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Delay Dependent Stability Criteria and Stabilization for Discrete-Time Systems Via Three Terms approximation
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This paper discusses the problem of delay-dependent stability and stabilization condition for discrete-time linear systems. By employing a three-term approximation for delayed state variables, a new model transformation is developed, which has a smaller approximation error than the two-term approach. By using scaled small gain theorem and an appropriate Lyapunov-Krasovskii functional, new delaydependent stability conditions are proposed and formulated as linear matrix inequalities (LMIs). Before the end, a state feedback controller has investigated in the stabilization of discrete linear systems. Finally, numerical examples are presented to illustrate the effectiveness of the proposed method.

INTRODUCTION

Time delays are often an integral part of various physical systems like air-craft stabilization, communication systems, population dynamics, ship stabilization, electric power systems with lossless transmission lines and nuclear reactors, etc. The nature of these delays is time-varying. It is well known that the existence of time delay in various systems may provide poor performance and instability of dynamic systems, for more details see [START_REF] Kim | Note on stability of linear systems with time-varying delay[END_REF][START_REF] Lakshmanan | Improved results on robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations[END_REF][START_REF] Sun | Improved delay-range-dependent stability criteria for linear systems with time-varying delays[END_REF][START_REF] Xu | A survey of linear matrix inequality techniques in stability analysis of delay systems[END_REF] and references therein.

Recently, the discrete time modelling has an essential role in many fields of science and engineering. Thus, most of systems are implemented with digital computers via the necessary input/output hardware. The digital computer uses the information in a way discrete. For the aforementioned considerations, much interest has been fixed to the analysis of discrete-time delay systems see for example [START_REF] Chen | Delay-dependent guaranteed cost control for uncertain discrete time systems with delay[END_REF][START_REF] He | Delayrange-dependent stability for systems with time-varying delay[END_REF][START_REF] Lin | A less conservative robust stability test for linear uncertain time delay systems[END_REF][START_REF] Park | A delay-dependent stability criterion for systems with uncertain time-invariant delays[END_REF][START_REF] Xu | Improved delay-dependent stability criteria for time-delay systems[END_REF]. Based on Lyapunov-krasovskii functional and on bounding techniques, delay-dependent stability of discrete-time systems has been investigated by [START_REF] Fridman | Stability and guaranteed cost control of uncertain discrete delay systems[END_REF][START_REF] Gao | New results on stability of discrete-time systems with time-varying state delay[END_REF][START_REF] Gao | Delaydependent output-feedback stabilisation of discrete-time systems with time-varying state delay[END_REF][START_REF] Jiang | Stability criteria for linear discrete-time systems with interval-like timevarying delay[END_REF]. On the other hand, many authors have been employed the input/output approach in the stability analysis of time-delay systems. This method is based on a specific transformation which aims to transform a pure system into two interconnected subsystems.

The input/output approach has been implemented in various works. Many works have proposed some results such as [START_REF] Huang | Robust stability of uncertain time-delay systems[END_REF][START_REF] Park | A delay-dependent stability criterion for systems with uncertain time-invariant delays[END_REF] for constant delays, and it has been extended to time varying delay in [START_REF] Fridman | Input-output approach to stability and l2-gain analysis of systems with timevarying delays[END_REF][START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF]. For time varying delay, the idea is to find an approximation of ( ( ))

x k d k  for discrete-time case or ( ( ))

x t h t 

for continuous-time case, such that its approximation error is small as possible. [START_REF] Fridman | Input-output approach to stability and l2-gain analysis of systems with timevarying delays[END_REF]) have adopted ( is used by [START_REF] Kao | Simple stability criteria for systems with time-varying delays[END_REF]. [START_REF] Gu | Small gain problem in coupled differential-difference equations, time-varying delays, and direct lyapunov method[END_REF][START_REF] Hmamed | Stability analysis of linear systems with time varying delay: An input output approach[END_REF] [START_REF] Zhao | Robust stability and stabilization of uncertain ts fuzzy systems with timevarying delay: An inputoutput approach[END_REF] for T-S Fuzzy systems with time-varying delay. [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF] have also used the discrete two term approximation  

1 2 ( ( ) ) 2 x t d x t d    as the approximation of ( ( )) x k d k 
for discrete delay systems. The same approximation has been considered in [START_REF] Su | Novel approach to filter design for ts fuzzy discrete-time systems with time-varying delay[END_REF] for filtering T-S fuzzy discrete-time systems with timevarying delay. It is pointed out that the approximation model of the delayed state with two terms is better than that based on only one term.

In this paper, Three terms approximation is proposed by

using   1 2 ( ( ( ) ) ) 3 a x k d x k d x k d      as an approximation of ( ( )) x k d k 
with 1 d and 2 d being the lower and the upper bounds of delay, within which the approximation error is smaller than the two-terms [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF]. Then a new model transformation is formulated and will be analyzed and applied for the stability analysis and stabilization of discrete delay systems. By using an appropriate Lyapunov-Krasovskii functional and the scaled small gain theorem (SSG) we present a new stability criterion of a subsystem. Before the end, the conditions which guarantee that discrete system is asymptotically stable under state feedback controller are given as LMIs by using the cone complementarity linearization algorithms. Finally, Numerical examples are given to illustrate the effective of the proposed method.

Notations: Notation P > 0(≥0) means that matrix P Is positive (semi) definite. The Superscript 'T' means the transpose. G 1 •G 2 denotes the series connection of G 1 and G 2 .

I is an identity matrix with appropriate dimension. Denote "*" for the terms that can be deduced by symmetry In block matrices, we use diag{...} to express a block-diagonal matrix.

2 2 0 ( ) ( )

T l k x x kxk    
denotes the l 2 norm of series

x(k) and ‖ꞏ‖ ∞ represents the l 2 -induced norm of a transfer function matrix or a general operator.

PROBLEM FORMULATION AND PRELIMINARIES

We consider the discrete time linear system with an interval time delay described by the following model.

2 2 ( 1) ( ) ( ( )) ( ) ( ), , 1,...,0 d x k Ax k A x k d k x k k k d d             (1) Where ( ) n x k   is the state vector, , n n d A A    are constant matrices, 2 2 ( ), , 1,..., 0 k k d d      is the given initial condition sequence.
( ) d k is the time delay, time-varying satisfying.

1 2 1 ( ) d d k d    (2)
where d 1 and d 2 are known constants.

Before proceeding on, the following lemma is introduced which plays an important part in the development of our main results.

Lemma 1. [START_REF] Huang | Improved approach to delaydependent stability analysis of discrete-time systems with time-varying delay[END_REF] For any symmetric matrix

0 M  , integer 1 2 l l  and vector function   1 1 2 : , 1,..., n l l l    such that the sums concerned are well defined, then 2 2 2 1 1 1 2 1 ( 1 ) () () () () T l l l T i l i l i l l l i M i i M i                         
The main objective of this work is to determine the stability condition for time delay system (1) using the Scaled Small Gain Theorem (SSG) [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF]. To apply this theorem, we need to transform the original system (1) into the two following subsystems: 

z z z z z T T T T T T T                  
such that the following SSG condition holds:

1 1 z T G T       (4)

MAIN RESULTS

In this section, we start with introducing the new model transformation method of system (1) and then we present the stability condition using SSG Theorem.

New Model Transformation

Inspired by the work in [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF] can be written as follows:

 

1 2 12 1 3 3 ( ( )) ( ) ( ) ( ) ( ) a d x k d k x k d x k d x k d k           (5) Where   1 2 1 3 ( ) ( ) ( ) a x k d x k d x k d      designed the approximation of ( ( )) x k d k  , 12 3 ( ) d k  
is the approximation

error 12 2 1 2 1 2 , a d d d d d d    
. From ( 5) system (1) can be written as:

12 1 1 1 3 3 1 2 3 3 3 6 ( 1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) with (k)= ( ) d d a d d d x k Ax k A x k d A x k d A x k d A k k zk k                       (6) Remark 1. The equation 3 6 (k)= ( ) k    is introduced to
show that there is a relation between the feedback S 2 and the forward S 1 , and to give a representation of subsystem S 1 in a compact form, similar to that in [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF].

From ( 5) and ( 6) the interconnection formulation of system (1) can be written as:

12 12 1 3 1 1 3 2 ( 1) ( ) ( ): ( ) ( ) ( ): ( ) ( ) d d d d G x k k A S z k k A S k z k                                       (7) With ( ) ( 1) ( ) z k x k x k    1 3 3 3 d d d A A A A       , 2 3 3 3 d d d A A A A I          1 2 ( ) ( ) ( ) ( ) ( ) a k x k x k d x k d x k d     
From the position of ( ) d k we obtain two scripture of 12 3 ( )

d k   Case 1: 1 ( ) a d d k d       1 2 1 2 2 1 3 2 12 1 1 ( ) 1 ( ) ( ) ( ) ( ) 1 3 3 1 3 1 1 2 3 3 ( ) ( ( )) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) a a k d k d k d k i k d k i k d i k d k k k d k x k d k x k d x k d x k d z i z i z i k k k                                                            Case 2: 2 ( ) a d d k d       1 2 1 2 2 3 1 12 1 1 ( ) 1 ( ) ( ) ( ) ( ) 1 3 3 1 3 1 1 2 3 3 ( ) ( ( )) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) a a a k d k d k d k i k d i k d k i k d k k k d k x k d k x k d x k d x k d z i z i z i k k k                                                            
Before moving on, the following Lemma ensuring that the l 2induced norm of  is bounded by one. Proof. For Case 1, we apply the Cauchy-Schwartz inequality [START_REF] Fridman | Input-output approach to stability and l2-gain analysis of systems with timevarying delays[END_REF]  

2 12 2 2 1 1 2 3 9 9 2 2 2 1 1 2 3 9 ( ) ( ) ( ) ( ) ( ) ( ) ( ) d k k k k k k k              
We continue the proof for each term separately. The function

( ) ( ) j p k k d k    is strongly increasing. Hence, the inverse 1 ( ) ( ) k p j q j    is well-defined and satisfies 12 2 1 ( ) ( ) d q j j d    . Then, summing 1 ( ) k  in k,
changing the order of the summation and taking into account 

that ( ) 0, 0 z k k   we find that 1 2 12 2 1 12 2 12 2 1 2 2 1 9 0 ( ) 1 2 1 0 ( ) 2 1 1 0 2 1 2 0 2 4 ( ) ( ( ) ) ( ) ( ( ( ) ) ( ) ( ( ( ) )( ( ) ( )) ( ) ( ) ( ) ( ) k d d l k j k d k j d j k q j j d a j d l k d k d z j d q j d z j d q j d q j j d z j d d z j z j                                   For 2 (
d d d d d l l l k z k z k       By substituting ( ) k ( 4 ) ( ) ( ) 
  by the relation given in equation ( 6), we

obtain 2 2 2 2 ( ) ( ) l l k z k  
. For case 2, using a proof process similar to that for case 1, we obtain the same results. This completes the proof.

Remark 2. The calculation of l 2 -gain allows a comparative study. [START_REF] Fridman | Input-output approach to stability and l2-gain analysis of systems with timevarying delays[END_REF] have been approximate

( ( )) x k d k  by one term ( ) a x k d 
. [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF] have

approximated ( ( )) x k d k  by   1 2 ( ( ) ) 2 x k d x k d  
 for two terms approximation. From a purely numerical standpoint, the evaluation of l 2 -gain shows that the l 2 -gain is smaller using three terms based on approximation model than obtained using one or two terms based models as will be shown in Table 1. 

  12 1 1 2 2 2 ( ) ( ) ( ( ) d a x k d x k d x k d k         (5) is reduced to   12 1 1 2 2 2 ( ( )) ( ) ( ) ( ) d x k d k x k d x k d k        
which refers to the two terms approximation [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF])

If   1 2 1 2 ( ) ( ) 2 ( ) ( ) a x k d x k d x k d d k         . (5) is reduced to 12 2 ( ( )) ( ) ( ) d a x k d k x k d k     
Which refers to the one term approximation [START_REF] Fridman | Input-output approach to stability and l2-gain analysis of systems with timevarying delays[END_REF], with

3 3 ( ) ( ) k k    . Remark 4. : Let ( )
V k be a Lyapunov Krasovskii functional which guarantees the stability of subsystem S 1 and let

  0 ( ) ( ) ( ) ( ) T T k J z k Sz k k S k        It is well known that the following condition along (S 1 )   0 ( ) (0) ( ) ( ) 0 k W V V J j k V k            (8)
guarantees that the H  norm of (S 1 ) is less than 1. Therefore (8) is a sufficient condition for the bounded real lemma problem. In addition if (8) holds, according to Lemma 2 (SSG Theorem), we can conclude that system (S 1 ) is stable. Then, if J < 0, and letting

T S T T  this means that 1 1 T G T      .

Stability Analysis

The forward subsystem S1 has three constant state delays So, the condition of the scaled small gain in Lemma 2 cannot be implemented to solve S1 directly by bounded real lemma. We can use an appropriate Lyapunov-Krasovskii functional to obtain sufficient LMIs conditions for a given 0

  ensuring 1 T G T       .
Another possible way is applying the lifting method in [START_REF] Xia | New stability and stabilzation conditions for systems with time-delay[END_REF] to convert S 1 to be delay-free. The following theorem presents two LMIs methods satisfying the SSG of S 1 . 

                        (9) Where       2 1 1 1 3 3 3 1 2 2 0 0 0 0 d d d d n A A A A A I               1 1 1 3 3 3 1 2 2 0 0 0 n d d d C A I A A A            2 2 12 1 2 2 3 ( 1) 3 1 2 ( 1 )
, , 0 0 , 0 0 0

d d d d d nd n n n d n n A B D A                   
ii) if there exist matrices, 0, 0, 0 ( 1, 2,3), 0 ( 1, 2)

i j P S Q i R j       , such that   1 2 1 3 1 2 3 2 3 1 2 0 diag , , , 
T T T T P d R d R S P R R S                        (10) 
Where

    11 1 2 1 2 2 12 2 13 3 0 0 , , , R R diag Q S                  12 12 11 1 2 3 1 2 12 1 1 13 3 2 2 1 3 2 3 3 , , d d d d Q Q Q P R R Q R Q R A A                              Proof.
To prove (9) we use the scaled small gain theorem and the bounded real lemma. Define

  2 ( ) ( ), ( 1),..., ( ) x k col x k x k x k d     (11)
and using the lifting method in [START_REF] Xia | New stability and stabilzation conditions for systems with time-delay[END_REF] to convert S 1 into delay-free of the following augmented state-space model:

( 1) ( )

( ) ( ) x k xk A B z k k C D                             (12)
The operator G which is a mapping from ( ) k

 to z(k)
guarantees the H  norm of S 1 is less than  .Then, the H  norm can be written as (proof of ii)). Let consider the discrete Lyapunov-Krasovskii functional for S 1 as

1 2 3 ( ( )) ( ( )) ( ( )) ( ( )) V x k V x k V x k V x k    (13) 
Where

1 2 1 1 1 2 1 2 1 3 2 1 1 3 1 ( ( )) ( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ) ( ) a l T k k T T i k d i k d k T i k d k T l l l j d i k j V x k x k Px k V x k x i Q x i x i Q x i x i Q x i V x k d z i R z i                            And ( ) ( 1) ( ) z i x i x i   
The difference of V(k) can be calculated as

    1 2 1 2 3 1 1 1 2 2 3 2 2 2 1 1 2 2 1 1 1 1 2 2 ( ( )) ( ) ( 1) ( 1) ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) T T T T a a T T k T i k d k T i k d V x k x k Q Q Q P x k Px k x k d Q x k d x k d Q x k d x k d Q x k d z k d R d R z k d z i Rz i d z i R z i                              (14) 
Applying Lemma 1 to deal with the cross-product items in (14), we obtain

1 1 1 1 1 1 1 ( ) ( ) ( ) k T T i k d d z i Rz i k R          (15) 2 1 2 2 2 2 2 ( ) ( ) ( ) k T T i k d d z i R z i k R          (16) With 1 1 2 2 ( ) ( ) ( ), ( ) ( ) ( ) k x k x k d k x k x k d         .
Substituting the cross-product items in ( 14) by ( 15) and ( 16), we obtain

    2 2 1 1 1 2 1 1 2 2 2 ( ( )) ( ) ( ) T T T V x k k P d R d R k           (17) Where     11 1 2 1 12 2 13 0 * , , R R diag Q            
Using Schur complement, (10) implies that ( ( )) 0 V x k   , which means that S 1 is asymptotically stable.

Let S > 0     0 ( ) 2 2 3 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) T T k j k T T k J z k Sz k k S k z k Sz k k S k                    (18) Taking ( ( )) V x k  of S 1 , we have under the zero initial condition       0 2 2 1 2 2 3 1 1 2 2 0 3 ( ) (0) ( ) ( ) ( ) ( ) k T T T k J V V J j k V k k P d R d R S k                       (19) 
Where ( ) ( ) ( ) 3 n n  in [START_REF] Zhang | Improved stability criterion and its applications in delayed controller design for discrete-time systems[END_REF][START_REF] Ramakrishnan | Robust stability criteria for a class of uncertain discrete-time systems with time-varying delay[END_REF]. n n  in [START_REF] Kwon | Improved delay-dependent stability criteria for discrete-time systems with time-varying delays[END_REF],

T T T k k k          .
2 4 3 n n 
in [START_REF] Liu | Note on stability of discretetime time-varying delay systems[END_REF], (Shao and Han, 2011) which means that the condition proposed is simple than the other conditions in literature.

2 8 3 n n  in

Controller Design

This section is devoted to studying the state feedback controller design problem, whose goal is to guarantee the stability asymptotic of discrete-time delay system. The discrete-system controlled is represented as

( 1) ( ) ( ) x k Ax k Bu k    ( 20 
)
It should be noted that in the literature several author have been studying the stabilization of the system (20) and have chosen as control law ( )

( ( )) u k Kx k d k   .
In this section we are trying to stabilize our system with a control law Different than that used in [START_REF] Gao | New results on stability of discrete-time systems with time-varying state delay[END_REF][START_REF] Kwon | Improved delay-dependent stability criteria for discrete-time systems with time-varying delays[END_REF][START_REF] Zhang | Improved stability criterion and its applications in delayed controller design for discrete-time systems[END_REF]. The state feedback controller is described by the following equation:

1 2 ( ) ( ) ( ( )) u k K x k K x k d k    ( 21 
)
where K 1 , K 2 are the controller gain to be determined and d(k) is a time varying delay satisfying (2). Applying the controller law (21) to system (20) and using ( 5), the closedloop system is obtained from (20) as
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The following Theorem presents the conditions should be satisfied 1 ( ) S  to be asymptotically stable. ( ) S  is asymptotically stable if there exist matrices 0, 0, 0, 0, 0( 1, 2,3)

i P S X Z Q i      1 0, 0( 1, 2), j j R Y j K    and 2 K such that   1 2 1 3 2 3 3 1 2 0 , , , T T T T d d diag X Y Y Z                            (22) 
With equality constraints

1 1 2 2 , , PX I R Y I R Y I SZ I     Where 12 12 2 1 3 2 3 3 1 1 1 1 1 3 3 3 1 1 1 2 1 3 3 3 , .
.

d d d d d d d d d d A A A BK A A A A BK I A A A                                    Proof. replace 1 2 , , , X Z Y Y by 1 1 1 1 1 2 , , , P S R R     ,respectively.

By taking in consideration that

1 A A BK   , 2 d A BK  . Then
we apply the Schur Complement lemma, we get the proposed conditions in Theorem 1. Therefore, by Theorem 1 the desired result immediately follows. This completes the proof.

Remark 7. The resolution of the LMI in Theorem 1 using MATLAB toolbox is difficult then to put in evidence the problem, we need to transform it into minimization problem, such as LMIs are satisfied. By following the same procedure as that presented in [START_REF] Zhang | Delay-dependent H infinity controller design for linear neutral systems with discrete and distributed delays[END_REF] then the resolution of our problem is easy to manipulate using the algorithm of cone complementarity linearization (CCL) algorithms [START_REF] Ghaoui | A cone complementarity linearization algorithm for static output-feedback and related problems[END_REF], which is adopted as Algorithm 1.

Algorithm 1. To maximize d 2 :

Step 1: Choose a sufficiently small initial 2 , , , , , , ,

1 1 d d  
P X R Y R Y S Z I 
such that exists a feasible solution for the condition ( 22) and

1 2 1 2 0, 0, 0, 0 R I R I P I S I I Y I Y I X I Z                             (23) Set 2max 2 d d  ; 0 k  .
Step 2: Find a feasible solution of the following optimization problem for the variables  

1 1 2 2 , , , , , , , P X R Y R Y S Z 1 1 1 1 2 2 2 2
Minimize Trace subject to ( 22) and ( 23)
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and return to

Step 2. If it is not satisfied within a specified maximum number of iterations, then exit. Otherwise, set k = k + 1 and go to Step 2. 



Lemma 3 for S h1 [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF] 174 1.00

Lemma 3 for S hm [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF] 

NUMERICAL EXAMPLES

To illustrate the effectiveness of the proposed method, this section will provide three examples. It will be shown that the proposed results can provide less conservative results than recent ones proposed in literature.

Example 1. Consider the linear discrete-time delay systems

0.8 0 0.1 0 ( 1) ( ) ( ( )) 0.05 0.9 0.2 0.1 x k x k x k d k                    (24) 
In order to test the advantages of the model transformation. [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF]) is adopted the model transformation presented in other paper such as [START_REF] Fridman | Input-output approach to stability and l2-gain analysis of systems with timevarying delays[END_REF][START_REF] Kao | Simple stability criteria for systems with time-varying delays[END_REF], and formulate its specific Lemmas. We compare our approach using Theorem 1 with results in [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF], and the results obtained by lemmas presented in [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF]. in [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF]) while that of Theorem 1 i) and with the same number of decision variables we obtains a smaller  than Corollary i) in [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF] which means that the three term approximation gives less conservative results than two-term approximation.

For an appropriate choice of , A B   and C  , Table 3 lists the upper delay bounds obtained by Theorem 1-i) and ii).

From Table 3, we can conclude that the proposed method yields less conservative results than the existing results in the literatures. Moreover, the relationship of SSG condition Theorem 1-i) and ii) are 0.6318 for d 2 = 18 and 0.877 for d 2 = 21 respectively, while that of two-term approximation in [START_REF] Li | A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis[END_REF] 

k x k x kd k                    (25) 
For given d 1 ={2,5,6, 7,10, 20} the maximum upper bounds d 2 obtained by [START_REF] Ramakrishnan | Robust stability criteria for a class of uncertain discrete-time systems with time-varying delay[END_REF] 

( ) 3 (4 ) (4 ) 0 1 0 ( ) ( ) 0 M m g l M m l M m x t u t                   (26) 
When M = 8kg, m = 2.0kg, l = 0.5m, g = 9.8m/s 2 and choosing sampling time T s = 30ms, then system (26) can be transformed to discrete-time system with the following parameters 1.00078 0.0301 0.0001 , 0.5202 1.0078 0.0005 while that of (Gao andChen, 2007, Kwon et al., 2013;[START_REF] Zhang | Improved stability criterion and its applications in delayed controller design for discrete-time systems[END_REF][START_REF] Huang | Improved approach to delaydependent stability analysis of discrete-time systems with time-varying delay[END_REF] are 3,4,5,6 respectively. This means that our approach gives larger delay bounds.

A B                
Table 5 summaries study devoted to stabilization of system (20) and lists the maximum delay bounds and the controller gain obtained by other methods. The last column in Table 5 lists the number of iteration (N.Iter) satisfied Theorem 2 to be feasible. Firstly, it should be noted that Theorem 2 is satisfied with a small controller gain than those in [START_REF] Gao | New results on stability of discrete-time systems with time-varying state delay[END_REF][START_REF] Zhang | Improved stability criterion and its applications in delayed controller design for discrete-time systems[END_REF]Huang andFeng, 2010, Kwon et al., 2013). Moreover, the number of iteration needed to obtain feasible solution for K = K 1 = K 2 is 473, while that of

1 2 K K 
is 59, which means that the proposed method with From this example we conclude that our method can control practical system with a smaller controller gain better than the existing methods in literature. 

CONCLUSION

In this paper, an improved delay-dependent stability for discrete-time linear systems has been developed. Based on a new model transformation performing a three-term approximation, stability criteria have been presented in term of a set of LMIs by using a direct Lyapunov-Krasovskii functional and SSG theorem. Thereafter, the problem of timedelayed controller design for discrete-time systems has been studied and a sufficient condition for the solvability of this problem has been given by using cone complementarity linearization (CCL) algorithms. It is better to mention that these results are extendable for filtering problem and for many types of systems. At the end, the proposed numerical examples have demonstrated the advantage of the method proposed to obtain less conservative results.
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  to Lemma 3.2 in[START_REF] Apkarian | A convex characterization of gain-scheduled h controllers[END_REF] by setting P = X and S = L, then the condition (9) guarantees 1
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 1 Fig. 1. SSG condition according to d 1 when d 2 =8 for example 2.

Fig. 4 .

 4 Fig. 4. The states trajectory x 1 (k) and x 2 (k) for 1 2 K K  .

  d 1 = 7 is figured in Figs.2. From Figs. 2, we observe that the three-term approximation has smaller SSG condition 1

Fig. 5 .

 5 Fig. 5. Inverted pendulum system. We consider this example to illustrate the advantages of the proposed method. When d 1 =1 and by applying Theorem 2 The maximum value of d 2 which guarantees the asymptotic stability of closed-loop system (20) is d 2 =8 for (K = K 1 = K 2 ) and d 2 > 15 for 1 2 K K 

  than (K = K 1 = K 2 ). The controller gains in last line of Table 5 are obtained for given d 1 = 1 and d 2 = 15. Fig 3 and Fig 4 plots the closed loop system using the controller gain (K = K 1 = K 2 state responses converge to zero for small time k, while that of Fig 4 needs more time k to approach zero.

  Fig 3 and Fig 4 emphasize the merit of the proposed method. In the simulation, the initial values of the states are x(0) = [1;1] and time-delay d(k

Table 1 . l 2 -gain of different approximation.
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	Methods	l 2 -gain
	(Fridman and Shaked, 2007)	12 d	2
	(Li and Gao, 2011)	12 2 d
	Three-terms approximation	12 d	6

Table 2 . The minimum  for different methods for.

 2 

	8		( ) 14 d k 
	Methods		Num. of Var

Table 2

 2 . One can see that the minimum  obtained by our method is smaller than that given by other methods. From Table2we can see that Theorem 1 ii) need more decision variable and gives smaller  than Corollary ii)

	lists the Number of

Table 3 . Maximum bounds d 2 for different value of d 1 .
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					by Corollary 1-i) and ii) are 0.9486 and
	0.8857 respectively. In other side, we can observe from Fig 2
	that Theorem 1-i) gives larger delay bounds d 2 = 26 than that obtained by Corollary 1-i) in (Li and Gao, 2011) d 2 = 21. This comparison shows that the proposed method is less
	conservative delay					
	d 1				2	4	6	7	10 15 20 25
	(Shao and Han,2011)	-	-	18	18 20 23 27 31
	(Liu and Zhang, 2012)	-	-	18	18 20 23 27 31
	(Kwon et al., 2013)		19 19	20	20 21 24 27	-
	(Li and Gao, 2011)-(ii)	17 17	18	18 20 23 27 31
	(Zhanga et al., 2015)	20 21	21	-	22 24 27	-
	Theorem 1-(ii)		20 20	21	21 22 25 28 32
	(Li and Gao, 2011)-(i)	17 19 201 22 25 30 35 40
	x	(	1)	0.7	0.1	( )	0.1	0.1	(	( ))
				0.05 0.7		0.1	0.2		

Theorem 1-(i) 20 22 24 25 28 33 38 43 Example 2. Consider the linear discrete-delay systems

Table 4 . Maximum bounds d2 for different value of d1.
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	d 1	2	5	6	7	10 20	N.V
	(Zhang et al., 2008)	7	9	10 11 14 24	42
	(Huang and Feng, 2010)	8	10 11 12 15 25	18
	(Liu and Zhang, 2012)	9	11 12 13 16 26	22
	(Li and Gao, 2011)-(ii)	9	11 12 13 16 26	18
	(Li and Gao, 2011)-(i)	9	13 14 15 17 27	-
	Theorem 1-(ii)	10 13 14 15 18 28	21
	Theorem 1-(i)	12 15 16 17 20 30 -	
	It is clear that the results obtained in this paper are better than
	the existing one in the literatures. From the last column of
	Table 4 (N.V), we observe that the proposed method needs
	more decision variables than (Huang and Feng, 2010) and (Li
	and Gao, 2011)-(ii) and smaller variables than other methods

Table 5 . Maximum bounds d 2 and controller gains K.
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	Methods		d 2		K			N.Iter
	(Gao and Chen, 2007)	3	[102.9100	80.7916]	-
	(Zhang et al., 2008)	4	[110.6827	34.6980]	-
	(Huang and Feng, 2010)	5	[110.6827	34.6980]	-
	(Kwon et al., 2013)	6	[110.6827	34.6980]	-
	Theorem 2 K 1 = K 2	8	[85.9857	26.5128]	473
	Theorem 2	1 2   K K    	>15	  	98.3007 7.0841 0.0005 0.0020 	  	59