi; xj

�2 (5)

where distðxi; xjÞ is the Euclidean distance between any two points xi and
xj.

This criterion must be minimized to make the potential energy of the
structure as low as possible.

In addition to these classical criteria, Borkowski and Piepel [15]
added three other distance-based criteria specific to the study of mix-
tures, with or without constraints. To guarantee that all the components
are considered identically, i.e., independently of their range of variation,
these criteria are calculated by first normalizing the components relative
to their range of variation (b - a), where a and b are the lower and upper
bounds, respectively.

These criteria involve a set ofM virtual points u {u1, u2,…, uM} in the
space of interest ℛ from which we define a minimal Euclidean distance
between a point um in ℛ and the points xj from the design for mixture X
with N points

dðu;XÞ ¼ min
j

distE

�
um � a
b� a

;
xj � a
b� a

�
(6)

where m¼ 1,2, …, M and j¼ 1,2, …, N.
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A uniform design for a mixture will be considered of good quality if
the points are uniformly distributed in the spaceℛ. The criteria proposed
are as follows:

- The square root of the mean of the square of the minimal distances:

rmsdðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
m¼1

ðdðum;XÞÞ2
vuut (7)

where m¼ 1, 2, …, M, as above.

- The mean of the minimal distances:

adðXÞ ¼ 1
M

XM
m¼1

dðum;XÞ (8)

- The maximum of the minimal distances:

mdðXÞ ¼ max
m

dðum;XÞ (9)

Analysis of the various criteria provide information on the quality of
points distribution in terms of uniformity. For example, a low Mindist
value and a highMeanMin value indicate that at least two points are very
closely-spaced, but that the other points are well distributed in the var-
iable space. If the Mindist and MeanMin values are equivalent, and both
low, the smallest distances between points are equivalent, i.e., all the
points are closely-spaced and form a single cluster. In contrast, if a dis-
tribution presents high values for Mindist and MeanMin, it will not be
uniform. In addition, low values for the rmsd(X), ad(X) and md(X)
criteria indicate that the points in the spaceℛ are close to the X plane. In
contrast, a high value for md(X) indicates that there exists a region in ℛ
where the points are not close to X.

3. Space-filling designs for mixtures

Numerous algorithms can be used to construct uniform experimental
designs for independent variables. We will present some of these algo-
rithms grouped on the basis of their construction principles and we will
highlight the parameters that must be optimized, and their appropri-
ateness for use in analyzing variables in mixtures.

3.1. Selection algorithms

Selection algorithms aim to extract a sub-group of N points from a set
of Nc candidate points in D dimensions. We have selected the following
two selection algorithms:

3.1.1. Kennard and Stone (KS) algorithm [6]
At each iteration, this sequential selection algorithm selects the point

furthest from those already selected.
The algorithm can be described as follows:
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Two solutions obtained using the KS algorithm on a candidate 100-
points set in two dimensions are presented Fig. 1a and b. If we select
N¼ 7 points, the KS algorithm produces a non-uniform final solution,
whereas if N is increased to 17 points, the points are better distributed
throughout the space.

This example illustrates the main weakness of this algorithm: it pro-
duces more or less uniform solutions depending on the number of points
to be selected, N.

To adapt this algorithm to the study of mixtures, the candidate points
must belong to the simplex delimiting the variables space for mixtures.

From Fig. 1c et 1d, we can draw the same conclusions as for the KS
algorithm in a space of independent variables.
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3.1.2. Wootton, sergent, phan-tan-luu (WSP) algorithm [7,16–20]
This selection algorithm will select N points from an initial set of Nc

points. Point selected will be spaced at least a pre-determined distance of
dmin from the other points already included in the design. Preliminary
studies have been showed that the type of the initial distribution and the
choice of the initial point O have no impact on the intrinsic quality of the
design after the selection algorithm. Therefore, we consider for the
candidate points a random distribution, and the initial point has been
chosen to be the nearest of the gravity center of the simplex.

The WSP algorithm can be summarized as follows:



Fig. 2. WSP algorithm applied to mixtures. a. Candidate points, N¼ 100. The red point corresponds to the initial point O. b. Step-by-step approach of WSP
algorithm. Step 1: the red colored points inside the red circle (dOI< dmin) are eliminated. Step 2: the closest point (blue point) is chosen to become the new point O
and points inside the blue circle are eliminated. Step 3: the closest point (green point) is chosen and points for which the distance dOI< dmin are eliminated. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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The number of points selected by the WSP algorithm is directly linked
to the dmin value. Indeed, the smaller the dmin value, the larger the
number of points selected. If the number of points to be selected is chosen
beforehand, the dmin value will be adjusted by iteration until the desired
number of points (or close to this number) have been selected from the
candidate set. The main characteristic of the WSP algorithm is that it sets
a minimal distance between all the selected points. This criterion
115
guarantees a uniform distribution of the final sub-group, whatever the
value of N. The WSP algorithm guarantees that solutions will uniformly
cover the experimental space (Fig. 2).

Like with the KS algorithm, the WSP algorithm can be applied to
mixtures if the set of candidate points is generated in the simplex of
mixture variables (Fig. 3).

It seems interesting to precise that the geometric criteria can be



Fig. 3. WSP algorithm. a. and b. for independent variables with N¼ 7 points and N¼ 17 points respectively. Solutions for mixture variables c. with N¼ 15 points,
d. with N¼ 20 points.
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modified in order to take into account experimental constraints. In this
case, it is not the closest neighbor of the remaining points which is
selected Fig. 2 but another close neighbor which presents more favor-
able criteria. This selection can be done using desirability functions
[21].

3.2. Repulsion algorithms

The WSP and KS algorithms are selection algorithms which require a
set of candidate points from which the considered algorithm extracts a
116
sub-group. Designs can also be constructed starting with a randomly-
selected set of points which will then be reorganized according to a
principle of repulsion. We will investigate two algorithms: the Strauss
algorithm and the maximal entropy algorithm (Dmax).

3.2.1. Strauss algorithm [9]
This algorithm starts with a distribution of N random points then

applies the Metropolis-Hastings algorithm (MH) [22,23] which first
proposes to a state change differing only by a single point. The second
step consists in accepting or rejecting this change of state.
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Selecting the values of the parameters R and NMC for a desired
number of points N constitutes the main difficulty with this algorithm.
For a set number of N points, selection of a value of R that is too low
results in empty zones; an overly-large value produces clusters of points
(Fig. 4a and b.).

The number of NMC iterations for the Strauss algorithmmust be large
to allow the Metropolis-Hastings calculation to converge. In general, in
repulsion algorithms, the larger N the greater the required number of
iterations. This relation implies long calculation times when the number
of dimensions increases. This algorithm also relies on numerous sto-
chastic processes: selection of the initial matrix, selection of the candi-
date point for substitution and the probability of acceptation or rejection
of the change in position. When the algorithm is re-applied with identical
parameter values, these random processes can lead to different final so-
lutions which can be of variable quality.

To adapt the Strauss algorithm to the study of mixtures, the step
generating the random matrix must be modified. The random matrix
must be in the mixture space, and at each step, the point xi must also be in
the simplex. Use of the Strauss algorithm for mixtures presents the same
difficulties as noted above for independent variables. Indeed, the value of
117
R selected can lead to a poor distribution of points in the space for
mixtures with empty zones (Fig. 4a) or clusters of points (Fig. 4b).

It should be noted that if the Strauss algorithm is re-applied with the
same parameter values, solutions of very different quality may be
obtained.

3.2.2. Maximal entropy designs (dmax)
The algorithm to produce maximal entropy designs fills the space by

distributing points according to a spatial correlation matrix. Shewry and
Wynn [8] showed that the entropy H depends on lnðdetðCðXÞÞÞ where
C(X) is the matrix for spatial correlation, constructed according to a
model with a spherical variogram γðdÞ which depends of the range
parameter a.

8><
>:

γðdÞ ¼ 1:5
d
a
� 0:5

�
d
a

�3

; d < a

γðdÞ ¼ 1; d � a

(10)

Thus, the entropy H will be maximal when the determinant for the
matrix C(X) is large.



Fig. 4. Strauss algorithm. a. and b. Solutions for independent variables with N¼ 20 points. c. and d. Solutions for mixture variables with N¼ 20 points for
different values of R.

C. Gomes et al. Chemometrics and Intelligent Laboratory Systems 174 (2018) 111–127
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Like with the Strauss algorithm, when constructing Dmax designs
parameters must be set. Indeed, the use of a model with a spherical
variogram requires the distance a to be set to define the values of the off-
diagonal terms in the spatial correlation matrix C(X). The distance amust
be carefully chosen to avoid “skewing” the algorithm. Indeed, a very low
value of the distance a leads to numerous null off-diagonal terms, char-
acterized by a very large determinant, and thus a large entropy, but does
not guaranteeing a uniform distribution of the points throughout the
variable space.

To apply this Dmax algorithm to mixtures, the random matrix V must
belong to the mixture space of the mixture, and for each step the point xi
must also belong to the simplex.
3.3. Step-by-Step algorithm

The Step-by-Step (SbS) algorithm was initially proposed by Franco
[24] to construct uniform experimental designs in the independent var-
iables space. This algorithm randomly chooses an initial point and then,
by iteration, adds points spaced a distance R from the points already
119
present in the design. Whatever the number of points N making up the
experimental design, this construction method ensures that all the points
will be placed at the same minimal distance from each other.

To use Franco's algorithm, two parameters must be set: the number of
points N and the value of the radius R. However, by setting both the
radius R and the number of points N, it remains possible that the radius
could be ill-adapted to the number of points and that, consequently, the
space could be poorly filled. Indeed, if the radius R is too small, the N
points retained by the algorithm will not cover the whole space (Fig. 5)
and for a radius R that is too large, the algorithm cannot distribute N
points in a space with D dimensions.

To overcome this disadvantage, we will retain the main idea from this
algorithm in the construction of the design, but we will only set the
distance R between a point and its nearest neighbor in a space with D
dimensions; the number of points N will therefore be implicitly deter-
mined by this value R and by the random selections made at each
iteration.

The algorithm that we propose is therefore as follows:
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As the algorithm makes use of random processes, for a single value of
R, several solutions with equivalent properties could be obtained. It is
important that the maximum number of rejections be sufficiently large to
guarantee that no other point could be added to the space of interest.
Thus, we know that the solutions obtained effectively fill the whole of the
space.

To apply this SbS algorithm to the variables in a mixture, it must be
modified, but the difficulty resides in the generation of the points to be
added. Indeed, the initial point must be part of the simplex - this con-
dition poses no particular difficulty - but the other points to be added
must be at a distance R from the points already selected and must be part
of this simplex. When we wish to add a point xm at a defined distance R
from the point xk this comes down to placing it in a hypersphere of radius
R and center xk. It is easy to generate a point on a hypersphere, but the
addition of the mixtures constraint is equivalent to limiting the possible
points to the intersection of the hypersphere with the simplex specific to
mixtures. This mathematical equation cannot be generalized, whatever
the number q of components. We propose to avoid this difficulty by
applying the approach described by Cornell [25] where the points from a
plane with (q-1) independent variables are transformed to a mixture
120
plane with q components surrounding a point of interest. To do this, both
the point of interest x0 ¼ (x01, x02, …, x0q) and the variations in the
components surrounding it must be defined to determine the ellipsoid of
interest. By applying this method with the SbS algorithm, a point xm can
be generated in the mixtures plane around the point of interest xk (chosen
at steps 3 or 6 of the algorithm) by setting a variation step equal to R for
all the components. This approach is equivalent to generating a hyper-
sphere of interest (Fig. 6).

The mathematical transformation applied to the classical indepen-
dent variables matrix (W) to produce the mixture design (X) around the
point x0 is as follows:

X ¼ cWT'
1H þ x'0 (11)

where c ¼ ρ*ffiffiffiffiffiffiffi
q�1

p and ρ* ¼ min
i

ρi, with i¼ 1, …, ρi ¼ x0i

(
1
h2i
þ 1

a�h2i

)1 =

2

where. a ¼Pq
i¼1h

2
i

H is the diagonal matrix containing the variations hi around the point
of interest H ¼ diagðh1; h2;…; hqÞ.



Fig. 5. Construction of SbS designs in a space with orthogonal variables by
setting a number of points N equal to 20 and the radius R¼ 0.1. The radius is
ill-adapted to the number of points and therefore the points do not fill the
whole space.
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The matrix T1 has a dimension of q� ðq� 1Þ can be constructed as
follows. If we denote tij the element on the i-th line and in the j-th column
in the matrix T1 before its normalization, the matrix T1 can be calculated
by applying the following relations:

t11 ¼�h2
t21 ¼ h1

ti1 ¼ 0; i> 2

t12 ¼�h1h3 t13 ¼�h1h4 t14 ¼�h1h5 …

t22 ¼�h2h3 t23 ¼�h2h4 t24 ¼�h2h5 …

t32 ¼ h21þh22 t33 ¼�h3h4 t34 ¼�h3h5 …

ti2 ¼ 0; i> 3 t43 ¼ h21þh22þh23 t44 ¼�h4h5 …

ti3 ¼ 0; i> 4 t54 ¼ h21þh22þh23þh24 …

t64 ¼ 0; i> 5 …

To construct the matrix T1 each term tij is normalized by the term:

ðPq
i¼1t

2
ikÞ

1 =

2 where k¼ 1;…;q�1.
To apply the SbS algorithm to studies of mixtures, the initial point x0

must be chosen in the simplex, and at each step while generating the
points xj and xm, the Cornell transformation must be applied.
Fig. 6. Illustration of the Cornell transformation adapted to the SbS algorithm w
orthogonal variables onto a 3-component mixture plane.
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Like with independent variables, for the same distance R, non-
identical solutions sharing equivalent properties can be obtained from
different iterations with the same parameters (Fig. 7).

If the number of points N is fixed, the distance R allowing us to meet
this objective must be determined. To do this, we repeated the SbS al-
gorithm several times to discover how N changes as a function of R. For
example, if a 3-components mixture is considered and the distance R
varies between 0.1 and 0.38, repeating the algorithm 100 times for each
value of R reveals that the solutions obtained with the SbS algorithm
contain between 6 and 88 points (Fig. 8).

From this curve, we can determine the value of R producing a design
with N points. Thus, to obtain around 15 points, R should be set to 0.25.

4. Comparison of space-filling designs for mixtures

The various methods available to construct uniform designs of ex-
periments for mixtures all have advantages and disadvantages. To
compare them, we chose to study the intrinsic criteria presented in part 2.

For this study, we used designs with 10 and 20 points for a 3-com-
ponents mixture. Whatever the value of N, the KS and WSP selection
algorithms were applied to the same set of candidate points with
Nc¼ 2500 points. For the repulsion algorithms, Strauss and Dmax, the
same initial random matrix was chosen for a given value of N.
4.1. Experimental designs with N¼ 10 points

Before comparing the quantitative criteria, the distributions of points
obtained by applying each of the algorithms tested are graphically rep-
resented Fig. 9.

4.1.1. Distribution of points

� Kennard and Stone designs

The KS algorithm places the points in the periphery of the space and
leads to a design equivalent to a Scheff�e simplex-lattice (Fig. 9a.). In this
design, the interior of the experimental space contains very few experi-
mental points.

� WSP designs

For the WSP algorithm (Fig. 9b.), the center of gravity or its nearest
neighbor was selected as the initial point; selection of a different initial
hich makes it possible to transform point xm generated in a space with two



Fig. 7. SbS solutions for 3-component mixtures. For R¼ 0.20, SbS designs contain 25 points (a. and b.) and for R¼ 0.40 the designs contain 8 points (c. and d.).
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point could have produced a different solution.

� Strauss designs

For the purposes of this study, the number of iterations NMC was set
to 500, which was considered sufficiently large for the algorithm to
converge while also providing a reasonable calculation time. As the
relation between N and R is unknown, we proceeded by iteration,
Fig. 8. Relationship between the number of points N and the distance R used
when constructing SbS experiment designs for mixtures with three compo-
nents. For each value of R, the algorithm was repeated 100 times.
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varying R from 0.2 to 0.5 and repeating the algorithm several times.
Fig. 9c shows extreme cases from among the different solutions
obtained.

These data suggest that R¼ 0.2 is too low, as numerous empty zones
are present in the design. If R is increased to 0.3, the points are better
distributed throughout the space. Increasing the distance R to 0.4 pro-
duces two types of distributions: in the first solution, the points are
uniformly distributed, whereas in the second solution (represented
Fig. 9c in the right)) two points are found very close together. This
phenomenon illustrates the fact that the radius R can be too large. This
conclusion is confirmed with R¼ 0.5. In these conditions, all of the it-
erations led to clusters of points. Faced with this phenomenon, we
conclude that R¼ 0.4 is a limit value and we recommend that this value
be refined between 0.3 and 0.4 to allow the Strauss algorithm to produce
the most uniform solution possible.

� Dmax designs

For designs with maximal entropy, we varied the limit a of the
spherical variogram so as to measure the impact of this parameter on the
uniformity of the distribution. For each solution, the determinant of the
correlation matrix that we are seeking to maximize was calculated.

The distributions produced (Fig. 9d.) were observed to vary consid-
erably depending on the limit, in addition, the determinant criterion is
probably not sufficient to characterize uniformity. Indeed, a value close
to 1 for the determinant does not systematically guarantee a uniform
distribution.



Fig. 9. Solution with N¼ 10 points: a. Obtained from a candidate matrix Nc¼ 2500 points upon application of KS algorithm, b. Obtained from a obtained from a
candidate matrix Nc¼ 2500 points upon application of upon application of WSP algorithm, c. Obtained using Strauss algorithm with 500 iterations, d. for Dmax
designs with different limit values, e. Obtained using SbS algorithm for different values of R.
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Table 1
Assessment criteria for designs with N¼ 10 points obtained by applying the different algorithms to 3-components mixture.

Mindist Maxdist MeanMin Coverage Standard
Deviation

AE rmsd ad md

KS 0.432 0.461 0.443 0.022 0.010 117.15 0.170 0.160 0.269
0.432 0.447 0.440 0.012 0.005 118.47 0.168 0.157 0.265

WSP 0.350 0.358 0.352 0.006 0.002 167.07 0.141 0.130 0.256
0.340 0.350 0.342 0.010 0.003 170.79 0.146 0.135 0.356

Strauss
R¼ 0.4

0.349 0.389 0.372 0.036 0.014 143.22 0.157 0.146 0.290
0.334 0.402 0.372 0.060 0.022 153.20 0.143 0.133 0.254
0.294 0.451 0.359 0.128 0.046 143.32 0.16 0.150 0.288
0.352 0.388 0.369 0.031 0.012 137.52 0.161 0.148 0.310
0.223 0.445 0.350 0.203 0.071 166.82 0.146 0.134 0.263

Dmax
a¼ 0.3

0.221 0.456 0.287 0.224 0.064 259.08 0.143 0.130 0.372
0.215 0.364 0.261 0.154 0.040 244.21 0.152 0.136 0.440
0.263 0.39 0.315 0.146 0.046 204.34 0.140 0.128 0.317
0.232 0.391 0.293 0.165 0.049 234.78 0.147 0.133 0.429
0.232 0.379 0.278 0.146 0.041 268.25 0.153 0.133 0.380

SbS
R¼ 0.34

0.340 0.340 0.340 0.000 0.000 179.20 0.133 0.124 0.247
0.340 0.340 0.340 0.000 0.000 184.08 0.136 0.126 0.303
0.340 0.340 0.340 0.000 0.000 172.49 0.148 0.137 0.284
0.340 0.340 0.340 0.000 0.000 166.03 0.148 0.137 0.294
0.340 0.340 0.340 0.000 0.000 170.24 0.148 0.136 0.290

Fig. 10. Comparison of the intrinsic quality of designs for mixtures with N¼ 10 points and N¼ 20 points. Left: Mindist values; Right: AE values for the designs
produced by the different algorithms.
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� SbS designs

When constructing SbS designs, the value of R (radius of the sphere)
was varied between 0.32 and 0.36, as recommended by the data pre-
sented in Fig. 8. Some of the solutions obtained for different R values are
shown in Fig. 9e.

In these constructions, we obtained solutions for which all the points
are located at the same distance from neighboring points. For a given
number of points N and a carefully selected R value, repeated application
of the SbS algorithm produces solutions with a different structure, but in
which distribution of the points is guaranteed to be uniform.
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4.1.2. Calculation of the intrinsic criteria
For this study withN¼ 10 points, all of the criteria presented in part 2

were calculated for each of the designs. For the selection algorithms (KS
and WSP), the algorithm's initial point was varied. For the repulsion al-
gorithms, the radius R (Strauss) or the limit a (Dmax) was defined and
five repetitions were performed. For the SbS algorithm, the radius R was
defined and five repetitions were also performed. The values for the
criteria are listed in Table 1.

To compare the performance of the different designs in terms of
uniformity, we propose to use the graphical representation of
coverage¼ f (Mindist) values, knowing that the ideal zone is defined by



Table 2
Assessment criteria for designs with N¼ 20 points obtained by applying the different algorithms to 3-components mixtures.

Mindist Maxdist MeanMin Coverage Standard
Deviation

AE rmsd ad md

KS 0.163 0.274 0.243 0.120 0.029 975.91 0.099 0.093 0.168
0.176 0.271 0.242 0.117 0.028 994.89 0.098 0.091 0.176

WSP 0.212 0.239 0.217 0.032 0.007 1143.16 0.095 0.088 0.207
0.215 0.245 0.219 0.032 0.007 1111.76 0.096 0.089 0.207

Strauss 0.185 0.311 0.220 0.138 0.030 1092.28 0.103 0.094 0.297
0.077 0.312 0.210 0.271 0.057 1301.73 0.098 0.090 0.210
0.156 0.295 0.203 0.140 0.028 1206.28 0.103 0.093 0.326
0.201 0.266 0.214 0.072 0.015 1164.37 0.097 0.090 0.235
0.027 0.235 0.191 0.293 0.056 2467.48 0.101 0.092 0.276

Dmax 0.115 0.227 0.171 0.197 0.034 1718.43 0.103 0.092 0.352
0.113 0.316 0.183 0.297 0.054 1471.48 0.100 0.092 0.208
0.143 0.230 0.175 0.169 0.029 1509.39 0.108 0.096 0.363
0.127 0.250 0.173 0.188 0.032 1721.08 0.105 0.094 0.258
0.140 0.254 0.195 0.150 0.029 1290.74 0.101 0.092 0.340

SbS 0.220 0.220 0.220 0.000 0.000 1072.41 0.098 0.091 0.205
0.220 0.220 0.220 0.000 0.000 1093.00 0.095 0.088 0.197
0.220 0.220 0.220 0.000 0.000 1030.67 0.101 0.093 0.212
0.220 0.220 0.220 0.000 0.000 1107.79 0.095 0.088 0.197
0.220 0.220 0.220 0.000 0.000 1108.12 0.097 0.090 0.216

Table 3
Characteristics of the different algorithms used to construct uniform designs for mixtures.

Algorithm Parameters to
be defined

Initial matrix Stochastic
process

Stop iteration of
the algorithm

KS - N
- initial point

Candidate
matrix with
Nc points

NO When N points
are contained in
the design

WSP - dmin
- initial point

Candidate
matrix with
Nc points

NO When all the
points in the
candidate matrix
have been
considered

Strauss - R (radius of
interaction)

- number of
iterations
(NMC)

Random
matrix withN
points

YES Number of
iterations

Dmax - a (extent)
- number of
iterations

Random
matrix withN
points

YES Number of
iterations

SbS - R (radius of
the sphere)

A random
point

YES Number of
rejections
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high Mindist values and low coverage values. The AE criterion can also be
considered, it also relies on the calculation of Euclidean distances which
we seek to minimize to limit the potential energy of the structure as far as
possible.

This analysis reveals that the designs for mixtures produced by the
Strauss and Dmax algorithms present greater heterogeneity of minimal
distances than the designs produced by the KS, WSP and SbS designs,
where the minimal distances were practically equal for all repetitions
(Fig. 10 and Table 1).

Representation of the AE criterion as a histogram reveals slightly
lower values for the KS design, whereas designs produced by the WSP,
Strauss and SbS algorithms present larger, equivalent values. Higher
values still were obtained for designs with maximal entropy, which
suggests that these distributions were less uniform (Fig. 10).

According to the Borkowski and Piepel ad criterion, the mean of the
minimal distances (Table 1), only the KS designs are distinguished from
the other designs due to larger values. All the other designs present
similar ad values. In this case, the ad criterion cannot discriminate be-
tween the different designs.
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4.2. Designs with N¼ 20 points

In this comparison (Table 2), the Mindist values were low and
different from the MeanMin values for the Strauss, Dmax and KS designs,
indicating that at least two points were very closely-spaced. In addition,
these designs present very variable coverage values from one repetition to
the next, which confirms the strong heterogeneity of the minimal
distances.

The WSP and SbS designs were characterized by high Mindist and
MeanMin values and very low coverage values, indicating a uniform dis-
tribution (Fig. 10). In comparison to designs with N¼ 10 points, the KS
designs with N¼ 20 points appear to be of lower quality with higher
coverage values.

For the AE criterion (Fig. 10), the KS, WSP and SbS algorithms give
the lowest values. For the Strauss designs, this criterion shows a poor
repeatability of the algorithm, leading to very different solutions, with
variations in the AE value between 1092.28 and 2467.48. However,
using the Mindist criterion we demonstrated that two designs had very
closely-spaced points (repetition 2, Mindist¼ 0.076 and repetition 5,
Mindist¼ 0.027) whereas the AE criterion only flagged design 5. It
therefore appears that this criterion, although very informative, cannot
distinguish between designs with very closely-spaced points as it is a
criterion assessing overall uniformity.
4.3. Comparison of the algorithms for 3 components

These algorithms were modifications of algorithms developed to
produce designs with independent variables. Table 3 summarizes the
main characteristics of these algorithms in terms of the parameters to
adjust, criteria for stopping iteration, etc.

This table shows differences in the number of parameters to be
adjusted which can sometimes require optimization. In addition, some
algorithms use stochastic processes, potentially resulting in heterogene-
ity in the designs, and which require the algorithm to be repeated for the
same value of N and any other parameters to be defined. To compare the
performance of these algorithms, we considered the criteria for designs
produced in the case of a 3-components mixture. The Mindist, MeanMin
and coverage criteria can be used to characterize the uniformity of the
distribution by detecting the presence of clusters or gaps. The AE crite-
rion is informative, but remains an overall assessment criterion which
can discriminate between a very poorly-conditioned design and a rela-
tively poorly-conditioned design, but cannot identify an almost uniform



Table 4
Assessment criteria for designs with N¼ 20 to 100 points obtained by applying the different algorithms to 5-components mixtures.

Mindist Maxdist MeanMin Coverage Standard AE rmsd ad md

Deviation

N¼ 20 KS 0,343 0,508 0,398 0,148 0,059 529,96 0,201 0,193 0,352
WSP 0,335 0,369 0,338 0,022 0,007 808,54 0,179 0,173 0,361
SbS 0,370 0,370 0,370 0,000 0,000 605,26 0,201 0,195 0,352

N¼ 30 KS 0,308 0,434 0,330 0,072 0,024 1527,89 0,173 0,168 0,297
WSP 0,290 0,338 0,296 0,040 0,012 1981,14 0,161 0,156 0,313
SbS 0,310 0,310 0,310 0,000 0,000 1585,20 0,176 0,170 0,293

N¼ 40 KS 0,255 0,338 0,285 0,100 0,028 3097,56 0,159 0,154 0,266
WSP 0,255 0,285 0,260 0,034 0,009 3744,55 0,145 0,140 0,297
SbS 0,290 0,290 0,290 0,000 0,000 2878,06 0,163 0,158 0,267

N¼ 50 KS 0,243 0,327 0,260 0,081 0,021 5230,42 0,147 0,142 0,278
WSP 0,242 0,292 0,247 0,042 0,010 6010,38 0,137 0,132 0,244
SbS 0,260 0,260 0,260 0,000 0,000 5046,34 0,151 0,147 0,253

N¼ 100 KS 0,184 0,259 0,202 0,074 0,015 25809,82 0,116 0,112 0,217
WSP 0,187 0,230 0,191 0,035 0,007 27885,44 0,112 0,108 0,198
SbS 0,210 0,210 0,210 0,000 0,000 22884,40 0,122 0,118 0,214

Table 5
Assessment criteria for designs with N¼ 30 to 200 points obtained by applying the SbS algorithm to 10-components mixtures. The Coverage and the Standard deviation criteria are equal to
zero and are not been reported in the table.

Mindist Maxdist MeanMin AE rmsd ad md

N¼ 30 0,280 0,280 0,280 2638,64 0,210 0,206 0,370
N¼ 50 0,250 0,250 0,250 7784,98 0,193 0,191 0,354
N¼ 70 0,240 0,240 0,240 15090,24 0,194 0,191 0,325
N¼ 90 0,209 0,209 0,209 28822,72 0,172 0,169 0,395
N¼ 110 0,219 0,219 0,219 37699,47 0,167 0,165 0,305
N¼ 130 0,212 0,212 0,212 55378,52 0,164 0,162 0,271
N¼ 150 0,208 0,208 0,208 69904,15 0,163 0,161 0,333
N¼ 170 0,203 0,203 0,203 96750,61 0,159 0,157 0,288
N¼ 200 0,200 0,200 0,200 138029,61 0,154 0,152 0,273
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distribution in which two points are very closely-spaced. Interpretation
based on the AE alone could therefore lead to erroneous conclusions. The
criteria proposed by Borkowski and Piepel do not make it possible to rank
designs based on their intrinsic qualities. Indeed, these criteria, although
easy and rapid to calculate, measure distances between the design to be
assessed and a random distribution of 10000 virtual points. Because of
this approach, for the same design, different values can be obtained for
this criterion at each calculation. As a result of the data presented here,
we recommend retaining the Mindist, MeanMin and coverage criteria and
completing them with the Audze-Eglais criterion.

4.4. Construction of designs with more than 3 components

4.4.1. Mixtures with 5 components
Considering the results obtained with 3 components, a study with 5

components has been achieved. Only three algorithms KS, WSP and SbS
have been tested taking into account that Strauss and Dmax algorithms
would be difficult to perform because of the required optimization of the
parameters.

All the criteria have been calculated and values are reported Table 4
for N¼ 20 points to 100 points.

It is obvious that the three algorithms lead to very similar results.
Nevertheless, we can observe that WSP designs always present AE values
higher that KS and SbS designs that means that the potential energy of
the structure is higher. Moreover, the Mindist values of SbS designs is
slightly higher than those obtained with KS algorithm.

4.4.2. Mixtures with 10 components
The same behavior has been observed for 10 components. Only the

criteria values for SbS algorithms have been reported Table 5 for N¼ 30
points to 200 points.
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5. Conclusion

In this study, we presented algorithms for the construction of uniform
designs for mixture variables. With regard to the construction of designs,
our results demonstrate that some algorithms, such as the Strauss and
Dmax algorithms, require optimization of their essential parameters to
guarantee a uniform distribution. It is this optimization step that can be
long and difficult, particularly with high dimensions. The KS algorithm
tends to place points in the periphery of the space, and depending on the
value ofN, does not produce a uniform distribution throughout the space.
The WSP algorithm produces uniform distributions, but requires
adjustment of the dmin value depending on the desired number of points
N, and on the structure of the set of candidate points. The new con-
struction algorithm, SbS, has the advantage of not being a selection al-
gorithm and therefore it is independent of the quality of the matrix of
candidate points. This algorithm is powerful, guaranteeing good unifor-
mity of distribution of the points throughout the space. Only the radius of
the sphere must be adjusted to produce the desired number of points.

This study has been performed for “classic” experimental domain of
interest which is a simplex for 3 components or a hypersimplex for more
than 3 components. It would be interesting to extend this study to the
reduced domain (hyperpolyhedron) generated by individual or relational
constraints on the components. All the algorithms could be easily
modified in order to take into account these constraints. Thus, for the
selection algorithms as KS andWSP, it is sufficient to modify the step 1 of
the algorithm by randomly generating the candidate points in the
hyperpolyhedron. For the repulsion algorithms as Strauss and Dmax, it is
the same principle. The step 2 of the algorithms must be changed and the
matrix V is generated with N points in the space of constraints. For the
last method, SbS algorithm, for each iteration, (Step 2 and 4), we have to
test if the new point belongs to the hyperpolyhedron.
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