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Ingmar Broemstrup3, Lionel Larchevêque4, Kai Schneider1,5 and Marie Farge6
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The coherent vorticity extraction method (CVE) is based on the nonlinear filtering of the vorticity field pro-
jected onto an orthonormal wavelet basis made of compactly supported functions. CVE decomposes each tur-
bulent flow realization into two orthogonal components: a coherent and an incoherent random flow. They both
contribute to all scales in the inertial range, but exhibit different statistical behavior. We apply CVE to 2563

subcubes extracted from 3D homogeneous isotropic turbulent flows at different Taylor microscale Reynolds
numbers (Rλ = 140,240 and 680), computed by a direct numerical simulation (DNS) at different resolutions
(N = 2563,5123 and 20483), respectively. We compare the total, coherent and incoherent vorticity fields ob-
tained by using CVE and show that few wavelets coefficients are sufficient to represent the coherent vortices
of the flows. Geometrical statistics in term of helicity are also analyzed and the λ2 criterion is applied to the
filtered flow fields.

Keywords: wavelets, isotropic turbulence, coherent structures, direct numerical simulation

I. INTRODUCTION

It is commonly accepted that most turbulent flows exhibit
well organized structures evolving in a random background
[1]. Typically, these structures are well localized and excited
on a wide range of scales.

As a matter of fact, the word coherent has many differ-
ent definitions in the turbulence literature, so the focus of the
method presented here is not on the coherent structures them-
selves, but on the noise: coherent structures are here by def-
inition what remains after the denoising, while the noise is
supposed to be Gaussian and decorrelated.

Therefore, we use the extraction of coherent flutuations out
of turbulent flows using the so called coherent vorticity ex-
traction (CVE) method [2–6]. This method is based on a or-
thogonal wavelet decomposition of the vorticity field, a sub-
sequent thresholding of the wavelet coefficients and a recon-
struction from those coefficients whose modulus is above a
given threshold. Wavelet bases are well suited for this task,
because they are made of self-similar functions well localized
in both physical and spectral spaces leading to an efficient hi-
erarchical representation of intermittent data, as in turbulent
flows [1]. The value of the threshold is based on mathemat-
ical theorems yielding an optimal min-max estimator for the
denoising of intermittent data [7, 8]. The aim for the present
paper is to study the influence of the Reynolds number on
coherent vortex extraction considering different Taylor mi-
croscale Reynolds numbers: 140,240 and 680. Furthermore
we present geometrical statistics of CVE results. We study
helicity for Rλ = 140, and apply the λ2 criterion to the fil-
tered fields demonstrates the features of CVE.

This paper is organized as follows. In section 2 we present
the dataset used and in section 3 the CVE algorithm. In sec-
tion 4 we compare the filtering using the classical CVE with
a modified CVE which filters directly the velocity fields. In

Section 5, the results of CVE applied to DNS data of homo-
geneous isotropic turbulence at different Taylor microscale
Reynolds numbers are discussed and compared with the re-
sults obtained in section 4 for the classical CVE. A similar
study has been performed in [9] for a different data set. In sec-
tion 6, we focus on geometrical statistics. Section 7 presents
final remarks of the paper and gives some perspectives for
turbulence modeling.

II. DATASET

The data to be analyzed corresponds to homogeneous
isotropic turbulence, with a stochastic forcing at large scales,
kindly provided by P.K. Yeung and his group from Georgia
Tech. The fields are computed at resolution N = 23J , where
N is the number of grid points and J the number of octaves in
each direction.

The computational box is periodic and its largest scale is
2π in each direction, therefore the computational grid has a

step size ∆x =
2π

N1/3 .

We are analyzing fields which have been computed at res-
olutions of N = 2563,5123 and 20483 which correspond to
microscale based Reynolds numbers Rλ = 140,240 and 680,
respectively. We focus for reasons of computational complex-
ity to subcubes of size 2563. More details about these simula-
tions can be found in [10]. The microscale Reynolds number
is defined as Rλ = u′λ/ν where ν is the kinematic viscosity,
the Taylor microscale λ2 = u′2/〈(∂u/∂x)2〉 and u′2 = 〈u2〉 is
a velocity scale.
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FIG. 1: Flowchart of the CVE decomposition.

III. COHERENT VORTEX EXTRACTION

The CVE decomposition uses an orthogonal three-
dimensional multiresolution analysis (MRA) of L2(IR3) ob-
tained through the tensor product of three one-dimensional
MRA’s of L2(IR). In this context a function f ∈ L2(IR3) can
be developed into a three-dimensional wavelet basis

f (�x) = ∑
γ∈Γ

f̃γ ψγ(�x), γ = ( j, ix, iy, iz,µ) (1)

where j denotes the scale,�i = (ix, iy, iz) denotes the positions,
µ = 1, ...,7 indicates the 7 wavelets and the index set Γ = {γ =
( j, ix, iy, iz,µ) j = 0, ...,J − 1 ix, iy, iz = 0, ...,2 j − 1 µ =
1, ...,7}. Due to orthogonality the wavelet coefficients are
given by f̃γ = 〈 f ,ψγ〉 where 〈·, ·〉 denotes the L2 inner prod-
uct. For more details on this construction and on wavelets
we refer the reader to the textbooks, e.g. [11] and also to the
review article [1].

In the following applications, the Coifman 12 mother-
wavelet is chosen. This wavelet is almost symmetric and it
has a compact support. Another point is that this wavelet has
M = 4 vanishing moments, and therefore the corresponding
quadratic mirror filter has a length of 3M = 12 [11].

We apply the extraction algorithm to a 3D vector valued
vorticity field �ω = ∇×�v, where �v =�v(x,y,z) is the velocity
field. The three components of �ω are developed into an or-
thonormal wavelet series, from the largest scale lmax = 20 to
the smallest scale lmin = 2−J+1.

The vorticity field is decomposed into coherent vorticity
�ωc = �ωc(x,y,z) and incoherent vorticity �ωi = �ωi(x,y,z) by
projecting its three components onto an orthonormal wavelet
basis and applying nonlinear thresholding to the wavelet co-
efficients. The choice of the threshold is based on theorems
[7, 8] proving optimality of the wavelet representation for de-
noising signals – optimality in the sense that wavelet-based
estimators minimize the maximum L2-error for functions with
inhomogeneous regularity in the presence of Gaussian white
noise. We have chosen the variance of the total vorticity in-
stead of the variance of the noise, which gives the threshold
T = ( 4

3 Z logN)
1
2 , where Z = 1

2 〈�ω,�ω〉 is the total enstrophy
(which is half the variance) and N3 is the resolution. Notice
that this threshold does not require any adjustable parameters.

In summary, first we compute the modulus of the wavelet
coefficients: ∣∣∣�̃ω∣∣∣=( 3

∑
n=1

[
ω̃γ
]2

n

) 1
2

. (2)

Then, the coherent vorticity is reconstructed from the
wavelet coefficients whose modulus is larger than the thresh-
old T , while the incoherent vorticity is computed by the dif-
ference with the total field. The two fields thus obtained, �ωc
and �ωi, are orthogonal, which ensures the decomposition of
the total enstrophy into Z = Zc +Zi.

The fast wavelet transform we use, requires a total number
of operations of O(N), where N is the resolution.

The CVE decomposition algorithm consists of three fast
wavelet transforms (WT) for each vorticity component, a
thresholding of the wavelet coefficients and three inverse fast
wavelet transforms (IWT), one for each component of �̃ωc,
i.e., all coefficients with |�̃ω| greater than the threshold, form
the coherent vorticity (�ωc). The incoherent vorticity �ωi com-
ponents could be in principle computed using the inverse
wavelet transform from the weak coefficients. In order to
simplify computations we performed the difference between
total and coherent vorticity which yields the same result. A
flowchart of the CVE algorithm is depicted in Fig. 1. The
induced coherent and incoherent velocity fields are computed
using Biot–Savart’s law (BS), �v = ∇× (∇−2�ω), from the co-
herent and incoherent vorticity fields, respectively using the
fast Fourier transform. As we privilege a good compression
rate rather than a perfectly denoised contribution we apply
the algorithm using one iteration, that is to say, we apply the
filtering with a threshold computed from the incoherent part
[12].

IV. COMPARISON BETWEEN FILTERING VORTICITY
AND FILTERING VELOCITY

In the previous section we presented the classical CVE
where we applied the wavelet filtering to the vorticity field
and subsequently reconstructed the corresponding velocity
fields. Here we apply the wavelet filtering to the velocity field
to get the coherent and incoherent contributions and compare
it to the filtering of vorticity. Then, we compute the corre-
sponding coherent and incoherent vorticity fields. Due to the
nonlinear thresholding employed in the wavelet filtering both
procedures do not yield the same result. In Table I we can
observe that the compression is slightly better in the modified
CVE , i.e., 1.68% instead of 3.59%. This happens because
the velocity field is smoother than the vorticity field. On the
other hand the vorticity field computed from the curl of this
velocity field is less accurate than the one obtained using CVE
filtering directly applied to the vorticity field.

The 1D cuts of vorticity, shown in Fig. 2, confirm that
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CVE Filtering
based on vorticity based on velocity

total coherent incoherent total coherent incoherent
% of coeff. 100.00 3.59 96.41 100 1.68 98.32
Energy 2.96 2.95 0.01 2.96 2.94 0.02
% of Energy 100 99.70 0.30 100 99.50 0.50
Enstrophy 212.80 196.93 15.87 212.80 187.33 41.65
% of Enstrophy 100 92.54 7.46 100 88.03 19.57

TABLE I: Comparison of filtering CVE based on a decomposition
of the flow field, corresponding to a Reynolds number Rλ = 140,
using Coifman 12 wavelets and Donoho’s threshold T = 1.52 for
the velocity field and T = 29.87 for the vorticity field.

the coherent part obtained with CVE approximates well the
total vorticity. However, some peaks are over estimated. In
the case when the modified CVE is used, the coherent part ap-
proximates less well the total vorticity and the over estimation
of the peak is worse.
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FIG. 2: One dimensional cuts in the x-direction, for y = z = 32∆x

with ∆x =
2π
256

for the modulus of vorticity |�ω| for total field, coher-
ent and incoherent fields at Rλ = 140.

This explains why slightly less energy (92.5%) is retained
in the modified CVE compared to the energy retained using
the vorticity based CVE (99.7%) as illustrated in Table I.

The PDFs and spectra of the velocity on vorticity fields that
were obtained with the modified CVE filtering are shown in
Fig. 3 (right). The velocity and vorticity PDFs and spec-

tra for the fields and the coherent contributions are similar to
the ones presented in Fig. 3 (left) and that were obtained by
the vorticity based CVE filtering. However the shapes of the
PDFs of the incoherent fields differ for the two CVE methods.
Indeed, in the case of the vorticity based CVE the PDFs of
the incoherent velocity and vorticity fields are Gaussian and
exponential decay, respectively, while in the case of the modi-
fied velocity based CVE the PDFs are exponential for velocity
and non exponential for vorticity. Moreover, the slopes of the
spectra computed from incoherent part for both methods are
different.

Vorticity based CVE Velocity based CVE modified
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FIG. 3: PDF of the vorticity (a), velocity (c) (inset: PDF of the
incoherent fields) and enstrophy (b) and energy (d) spectra for the
total, coherent and incoherent fields, for the vorticity based CVE
(left) and the modified velocity based CVE (right), for Rλ = 140.

In the following we discuss the results obtained with CVE
based on the filtering of the vorticity fields and applied to the
vorticity at resolution N = 2563 and Rλ = 140.
In Table I (left part for CVE based on vorticity) the statistical
properties are summarized. We observe that the coherent
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part of the vorticity corresponds to 3.6% of the wavelet
coefficients, which maintain 92.5% of the total enstrophy
and 99.7% of the total energy.

A visualization of the modulus of vorticity and their coher-
ent and incoherent contributions are shown in Figure 4. We
observe that almost all structures are preserved in the coher-
ent part and there are no organized structures left in the inco-
herent part. Indeed the total and coherent part of the vorticity
fields present vortex tubes and long filaments of vorticity. The
incoherent part is noise-like.

In Figure 3 (left a), vorticity PDFs are plotted for the to-
tal, coherent and incoherent parts. We find that the PDFs
of the total and coherent fields almost coincide, exhibiting
a stretched exponential behavior and a vorticity flatness about
8. The incoherent part shows a strongly reduced variance and
the vorticity PDF has exponential tails (with flatness 4.92).

In Figure 3 (left b, d), the energy and the enstrophy spectra
for the total, coherent and incoherent parts of the fields are
illustrated. We observe that in the inertial range the coherent
part presents similar energy and enstrophy spectra compared
to the spectra of the total field, whereas they differ only in the
dissipative range for k ≥ 30.

V. RESULTS FOR OTHER REYNOLDS NUMBERS

In the following we study the influence of the Reynolds
number. We apply the CVE to vorticity fields at Rλ = 240 and
680 computed at resolution N = 5123 and 20483, respectively.
For computational reasons, we only consider subcubes of size
N = 2563, and we apply the CVE to four subcubes to check
if the statistics differ.

Table II summarizes the statistical properties of the vor-
ticity for four different subcubes of size 2563 extracted from
the N = 5123 cube which correspond to a Reynolds number
Rλ = 240 and for four 2563 subcubes of the N = 20483 simu-
lation which correspond to a Reynolds number Rλ = 680.

For Rλ = 240, the reconstruction of the coherent part of
these fields requires only 3.6% of the wavelet coefficients
and retains ≈ 92% of the enstrophy, and for Rλ = 680 only
≈ 3.7% of the wavelet coefficients maintain about 91% of
the enstrophy. Additionally, there are no significant changes
in the skewness and flatness between the total field and the
coherent field for the different Rλ. Moreover, we do not ob-
serve significant variations between the statistical properties
of the four different subcubes for each Rλ. The total, coher-
ent and incoherent parts of the vorticity fields are visualized
in Figure 4 for Rλ = 140,240 and 680. As observed in the
Rλ = 140 case, all structures are preserved in the coherent
contribution and none remain in the incoherent contribution.
However, with the increase of Rλ, we observe the presence of
more structures in the analyzed subcubes.

In Fig. 5 the PDFs of the vorticity and the enstrophy spec-
tra for the total, coherent and incoherent fields are plotted for
Rλ = 240 and 680. They have the same behavior as the vor-
ticity field for Rλ = 140, presented in Fig. 3 (a,b).
In [9] a related work was done also for homogeneous
isotropic turbulence. The CVE was used for different resolu-
tions 2563,5123,10243 and 20483 corresponding to Rλ = 167,
257, 471 and 732, respectively. The main difference is that

Rλ=240 Rλ=680

total coherent incoherent total coherent incoherent
subcube 1
% of coeff. 100.00 3.64 96.36 100.00 3.69 96.31
Vorticity
Enstrophy 598.51 550.76 47.75 4669.09 4418.81 450.27
% Enstrophy 100.00 92.02 7.98 100.00 90.75 9.25

subcube 2
% of coeff. 100.00 3.66 96.34 100 6.62 93.38
Vorticity
Enstrophy 685.12 624.41 60.7 5336.16 4856.18 479.98
% Enstrophy 100.00 91.14 8.86 100 91.01 8.99

subcube 3
% of coeff. 100.00 3.69 96.31 100.00 3.70 96.30
Vorticity
Enstrophy 782.48 707.92 74.56 6975.17 6197.89 777.27
% Enstrophy 100.00 90.47 9.53 100.00 88.86 11.14

subcube 4
% of coeff. 100.00 3.66 96.34 100.00 3.69 96.31
Vorticity
Enstrophy 738.75 673.21 65.54 6043.08 5426.71 616.37
% Enstrophy 100.00 91.13 8.87 100.00 89.80 10.20

standard deviation
% of coeff. 0.00 0.02 0.02 0.00 1.46 1.46
Vorticity
Enstrophy 79.20 68.12 11.18 987.66 768.80 149.52
% Enstrophy 0.00 0.72 0.64 0.00 0.98 0.98

mean
% of coeff. 100.00 3.66 96.34 100.00 4.43 95.56
Vorticity
Enstrophy 701.22 639.08 62.14 5755.88 5224.90 580.97
% Enstrophy 100.00 91.19 8.81 100.00 90.10 9.90

TABLE II: Statistical properties of the vorticity field for the 2563

subcubes extracted from the 5123 and 20483 which correspond to
Reynolds numbers Rλ = 240 and Rλ = 640, respectively. The value
of Donoho’s threshold used for the subcubes 1 to 4 for Rλ = 140 are
51.18, 56.39, 61.55 and 58.56, respectively. The value of Donoho’s
threshold used for the subcubes 1 to 4 for Rλ = 640 are 152.23,
157.58, 192.21 and 174.20, respectively.

the CVE was applied to the whole fields and not on sub-
cubes, as done here. The authors find that the compression
rate increases with Rλ. In our analysis on the subcubes, the
compression rates are nearly constant, about 3.6% for the dif-
ferent Rλ (140,240,680), so that, the Donoho threshold in-
creases with Rλ. This could suggest that the compression rate
is limited by the size of the box. Indeed the resolution of all
cubes we analyzed is constant at 2563. Moreover, the decay
of coefficients is smaller for the subcubes, but the PDFs and
spectra are very similar to the ones obtained in our case.
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(a) |�ω| (b) |�ωc| (c) |�ωi|

Rλ = 140

Rλ = 240

Rλ = 680

FIG. 4: Modulus of vorticity for total (a), coherent (b), and incoherent (c) parts.Rλ = 240 and Rλ = 680 subcubes 2563 are visualized to zoom
on the structures. The values of the isosurfaces are σ140 = 56, σ240 = 96 and σ680 = 290 for total and coherent parts and σ140 = 14, σ240 = 24
and σ680 = 75.2 for the incoherent part.

VI. GEOMETRICAL STATISTICS

VI.1. Helicity

To get insight into the geometrical statistics of the flow we
study the helicity [13] defined by

H(�v,�ω) =�v ·�ω .

To study the effect of CVE we split the helicity into four
contributions, namely

Hcc = h(�ωc,�vc), Hic = h(�ωi,�vc),
Hci = h(�ωc,�vi), Hii = h(�ωi,�vi),

corresponding to the coherent and incoherent contributions of
the velocity and vorticity components.

In [3] it was proposed to consider the local Beltramization
of the flow to characterize coherent vortices which correspond
to regions where the nonlinearity is depleted and which max-
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FIG. 5: PDF (left) of vorticity (inset: PDF of the incoherent fields)
and enstrophy spectrum (right) for the total field, coherent and inco-
herent parts.

imize the relative helicity, defined as

h(�v,�ω) =
�v ·�ω

||�v|| ||�ω|| .

Such a characterization corresponds to a special case of
nonlinearity depletion. However the latter does not prove that
we have extracted all coherent vortices using the CVE decom-
position. Also the relative helicity is split into four contribu-
tions, namely

hcc = h(�ωc,�vc), hic = h(�ωi,�vc),
hci = h(�ωc,�vi), hii = h(�ωi,�vi).

In Fig. 6 we show visualizations of the relative helicity for
the four components. Almost all of the structures are present
in the hcc component. We can observe also some small struc-
tures in hci and hic, and no more structures in hii. This can
also be observed in the PDF of the helicity. The PDFs of the
different contributions of relative helicity are plotted in Fig-
ure 7. The coherent velocity, i.e. either hcc or hic, exhibits the
same PDF as the one of the total flow, with two maxima at
h = ±1 for the relative helicity.

This corresponds to helical vortex tubes for which velocity
and vorticity vectors are either parallel or anti–parallel, re-
spectively. On the other hand, the PDF of the relative helicity
based on the incoherent velocity and the incoherent vortic-
ity, i.e., hii, is maximal at h = 0 which suggests a tendency
towards two-dimensionalization.

VI.2. The λ2 criterion

The coherent nature of the structures extracted by wavelet
analysis can be assessed by comparing the coherent structures

educed from both the total and wavelet-filtered flow fields by
means of one of the classical criteria used to define a vortex
core. Among these criteria, the λ2 [14] criterion is of interest
since it yields an accurate eduction of the vortices, whereas
the physical analysis on which it is based is not directly re-
lated to the vorticity. It therefore allows a fair analysis for the
accuracy of the vorticity-based wavelet extraction.

The key idea behind the λ2 criterion is to seek for re-
gions exhibiting relative minima of pressure classically as-
sociated with vortical structures while discarding viscous and
unsteady effects that are not related to the vortex physics. Af-
ter some rearrangements of the incompressible Navier-Stokes
equations taking into account these restrictions (see Jeong
and Hussain[14] for details), the Hessian tensor of pressure
H (p) is approximated by the opposite of the tensor S2 + Ω2

where S and Ω, respectively, stand for the symmetric and anti-
symmetric part of the velocity gradient tensor. Regions of
pressure minima are characterized by two positive eigenval-
ues for the pressure Hessian, implying that the second high-
est eigenvalues λ2 of the tensor S2 + Ω2 is negative in such
regions. Vortex core in the sense of the λ2 criterion are con-
sequently educed by the condition :

λS2+Ω2

2 < 0

The original definition of the λ2 criterion is generally use-
less for visualization of fully turbulent flows since it yields the
eduction of a very large amount of the total volume. One way
to alleviate this drawback is to arbitrary set a threshold lower
than the original 0-valued one. From a mathematical view-
point, it implies that only the vortex core exhibiting the steep-
est pressure minima are highlighted. Physically, the cores
thus educed correspond to the strongest and most coherent
structures.

The value of the isosurface has been set for the present
analysis to a value roughly equal to the twice of the oppo-
site of the standard deviation of λ2 over the whole computa-
tional volume. It is worth noting that the values of the stan-
dard deviation found for the total and coherent flow field are
almost identical. Consequently, the same eduction threshold
has been applied to both flow fields. Structures educed from
the total and coherent flow field are displayed in Figs. (8) (a)
and (b), which demonstrate that the original topology of the
vortices is almost perfectly recovered from the coherent part
of the wavelet-filtered flow field. On the contrary, if the value
of the isosurface level is increased up to four times the op-
posite of the λ2 standard deviation value over the incoherent
flow field, as seen in Fig. 8 (c), structures are indeed educed
but they are of small sizes, being almost isotropic in shape,
and they hardly exhibit any spatial organization. It can there-
fore be concluded that the λ2 analysis a posteriori demon-
strates that the CVE effectively result in the extraction of co-
herent vortices in one of the most widely accepted sense.

VII. FINAL REMARKS

CVE has been applied to 3D homogeneous isotropic tur-
bulent flows for three different Reynolds numbers. We de-
composed the flows into their coherent parts, made of vor-
tex tubes, which interact nonlinearly, and into an incoherent
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(a) |h| (b) |hcc|

(c) |hci| (d) |hic| (e) |hii|

FIG. 6: Total helicity (a) and the four contributions of relative helicity for Rλ = 140. The isosurfaces are |σ| = |σcc| = 0.97 (b), |σci| = 0.95
(c), |σic| = 0.95 (d) and |σii| = 0.94 (e). The red color indicates positive isosurfaces and the blue color negative values.
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FIG. 7: PDFs of the relative helicity for the total and the four contri-
butions.

random background flow, which is structureless and decorre-
lated. The above results hold for all Reynolds numbers we
investigated. So we have shown that the CVE method is an
efficient tool for extracting coherent vortices out of turbulent
flows.

From the present results we conjecture that modeling the

effect of the discarded modes on the resolved modes is eas-
ier to perform using the Coherent Vortex Simulation (CVS)
approach introduced in [4, 15]. CVS computes all degrees
of freedom which contribute to the flow nonlinearity, i.e., the
coherent modes, whatever their scale, while the remaining de-
grees of freedom, i.e., the incoherent modes, are discarded to
model turbulent dissipation. The method actually combines
an Eulerian projection of the solution with a Lagrangian pro-
cedure for the adaption of the computational basis: for more
details we refer the reader to [15]. The next step to demon-
strate the potential of CVS is to develop an adaptive wavelet
solver for the 3D Navier–Stokes equations.
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(a) λ (b) λc (c) λi

FIG. 8: Coherent structures educed by the λ2 criterion from the total flow field (a), the coherent flow field (b), and the incoherent flow field (c).
The isosurfaces visualized are σ = 0.2 (a), σc = 0.2 (b), and σi = 0.02 (c).
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