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Multiscale directional statistics are investigated in two-dimensional incompressible
turbulence. It is shown that the short-time behavior of the mean angle of directional change
of fluid particles is linearly dependent on the time lag and that no inertial range behavior
is observed in the directional change associated with the enstrophy-cascade range. In
simulations of the inverse-cascade range, the directional change shows a power law behavior
at inertial range time scales. By comparing the directional change in space-periodic and
wall-bounded flow, it is shown that the probability density function of the directional change
at long times carries the signature of the confinement. The geometrical origin of this effect
is validated by Monte Carlo simulations. The same effect is also observed in the directional
statistics computed from the trajectories of football players (soccer players in American
English).
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I. INTRODUCTION

In the absence of a successful theory derived from the Navier-Stokes equations, the understanding
of turbulence is based on phenomenology and statistical characterization. One of the most universal
features of turbulence is perhaps its energy distribution among scales, which in a wide variety of
flows is well approximated by Kolmogorov’s description of locally isotropic turbulence [1,2]. A
complementary description of turbulent flows is its geometrical characterization. In the Eulerian
frame, such a description could involve the statistics of vorticity patches and filaments, or regions
of significant strain. In the Lagrangian frame, i.e., following fluid particles, an obvious geometrical
characterization would involve the tortuosity or curvature of the turbulent trajectories. Indeed, it is
the spiraling motion of the fluid particles that characterizes the turbulent nature of the flow in the
Lagrangian setting.

The curvature in turbulent flows was studied in references [3–8]. The extension to a time scale–
dependent curvature-related statistical measure was only recently proposed in Ref. [9], and we used
this measure to characterize the directional change of trajectories in isotropic three-dimensional (3D)
turbulence [10]. It was shown that three distinct regimes could be observed in the directional change:
First, there is a ballistic regime in which the particle changes its direction as expected in a spatially or
temporally smooth flow. Then, for larger time lags we showed the existence of an inertial, self-similar
regime where the link could be made with Kolmogorov’s inertial range phenomenology. Finally,
for time scales larger than the Lagrangian correlation time, an uncorrelated regime was observed,
in which the angle characterizing the directional change is randomly distributed. One single type
of turbulence was considered, the academic case of space-periodic isotropic 3D incompressible
turbulence.

The present work can be seen as a logical continuation of the investigation reported in Ref. [10].
We will address two additional questions. First, how do the statistics change if we are in two
space dimensions? Indeed, the flow structure and Lagrangian correlations are different in the two-
dimensional (2D) case, and we expect the directional change to reflect this difference. Second, what
is the influence of the finite size of the domain on the statistics? This is an important question, since in
a wide range of practical flows, solid boundaries modify the properties of the turbulence. To address
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these questions we consider statistically stationary incompressible turbulence in two dimensions.
We will consider two different geometries: a spatially periodic case, i.e., an unbounded domain,
and a wall-bounded circular domain. Using Monte Carlo simulations we will in particular show
which features of the statistics are flow-dependent and which are due to geometrical constraints.
The statistical features which are geometry-dependent but flow-independent should be observable in
other physical systems. We have therefore also considered the trajectories of football players (soccer
players in American English) and show that this system has a certain number of features in common
with the turbulent motion of fluid particles.

After a description of the setup in the next section, we will discuss the results on large-scale
forced turbulence, small-scale forced turbulence, and football-player trajectories in Secs. III, IV,
and V, respectively.

II. DEFINITIONS AND SETUP OF THE SIMULATIONS

A. Preliminary analysis and definitions

The directional change of a fluid particle is characterized by considering the angle between
two subsequent position increments on a Lagrangian trajectory, defined by X(x0,t), where x0 =
X(x0,t = t0) is the initial position. The position increment is defined by

δX(x0,t,τ ) = X(x0,t) − X(x0,t − τ ), (1)

and the cosine of the angle characterizing the directional change is

cos(�(t,τ )) = δX(x0,t,τ ) · δX(x0,t + τ,τ )

|δX(x0,t,τ )||δX(x0,t + τ,τ )| . (2)

As in our recent investigation [10], the main quantities we will analyze are the averaged modulus of
the angle,

θ (τ ) ≡ 〈|�(t,τ )|〉, (3)

and the probability distribution functions of �(t,τ ). Since we consider statistically stationary
turbulent flow, we perform ensemble and time averaging, denoted by 〈·〉. It was shown by a
second-order Taylor-expansion of the position vector that at short times the angle θ (τ ) could be
estimated by the relation

θ (τ ) ≈ 2τ 〈a⊥(t)/u(t)〉, (4)

where u(t) is the norm of the Lagrangian velocity and a⊥(t) the norm of the acceleration perpendicular
to the trajectory. Irrespective of the type of flow, it is thus expected that at short times the directional
change θ , is linearly proportional to τ . Physically this corresponds to the range in which the flow can
be considered smooth. The smoothness of the trajectories in turbulent flows which allows such an
expansion has been shown in Ref. [11]. In 2D turbulence, the velocity scales in the forward-enstrophy
cascade range can be considered smooth, since the energy distribution falls off with a power law
k−α , with α � 3. What this implies for the Lagrangian statistics and in particular whether an inertial
range scaling is expected for θ (τ ) at intermediate values of τ is not clear from the outset.

In the scale range associated to the backward cascade of energy of 2D turbulence, the energy
spectrum approximately displays the same k−5/3 power law as for 3D turbulence in the inertial range.
It is anticipated that the results observed in Ref. [10] will also be valid for this case. We will address
this subject in Sec. IV.

B. Setup

The flow database we analyzed is described in Ref. [12]. The flow is statistically stationary,
forced 2D turbulence with a Reynolds number, based on the domain size and the RMS velocity
fluctuations, of the order of 104. A forcing term is added to the Navier-Stokes equations, acting in
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TABLE I. Parameters for the simulations of the turbulent flows
forced at the small wave numbers [12]. Radius of the circle R = 2.8.

Resolution [NxNy] [512,512]
Size of domain [x,y] [2π,2π ]
Viscosity ν 5×10−4

Timestep dt 10−4

Forcing wave number k 8
Amplitude of forcing 6
Penalization parameter η 10−4

Periodic: τkp
= 1/

√
2Z 0.06

Kinetic energy Ep 4.39
Circle: τkc

= 1/
√

2Z 0.05
Kinetic energy Ec 4.8

a narrow wave number shell around k = 8. The Reynolds number based on the Taylor microscale
λ = √

E/Z is Rλ = λ
√

E/ν. For the periodic geometry we have Rλ = 751 and for the circular
geometry Rλ = 633. Two types of physical domains were considered: a square double-periodic
domain and a circular domain with no-slip boundary conditions. Numerically, all computations are
carried out on a double-periodic domain using a standard pseudospectral solver. In the nonperiodic
case the circular boundaries are imposed by a volume penalization method [13,14]. The penalization
technique introduces a numerical parameter η which is chosen proportional to �x2 (with �x the
grid size), to minimize the error [15]. Thereby the modeling error of the no-slip conditions is of
the same order as the discretization error. The quantitative influence of this error on the statistics
is in the present case negligible. All statistics are computed in a statistically stationary state, where
104 fluid particles are tracked for about 103 eddy-turnover times. The sensitivity to the number of
particles is assessed and the error between the statistics obtained in the periodic domain, using either
5×103 or 104 particles, is less than 1% for all time lags. The parameters of the simulations are given
in Table I. For further details on the method and the parameters we refer to Ref. [12].

In addition to these simulations, we also consider a 2D flow forced at small scales, which allows
for the development of an inverse cascade of energy. The flow is similar to the one described in
Ref. [16]. The domain is again a square periodic box discretized by 10242 gridpoints. The forcing
is a narrow band random energy input at k = 210. At the large scales, energy is evacuated by a
Rayleigh friction term, −αψ on the right-hand side of the Navier-Stokes equations, with ψ the
stream function and α the friction constant. At large wave numbers the flow is damped by a fourth
order hyperviscosity (in the viscous term, the Laplacian � is replaced by �4). The parameters of
this simulation are summarized in Table II.

To illustrate the universality of geometric confinement on the statistics, we also consider a different
physical system: football. The football-player statistics considered in Sec. V correspond to a training
match of two football teams of eight players each. The data used were collected by the real-time
locating system deployed on a football field of the Nuremberg Stadium in Germany. Data originate
from sensors, sampled with 200 Hz frequency, located near the players’ shoes one sensor per leg).
Considering the smallest reaction time of a human to be of the order of 0.1 s, this frequency is largely
sufficient to capture the smallest relevant time scale of the movement of the players. However, at
such small time lags the angles which we calculate are most certainly influenced by the measurement
error in the position of the football players. In particular, when the football players are nearly at rest,
the angle �(τ,t) is hard to determine, and such events are more frequent for football players (free
kicks, penalties, etc.) than in incompressible turbulence, where due to incompressibility particles are
rarely immobile for long time intervals. For the smallest time lags, the results are therefore expected
to be less accurate. The positions of the players were monitored during the full duration of the game.
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TABLE II. Parameters for the simulation of the inverse cascade
regime.

Resolution [NxNy] [1024,1024]
Size of domain [x,y] [2π,2π ]
Viscosity ν 10−38

Time step dt 10−4

Forcing wave number k 210
Amplitude of forcing 20
Hyperviscosity 4th order
Rayleigh Friction strength α 0.25
τk = 1/

√
2Z 0.0788

Kinetic energy E 0.0589

The Lagrangian position vectors were subsequently analyzed exactly as the turbulence data. The
trajectories of the goal keepers were omitted. Details on the experiment can be found in Ref. [17].

III. DIRECTIONAL STATISTICS IN 2D TURBULENCE FORCED AT THE LARGE SCALES

A. Average absolute angle

In Fig. 1 the mean absolute angle θ (τ ) is shown as a function of the time lag for 2D turbulence.
The time τ is normalized by the Kolmogorov time scale τK , defined as τK = (2Z)−1/2, where Z

is the enstrophy. We find that at short times the evolution is approximately linear in τ , which is
expected when τ becomes smaller than all physical time scales of the flow, and expression (4) is
valid. At large times an asymptotic value is reached. In the case of a periodic domain this value
is π/2, as expected for the angle between three random points in an infinite domain. For confined
flow this asymptotic value is larger, approximately equal to 2π/3. The effect is geometric as we will
demonstrate in the following. It is further observed, if we compare with our previous study [10], in
three dimensions, that no power law is present for intermediate times. Indeed, in three dimensions
we have θ (τ ) ∼ τ 1/2 for intermediate time lags, and the exponent can be related to Kolmogorov
scaling of the pressure gradient spectrum. In the present flow, where the turbulence is stirred at large
scales, no Kolmogorov scaling is observed. See, for instance, the spectra in Fig. 4(b) of Ref. [16],

10-2

10-1

100

10-1 100 101 102 103

τ

π/2

π
2π/3

θ(
τ)

τ/τK

periodic
circle

FIG. 1. Mean absolute angle of directional change as a function of the time lag τ , in statistically stationary
2D turbulence, forced at large scales, in periodic and circular-wall-bounded geometry.
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FIG. 2. Probability density functions of the directional change of fluid particles in 2D turbulent flows.
(a) Periodic boundary conditions. An equipartition of the angles is expected at long times. (b) Circular no-slip
walls. The asymptotic shape of the PDF, corresponding to the angle between two line segments connected by
three randomly placed points in a circle, is represented by a thick black dashed line.

where we used a similar numerical methodology to generate a 2D turbulent flow. It is observed
there that a power law scaling approximately proportional to k−3 is present in the spectrum. Indeed,
the forward-enstrophy range does not show the same scaling as Kolmogorov’s spectrum in three
dimensions. We will show that these results will change in 2D flow in the inverse cascade range,
where Kolmogorov scaling is observed in general. There we expect to obtain results similar to those
presented in Ref. [10].

B. Probability density functions

In Fig. 2 the probability density functions (PDFs) of the instantaneous directional change �(τ,t)
are shown. In the following all PDFs are estimated by histograms with 100 equidistant bins. It is
observed that, starting from a peaked distribution around � = 0 for short times, the PDFs change
shape, to gradually approach the long-time asymptotic shape of the distribution. For the PDF of the
angle this shape is an equidistribution, since all angles are equally probable for three decorrelated,
random points in an infinitely large 2D domain. In three dimensions, it is not the angle, but its
cosine that tends to an equidistribution for long times [10]. The reason for this is that in three space
dimensions we have for the measure of surface integrals in spherical coordinates cos(θ )dθ , which
becomes dθ in two space dimensions.

Following the reasoning in Ref. [10], we can try to fit these PDFs by a known distribution, by
assuming both the velocity and the acceleration to be near Gaussian and independent. If this is
so, their squares are χ2-distributed and the ratio of two χ2-distributed quantities follows a Fischer
distribution. For small values of �, the cosine of the directional change can be approximated by
cos(�) ≈ 1 − �2/2, so that the PDF of 1 − cos(�) should, under these assumptions and when
properly normalized, obey an F-distribution. As shown in Fig. 3, the shape of the PDFs can indeed
be reasonably well approximated by an F1,2 Fischer distribution. The parameters 1,2 correspond to
the dimensions of the perpendicular acceleration and local velocity, respectively. Indeed, in a 2D
velocity field the acceleration perpendicular to a trajectory is a one-dimensional (1D) quantity. The
collapse is not perfect, and this is not expected either, since the derivation of the shape of the PDFs
leading to the F-distribution assumes Gaussianity of both the velocity and the acceleration, which
is only partially true in general. Apparently, the Fischer-distribution reasonably well describes the
distribution of the ratio of two random variables, even when these random variables are not precisely
Gaussian distributed. The PDFs for the circularly confined case are similar, except for the long-time
asymptotic shape, where no equidistribution is observed. We will now discuss the influence of
confinement.
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FIG. 3. Probability density functions of 1 − cos(�), where � corresponds to the directional change of fluid
particles in 2D turbulent flow (forward cascade) in a periodic domain. Rescaled and fitted by a theoretical
model.

C. The influence of geometrical confinement on the statistics

We have seen in Figs. 1 and 2 that the difference in the directional change induced by solid
boundaries manifests itself only at long times. This is expected, since most of the velocity trajectories
are at short times situated far away from the boundaries, so the statistics should be determined by
these trajectories for which the influence of the wall is small. Indeed, it was shown in Ref. [12], by
position-dependent measures, that the solid boundaries did not strongly affect the statistics in the
considered flows away from the wall. At long times the statistics are however significantly affected,
when compared to the periodic domain. In particular, the long-time asymptote of θ (τ ) changes from
π/2 to a value of θ (τ ) ≈ 2. What we will show now is that this effect is not due to the modified
properties of the velocity field, but due to the effect of geometrical confinement, irrespective of the
flow, as long as the Lagrangian velocity correlation of fluid particles decays to zero at long times.

It can be understood that at long times, when the separation of the fluid particles on a trajectory
becomes of the order of the domain size, the angles might not be equidistributed. For instance
considering the sketch in Fig. 4, it can easily appreciated that for a given distance between the
first and the second of three random points, and if all positions within the circle are equiprobable,
the chance to have a configuration I, with a large value of � is larger than the chance to have a

FIG. 4. Sketch illustrating the effect of confinement on the directional change at long times in (a) a circular
domain and (b) rectangular domains with a large aspect ratio.
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FIG. 5. PDFs for the angle �, between two connected line segments defined by three randomly positioned
points in a rectangular domain. The aspect ratio of the domain is varied between 1 and 400.

configuration II. Larger values of � become thus more probable when the distance between the three
position points X(x0,t) becomes comparable to the domain size.

To confirm this idea we carried out Monte Carlo simulations using 6×107 randomly distributed
points in a circular domain and rectangular domains of different aspect ratio. Computing the PDF
for the angle between two connected line segments, defined by three randomly distributed points in
a circle, the PDF has exactly the shape of the long-time asymptotic PDF in Fig. 5, with an average
value θ ≈ 2, as observed in Fig. 1. The functional form that we have fitted for this PDF is

P∞(�) = a + b exp{−[(1 − �/π )/c]2} (5)

with a = 0.10, b = 0.54, c = 0.46. The chosen functional form is, however, not better justified
than by the fact that it accurately fits the data points. Using the same algorithm, computing the
angle between randomly placed points, we have further determined the influence of confinement on
angular statistics for rectangular domains with different aspect ratios. The results are also shown in
Fig. 5. It is observed that the shape of the PDFs changes as a function of the aspect ratio. When the
aspect ratio becomes large, as sketched in the right side of Fig. 4, the problem becomes close to 1D,
and the PDF can easily be determined analytically.

In this 1D limit when the rectangle approaches a line, the PDF should tend to the form

P (�) = 1
3δ(�) + 2

3δ(� − π ). (6)

This is qualitatively confirmed in Fig. 5 for the maximum aspect ratio of 400, where two distinct
peaks of different height are found. The mean angle corresponds to the first moment of the PDF, and
thus we get

∫ π

0 �P (�) d� = 2π
3 .

The PDF in the 1D limit case can be justified theoretically. Consider three random points (r1,r2,r3)
on a line segment (of length L) having a uniform probability distribution U . Using conditional
probability we find that the probability that r3 > r2, given that r2 > r1, has a probability of 1/3,
while the probability that r3 < r2, given that r2 > r1, has a probability of 2/3. For the corresponding
angles we have only two values, 0 for r3 > r2 > r1 and π for r3 < r2 > r1. This justifies the above
PDF.

For rectangles with finite aspect ratio we consider three random vectors 
ri = (xi,yi) for i =1,2,3.
Each component has a uniform probability distribution, i.e., 
ri ∈ U (−Lx/2,Lx/2)×U (0,Ly).
Without loss of generality we suppose Ly > Lx and we consider the y component first. Again
we can show that we have a probability of 1/3 for y3 > y2, given that y2 > y1 (or y3 < y2, given
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FIG. 6. Monte Carlo results for (a) the mean-absolute angle and (b) the variance (second centered moment),
in a circular domain, and in rectangular domains with different aspect ratios.

that y2 < y1). The x component is uniformly distributed between −Lx/2,Lx/2, and thus we obtain
values of the angle in −π/2 < θ < π/2. The symmetry of the domain with respect to the center line
x = 0 implies a mean value of 0. The probability for y3 < y2, given that y2 > y1, is larger and equal
to 2/3. This implies values for the angle in π/2 < θ < 3π/2. Again by symmetry arguments of the
domain we find a mean value of π . The mean value of the angle for all realizations thus corresponds
to 2π/3, which is indeed observed in our Monte Carlo simulations for rectangles of aspect ratios
ranging from 1 to 400 in Fig. 6(a).

The above arguments are also valid for other confined geometries which possess a reflectional
symmetry with respect to an axis, like the circular case. Furthermore these arguments also hold for
confined geometries in higher dimensions, e.g., in three dimensions. These results concern the mean
value θ , it seems that its variance is more complicated to determine from symmetry arguments.
However, for the infinite aspect ratio PDF (corresponding to the 1D limit) [Eq. (6)], it is directly
found that the second centered moment (or variance) is equal to (2/9)π2. This asymptotic value is
confirmed in Fig. 6(b) by Monte Carlo simulations.

IV. ANGULAR STATISTICS IN THE INVERSE CASCADE RANGE

We anticipated in the previous section that the directional change in the inverse cascade range
of 2D turbulence should resemble the statistics of the 3D case. Our reason to believe this is that
Kolmogorov scaling is in general even better observed in such flows, and the scaling of the energy
spectrum, proportional to k−5/3, is often closely approached. In Fig. 7(a) we show the energy
spectrum. We observe a power law in the spectrum close to k−5/3 for the large scales.

The time lag dependence [Fig. 7(b)] of the directional change contains as expected, as in 3D
turbulence, two distinct power laws before the long-time asymptote is reached. The ballistic regime
can again be associated with a linear dependence on τ . For inertial range time lags a second power
law is indeed observed. In this range, the predicted directional change is proportional to τ 1/2.
It is observed that the exponent is somewhat smaller. This could be due to the finiteness of the
Reynolds number. In general Lagrangian time correlations are rather sensitive to Reynolds number
corrections [18]. Furthermore, this is also consistent with our previous results in 3D turbulence,
where the scaling of τ was observed to be proportional to a power law of the time lag with an
exponent smaller than 1/2.

The PDFs of the angle as a function of τ (Fig. 8) do again evolve from a peak around zero for
short times towards an equidistribution for long times. The intermediate evolution of the PDF of
1 − cos(�) can be captured by a Fischer distribution, as in the foregoing. It does seem that the main
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FIG. 7. Statistics in the inverse cascade range of small-scale forced, 2D turbulence. (a) energy spectrum;
(b) absolute average directional change as a function of the time lag.

qualitative difference between the directional change in the forward and backward cascades is the
behavior of the mean absolute angle θ .

V. ANGULAR STATISTICS OF FOOTBALL PLAYERS

Let us come back here to the influence of confinement on directional change. Since the influence of
confinement is purely geometrical at large time lags, it should be universally present for trajectories of
quantities in other physical situations than turbulent flows in confined domains, as soon as time lags
are considered long compared to the typical correlation time of the moving body. We have therefore
studied a totally different system: football. More precisely, we have considered the statistics of a
training match of two teams of eight football players. In Fig. 9 we show the trajectories of four
of these players during a 5 min interval. For the trajectories of the 14 players (excluding the goal
keepers) we will evaluate the same statistics as for the fluid particles in the foregoing sections, in
order to evaluate which effects are robust enough to survive when we completely change the physical
system.

We have computed the Lagrangian velocity spectrum, which is shown in Fig. 10(a). The data
seem valid up to a frequency f ≈ 0.6, where the spectrum shows an important change of slope,
which we do not have a clear interpretation for. For frequencies smaller than f ≈ 0.6, the spectrum
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FIG. 8. Statistics in the inverse cascade range of small-scale forced, 2D turbulence: (a) PDF of the
instantaneous angle �; (b) normalized PDF of 1 − cos(�) and model, assuming Gaussianity and independence.
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FIG. 9. Trajectories of four players during a 5 min interval of a football match.

shows a clear power law with an exponent close to −2. In the case of 2D flows, this exponent can
be expected from Kolmogorov-arguments in the energy-transfer inertial range and is also observed
in experiments on 3D turbulence [19].

We have computed the average absolute angle as a function of the time lag, and the results are
shown in Fig. 10(b). It seems that at small times the accuracy is not sufficient to show a power law
behavior corresponding to a ballistic regime. At such small time lags the angles are most certainly
influenced by the measurement error in the position of the football players, and the Lagrangian
energy spectrum also showed an unexplained increasing behavior for these time lags. However, for
larger times, the mean absolute angle shows a behavior corresponding to a Kolmogorov-like inertial
range, where θ is proportional to τ 1/2. If we would push the analogy further, we would be tempted
to say that the trajectories of football players are similar to those of fluid particles in the inverse
cascade range of 2D turbulence, but at high enough Reynolds number to observe asymptotic scaling.
In this same range, an f −2 power law for the Lagrangian velocity spectrum is observed [Fig. 10(a)],
analogous to the inertial range scaling of isotropic turbulence, thereby corroborating our conjecture
that these two ranges are associated with the same dynamics.

The long-time behavior observed in the turbulent wall-bounded flow is shown to be remarkably
robust. Indeed, even though a football match does not seem to be ergodic, and some may argue that
the trajectories of football players are not completely random, the long-time PDF of the directional
change converged to a shape close to the one for fluid particles, as shown in Fig. 10(c). Moreover,
the mean-absolute angle for long times converges to a value θ ≈ 2π/3, exactly as for confined 2D
turbulence. It seems that the fact that in a football match the movement of the players is strongly
anisotropic does not prevent the PDF from converging to a universal shape corresponding to random
positions in a closed domain. The anisotropy might only show up in more global statistics, such as
the global velocity correlations, in a sense similar as the return to isotropy of the smallest scales in
complex turbulent flows. Furthermore, again the PDFs of 1 − cos(�) are close to an F1,2 distribution
[Fig. 10(d)].

VI. CONCLUSION

We have investigated geometrical multiscale statistics by analyzing the directional change of
fluid particles in 2D turbulence, and we have put a particular emphasis on the distinction between
flow-dependent and geometry-dependent features.

064604-10



DIRECTIONAL CHANGE OF FLUID PARTICLES IN TWO- . . .

100

101

102

103

104

105

10-3 10-2 10-1 100 101

f-2

E
ne

rg
y 

sp
ec

tr
um

Frequency (Hz)

(a)

10-1

100

101

10-2 10-1 100 101 102 103

π/2

π
2π/3

τ1/2

θ(
τ)

τ

half 1
half 2

(b)

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

τP
(Θ

)

Θ/π

τ=0.050
τ=0.100
τ=0.600
τ=1.100
τ=2.100
τ=6.000

τ=10.00
τ=60.00
τ=100.0
τ=300.0
τ=500.0

P∞

(c)

10-4

10-3

10-2

10-1

100

101

10-2 10-1 100 101 102

P
(1

-c
os

(Θ
))

 (
1/

2 
θ2 (τ

))

(1-cos(Θ)) / (1/2 θ2(τ))

τ=0.050
τ=0.100
τ=0.600
τ=1.100
τ=2.100
τ=6.000

τ=10.00
τ=60.00
τ=100.0
τ=300.0
τ=500.0

F1,2(x)

(d)

FIG. 10. Angular statistics of football players: (a) Lagrangian velocity spectrum; (b) mean absolute angle
for the two halftimes of the match; (c) PDFs of the instantaneous angle �(τ,t); (d) normalized PDFs.

For the average absolute angle θ (τ ), characterizing the directional change as a function of the
time lag τ , it was shown that in the cases we considered, a short-time regime could be identified
where the angle scales linearly, θ (τ ) ∼ τ . This linear regime corresponds to smooth trajectories, and
its existence is roughly independent of the type of flow, or the confining geometry.

For intermediate time lags, unlike 3D turbulence, no inertial range scaling was observed in a
flow dominated by forward enstrophy transfer, which is due to the fact that such flow is statistically
smooth in space. Different results are observed for the inverse-cascade range, which is shown to
behave similar to 3D turbulence with respect to scaling. Indeed, an inertial range was observed
for the mean angle of directional change, but its exponent deviates from the prediction based on
Kolmogorov scaling. The presence or absence of an inertial range scaling in the angular statistics is
thus clearly flow-dependent, at least in two space dimensions.

A salient feature of the present study was the investigation of the effect of confinement. It was
shown that the size of the domain influences the long-time behavior of the directional change,
and the precise behavior can be reproduced by considering the angle between two connected line
segments defined by three points, randomly placed in the domain. Monte Carlo simulations allowed
to disentangle the geometrically dependent features from the flow-dependent features. Indeed, the
effect of confinement seems independent of the flow properties, as long as the flow can be considered
ergodic, which should be the case for time lags much larger than the Lagrangian correlation time.

In all considered cases, for short times the shape of the PDFs for different time lags is reasonably
well described by a Fischer distribution. At long times, the PDF is entirely determined by the shape
of the geometry and becomes independent of the flow properties. Even for the case of football
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players, who are, in general, not randomly spaced on a field, the shape of the PDF of the directional
change is close to these behaviors, both at short and at long times.
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