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a b s t r a c t

We present a comparative analysis of fire reconstructions from tree rings and from wood charcoal
preserved in forest soils, peat and lake sediments. Our objective is to highlight the benefits and limits of
different archives and proxies to reconstruct fire histories. We propose guidelines to optimize proxy and
archive choice in terms of spatial and temporal scales of interest. Comparisons were performed for two
sites in the boreal forest of northeastern North America. Compared to others archives, tree-ring analysis
remains the best choice to reconstruct recent fires (<1000 years). For longer periods (from several
centuries to millennia), lake charcoal can be used to reconstruct regional or local fire histories depending
on the method used, but the focus should be on historical trends rather than on the identification of
individual fire events. Charcoal preserved in peat and soils can be used to identify individual fire, but
sometimes cover shorter time periods than lake archives.
1. Introduction

In the next decades, wildfire activity is projected to increase
under global warming in many parts of the world, leading to un-
precedented ecological and socioeconomic consequences (Bond
et al., 2005; Granstr€om, 2001; Kelly et al., 2016; Stevens-Rumann
et al., 2018; Stocks et al., 1998). A better understanding of long-
term (centennial to millennial) ecosystem dynamics is necessary
to better predict the impacts of global change and to adapt forest
management accordingly (Clark et al., 1998; Gavin et al., 2007; Kelly
et al., 2013; Robin et al., 2013; Sanborn et al., 2006; Tolonen, 1985).
Palaeoecological studies aimed at reconstructing past wildfire
olution de Montpellier, UMR
llier, France
histories are commonly used to complement modern fire statistics
by providing an understanding of variability over time and space
(Clark et al., 1998; Robin et al., 2013; Sanborn et al., 2006; Tolonen,
1985).

Different proxies are available to reconstruct fire histories, each
presenting advantages and shortcomings depending on the infor-
mation sought (Waito et al., 2015). Thus, all proxies and methods
are not necessarily appropriate for all palaeofire reconstructions,
depending on the targeted time- and spatial-scale. Microscopic
(<160 mm) andmacroscopic (>160 mm) charcoal particles deposited
and preserved in forest soil, peat and lake sediments can be used to
reconstruct regional (outside the watershed) and local (inside the
watershed) fire history, as well as fire scars on trees (Falk et al.,
2011; Gardner and Whitlock, 2001; Gavin et al., 2007; Oris et al.,
2014a; Tolonen, 1985; Whitlock and Larsen, 2002; Whitlock and
Millspaugh, 1996). Tree rings offer inexpensive and high
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resolution (annual) fire reconstructions, but usually record only a
few centuries of fire history in most environments (Agee, 1998,
1993; Dieterich and Swetnam, 1984). Furthermore, in areas char-
acterized by high-severity fires, only the date of the last fire can be
inferred from the age of the oldest trees, i.e. time of post-fire stand
regeneration (Drobyshev et al., 2017; Waito et al., 2015; Wallenius
et al., 2015).

Proxies based on charcoal preserved in different archives (soil,
peat, lake sediments) are more expensive due to the cost of 14C
dating, but cover longer (multi-millennial) time scales (Conedera
et al., 2009). However, charcoal production, transport, settling
and percolation are dependent on a multitude of environmental
variables and taphonomic processes (Conedera et al., 2009;
Whitlock and Larsen, 2002). Charcoal preserved in forest soils are
not stratified, and the reconstruction of fire histories using this
archive requires even more 14C dates compared to lake and peat-
land archives which are composed of stratified sediments
(Carcaillet et al., 2001; Gavin et al., 2003). Moreover, charcoal
particles preserved in peat and soils can be destroyed by re-burning
during subsequent high-severity fires (Lertzman et al., 2002;
Ouarmim et al., 2015), thus inducing a loss of information over
time. Finally, peatlands are less susceptible to deep burning than
forest soils owing to their high moisture content (Terrier et al.,
2014) and hence, charcoal preserved in peat layers under water-
logged conditions can be protected from post-deposition
combustion.

Although charcoal in lake sediments are not subjected to re-
burning, they include signals from both regional and local fire
events (i.e., from outside and within the watershed) in contrast
with large charcoal particles (>0.5e2mm) from soil and peat de-
posits which are local in origin (Asselin and Payette, 2005a;
Conedera et al., 2009; Ohlson and Tryterud, 2000; Tolonen, 1985).
Charcoal particles larger than 160 mm found in lake sediments can
be used to reconstruct fire events that have occurred at local to
regional scales, between 0 and 30 km from lakeshores (Duffin et al.,
2008; Higuera et al., 2011; Kelly et al., 2013; Oris et al., 2014a;
Whitlock and Millspaugh, 1996). Two most recent methods devel-
oped to optimize the reconstruction of local fire events based on
charcoal preserved in lake deposits are named the Charcoal Size
Distribution method (hereafter CSD; Asselin and Payette, 2005b)
and the Area-Countmethod (hereafter ARCO; Finsinger et al., 2014).
However, only one study has compared the fire histories resulting
from these twomethods (Oris et al., 2014a). To distinguish local and
regional fire events in lake charcoal deposits is not an easy task and
constitutes an ongoing research challenge (Itter et al., 2017). Several
procedures and numerical analyses are required to isolate fire ep-
isodes (Higuera et al., 2007) that could enclose one or more fires
occurring in the charcoal source area (Gavin et al., 2007).

Thus, charcoal records from lake, peat or soil allow to recon-
struct longer fire histories than tree-ring analyses. However, clear
guidelines are still lacking to decide which archive and proxy to use
depending on (1) temporal scale (from annual to millennial), (2)
spatial scale (from local to regional), and (3) precision (from iden-
tifying historic trends to individual fire events). Only a few studies
have so far compared fire histories reconstructed from various ar-
chives (e.g. tree rings, peat, soil, lake) in order to highlight simi-
larities and differences in their outputs (Hawthorne and Mitchell,
2016; Higuera et al., 2011; Rius et al., 2011; Robin et al., 2013),
but none has simultaneously addressed the three above-mentioned
dimensions (temporal scale, spatial scale and precision level).

We studied two sites in the boreal forest of northeastern North
America where we reconstructed fire histories using different ar-
chives and proxies to highlight their respective limits and advan-
tages. We suggest explanations for differences between archives
and proxies and we provide guidelines to choose the appropriate
archive and proxy based on research objectives.

2. Material and methods

2.1. Study area

We used tree-ring analyses and charcoal records from lake
sediments, peatlands and forest soils around two lakes located in
the spruce-moss bioclimatic domain of Quebec (between 49 and
50�N, and 68 and 79�W; Fig. 1) and under a climate characterized
by long cold winters and short cool summers. The two sites were
selected due to their dissimilar vegetation and regional fire his-
tories linked to regional environmental conditions. The current
mean fire cycles deduced from dendrochronological investigations
are around 270 years and 400 years in the regions surrounding the
Innu and Lili sites, respectively (Bergeron et al., 2004; Bouchard
et al., 2008). The Innu site is located in the North Shore region of
eastern Quebec (Remy et al., 2017b) on glacial till and subjected to a
mean annual temperature of �3 to �1 �C and mean annual pre-
cipitation of 1020e1110mm (Leclerc et al., 2015). The Lili site is
located in the Clay Belt of western Quebec (Fig. 1) and submitted to
a mean annual temperature of �1 to 1 �C and mean annual pre-
cipitation of 770e940mm (Leclerc et al., 2015). Both sites were also
selected based on the presence of a lake with a small surface area
and located close to a peatland (Table S1).

Both sites were rapidly colonized by trees after the last degla-
ciation, between ca. 8000 and 7000 years cal. BP (Dyke, 2004;
Richard, 1995). Since then, the Lili site has been mainly dominated
by Picea mariana (Mill.) B.S.P. and Pinus banksiana Lamb. (Gajewski
et al., 1993; Payette, 1993; Richard, 1979), whereas the Innu site has
beenmainly dominated by P. mariana alongwith Abies balsamea (L.)
Mill., and Picea glauca (Moench) Voss (King, 1986; Mott, 1976;
Payette, 1993). Regional fire histories published for the two regions
indicate that wildfires were more frequent between 7000 and
2000 years cal. BP than after, with a maximum frequency around
3000 years cal. BP in the northwestern region (Oris et al., 2014b)
and around 5500 years cal. BP in the northeastern region (Remy
et al., 2017b).

2.2. Sampling designs

Dendrochronology e At each site, field sampling for dendro-
chronological analysis was carried out in two steps. First, the largest
trees (assumed to be the oldest trees) were sampled in four
quadrats located in different stands less than 200m from the
lakeshores (Fig. S2). Second, another sampling focusing on trees
with fire scars took place within 200m from the lakeshores
(Brossier et al., 2014). For the combined samplings, a total of 48 and
49 cross sections were sampled at the root collar at the Lili and Innu
sites, respectively. Before sampling, the organic matter and mineral
soil were removed from around the bases of the trees (DesRochers
and Gagnon, 1997). Cross sections were dried and sanded using
successively finer grades (40e600 grit) until annual growth rings
and fire scars were clearly visible (Schweingruber et al., 1988). A
master chronology was established with tree-ring widths of trees
without fire scars (Holmes et al., 1986; Stokes and Smiley, 1968).
Tree-ring analysis was performed under a binocular microscope
according to standard dendrochronological methods (Niklasson
et al., 2010; Stokes and Smiley, 1968). Pointer years (narrow,
wide, or incomplete growth rings) were identified visually and
used for crossdating (Schweingruber et al., 1990). Tree-ring widths
weremeasured using a LINTAB 6 along two radii opposite to the fire
scars and separated by 120�. Cross dating was achieved using the
TSAPWin 4.80 software (Rinn, 2012). Scars and stand age data were
analyzed using the ‘dplR’ package (Bunn, 2008).



Fig. 1. Lili and Innu sites showing locations of tree, lake, soil and peat samplings.
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Soil charcoal e Charcoal fragments were sampled from forest
soils in 1000m2 quadrats (50� 20m) (Fig. 1). Following a protocol
modified from Payette et al. (2012) and Payette et al. (2016), we
recovered soil samples along 3 transects (each 50m long), sepa-
rated by 10m. For each transect, charcoal fragments were collected
every 5m from samples of organicmatter (20� 20 cm quadrat) and
mineral soil (750 cm3 core extracted with a soil auger). At the Innu
site, 11 samples were recovered from the first two transects and 3
samples from the third transect. At Lili site, 9 samples were
recovered from each transect. Mineral soil aggregates were
dispersed by immersion for 12 h in a sodium hydroxide solution
(NaOH 1%) before water-sieving with a 2mm mesh size. Charcoal
fragments with a diameter �2mm were assumed to having been
produced in situ, thus representing local fires (Asselin and Payette,
2005a).

Peat charcoale Two peat cores were extracted at the Lili site and
one at the Innu site (Fig. 1) with a Russian borer. Peat cores were cut
into continuous 1-cm thick samples and charcoal fragments were
extracted following a modified version of the protocol of H€ornberg
et al. (1995) described in Magnan et al. (2012). Subsamples of 1 cm3

were soaked for 24h in a potassium hydroxide solution (KOH 10%)
and sieved with a 0.5mm mesh size. Macroscopic charcoal
fragments with a long axis >0.5mm,whichwere primarily ascribed
to local or nearby fires (H€ornberg et al., 1995), were counted using a
stereomicroscope at 16 to 40�magnification. In some cases,
charred plant remains were identified and dated in order to reach
the minimum weight required for 14C dating.

Lake charcoal� Lake sediment sequences were extracted during
winter from the center of each lake using a Livingstone corer
(Deevey, 1965). The water-sediment interface was sampled using a
Kajak-Brinkhurst gravity corer (Glew, 1988). All cores were sliced
into contiguous 0.5-cm thick samples. Sub-samples of 1 cm3 were
shaken for 24 h in a 3% hexametaphosphate aqueous solution
(NaPO3)6, and then in 5% KOH and 10% NaOCl solutions to facilitate
deflocculation as well as to differentiate black charcoal from
bleached organic matter. Then, the solution was passed through a
sieve to collect charcoal particles >160 mm assumed to come from
fire events having occurred 0e30 km from the lakeshores (Higuera
et al., 2011; Oris et al., 2014a). Charcoal particles were analyzed
under a binocular microscope (�40) coupled with a camera con-
nected to a computer equipped with an image-analysis software
(WinSEEDLE™, 2009; Regent Instruments Canada Inc.) and
expressed as charcoal accumulation rates based on charcoal area or
number (mm2 cm�1 or # cm�1).



2.3. Chronological setting and fire detection

Charcoal samples were dated using the AMS (Accelerator Mass
Spectrometry) radiocarbon technique. Samples were prepared at
the Center for Northern Studies (Universit�e Laval, Qu�ebec, Canada),
sent to the Keck Carbon Cycle AMS Facility (University of California,
Irvine, USA) and calibrated in years before present (hereafter BP).

Soil charcoal e A total of 25 and 30 charcoal fragments from
forest soils at the Lili and Innu sites, respectively, were randomly
selected among those extracted. Radiocarbon dates were calibrated
based on the IntCal13 data set (Reimer, 2013) with a 2s confidence
interval using the ‘clam’ v2.2 package (Blaauw, 2010). Based on the
sum of probabilities of all dates within each site, a unique date was
attributed to each fire event with the maximum sum of probabili-
ties within each of the age intervals corresponding to a fire event.
Following de Lafontaine and de Payette, 2012 and Fr�egeau et al.
(2015), an indirect method was used to estimate the number of
fires not detected in the dated sample (Text S2; Fig. S3). To account
for the inherent uncertainties of 14C dating, charcoal dates with
overlapping calendar years were considered to have originated
from the same fire event.

Peat charcoal e A total of 13 wood charcoal or charred plant
fragments (8 at Lili site and 5 at Innu site) were dated from distinct
charred layers identified within the three peat cores (Table S2).
Radiocarbon dates were calibrated based on the IntCal13 data set
(Reimer, 2013) with a 2s confidence interval using the ‘clam’ v2.2
package (Blaauw, 2010). As for the soil archive, an indirect method
was used to estimate the number of fires not detected in the dated
sample (Text S2; Fig. S3).

Lake charcoal e Age-depth models for Innu and Lili lakes were
based on eight and seven dates, respectively (Fig. S1). The ‘clam’

v2.2 package was used to calibrate the dates based on the IntCal13
dataset with a 2s confidence interval (Hua et al., 2013; Reimer,
2013). According to the chronology obtained for each lake depo-
sit, charcoal particle abundance was expressed as accumulation
(CHAR, i.e., #.cm�2. yr�1¼ CHARC with charcoal particle numbers;
and mm2. cm�2. yr�1¼ CHARA with charcoal particle areas). CHAR
series were analyzed using the CharAnalysis v1.1 software (avail-
able via https://sites.google.com/site/charanalysis/) to identify past
fire events (Text S1). We also used the CSD method with a �1.77
slope value threshold to identify past local fire events characterized
by charcoal particle assemblages with a higher proportion of large
charcoal particles than the other assemblages resulting from
regional fire events (Asselin and Payette, 2005b; Oris et al., 2014a).
Finally, the ARCO method (Finsinger et al., 2014) was used with a
threshold defined as the rth percentile of the distribution of boot-
strapped values generated by random sampling of particle areas in
each charcoal peak detected in the CHAR series. As in Oris et al.
(2014a) the threshold was set at r¼ 0.90.

2.4. Comparison of fire reconstructions

All fires detected from all charcoal archives are presented as ‘fire
periods’. Each fire period corresponds to an age range which in-
cludes one fire event recorded from a given archive and proxy, and
the confidence interval around the fire date. For peat and soil, the
fire period corresponds to the 2s confidence interval of the cali-
brated date (Table S2). For lake sediments, the fire period was
determined from the calibrated age-depthmodel output (Table S3).
For each site, fires from two archives or proxies were considered as
similar (corresponding to the same fire) if the two recorded fire
periods overlapped.

For both sites, reconstructions performed from each archive and
proxy were compared in terms of percentage of similar (over-
lapping) and different (not overlapping) fire periods over the time
covered by the shortest reconstructed history between both
compared archives/proxies. The trends of reconstructed fire his-
tories were compared using the Kolmogorov-Smirnov test on fire-
intervals computed as the average time between two successive
fire events over the time covered by the shortest reconstructed
history between both compared archives/proxies. Charcoal as-
semblages (in terms of number and cumulative area) recorded from
lake sediment samples and corresponding to detected fire periods
were compared to those not corresponding to fire periods. Com-
parisons were also made of charcoal assemblages (in terms of
number and cumulative area) recorded from lake sediment sam-
ples and corresponding to detected fire periods from lake, soil, peat
or tree-rings with those corresponding to fire periods detected only
from lake sediments. Differences between these charcoal assem-
blages were tested for significance with Kolmogorov-Smirnov tests.

3. Results

3.1. Fire reconstruction correspondences between archives

At the Lili site, 2 fire events were detected in tree rings over a
period covering the last 170 years (Fig. 2 and Fig. S2). Statistical
analyses of 14C dated soil charcoal allowed to detect 9 fire periods
over the last 3000 years (Fig. 2 and Fig. S3; Table S2), whereas peat
charcoal allowed to detect 8 fires over the last 7000 years (Fig. 2
and Fig. S3; Table S2). Analyses of lake charcoal revealed 50 fire
events with CHARC, 49 with CHARA, 32 with CSD and 21 with ARCO
over the last 8200 years (Fig. 2; Table S2). Between 68 and 83% of
the fires periods detected in peat, soil and tree rings were also
recorded in CHARC and CHARA, respectively (Fig. 3a), whereas 47%
and 58% of the fires detected in peat, soil and tree rings corre-
sponded to fires detected by the CSD and ARCO methods, respec-
tively. These local fire periods corresponded to 21%, 27%, 24% and
37% of all fire periods detected by the CHARC and CHARA, CSD and
ARCO methods, respectively (Fig. 3b).

At the Innu site, 2 fire events were also detected in tree rings
over a period covering the last 170 years (Fig. 2 and Fig. S2). Sta-
tistical analyses of 14C dated soil charcoal allowed to detect 11 fire
periods over the last 4500 years (Fig. 2 and Fig. S3; Table S2), while
peat charcoal allowed to detect 5 fires over the last 3000 years
(Fig. 2 and Fig. S3; Table S2). Analyses of lake charcoal revealed 75
fire events with CHARC, 69 with CHARA, 32 with CSD and 21 with
ARCO over the last 8200 years (Fig. 2; Table S2). Between 83 and
89% of the fires detected in peat, soil and tree rings were also
recorded in CHARC and CHARA, respectively (Fig. 3a), whereas 67%
and 44% of the fires detected in peat, soil and tree rings corre-
sponded with fires detected by the CSD and ARCO methods,
respectively. These local fire periods corresponded to 25%, 24%, 40%
and 27% of all fire periods detected by the CHARC and CHARA, CSD
and ARCO methods, respectively (Fig. 3b).

Approximately half of the fire periods detected in soil and peat
were similar at Lili Lake, whereas only one fire period overlapped at
Innu Lake (Fig. 2). Fire dates recorded from tree rings are included
in fire periods recorded from peat and soil at Lili Lake and only from
soil at Innu Lake (Fig. 2).

3.2. Charcoal assemblages in fire reconstructions from lake
sediments

All charcoal assemblages corresponding to fire periods detected
in lake sediments with the CHARC and CHARA methods included
significantly larger and more abundant charcoal particles in
average than charcoal assemblages characterizing no-fire periods
(Fig. 4). In the same way, all charcoal assemblages corresponding to
past local fires detected in lake sediments with the CSD and ARCO

https://sites.google.com/site/charanalysis/


Fig. 2. Fire periods detected with the different proxies and archives. Each fire period corresponds to an age range which includes one recorded fire event and the associated
confidence interval. Detailed dates of fire periods are given in Tables S2 and S3. The mean fire-return interval (mFRI) of each reconstruction is indicated on the right-hand side.
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methods included significantly larger and more abundant charcoal
particles in average than charcoal assemblages characterizing no-
fire (or regional fire) periods (Fig. 4). In contrast, charcoal assem-
blages corresponding to fire periods detected only from lake sedi-
ments, independently of the method used, were similar in terms of
charcoal area and charcoal number to charcoal assemblages cor-
responding to fire periods detected in soils, peat and tree rings
(Fig. 5).
4. Discussion

4.1. Efficiency of fire reconstruction methods

Even if the locations of tree-ring samples only cover a portion of
each lake's watershed (especially at Lili site; Fig. S2b), dates of the
fire events recorded by tree ring analyses are similar to those
recorded by other studies in the same zones for both sites.
Bouchard et al. (2008) recorded one fire at the Innu site around
1902 very close to the most recent fire dated by fire scar analysis
around 1905 (Fig. S1); and Bergeron et al. (2004) recorded two fires
close to the Lili site around 1820 and 1916 close to the fires esti-
mated around 1830 and 1905 by stand-age (Fig. S1). Once again,
tree-ring analyses are shown to be a robust proxy to reconstruct fire
histories at decadal to centennial time scales (Drobyshev et al.,
2017; Swetnam et al., 1999; Waito et al., 2018).

With regards to the archives used to reconstruct fire histories at
multi-millennial time scales, charcoal preserved in lake sediments
are known to be more influenced by long-distance dispersal than
charcoal preserved in peat and soil (Higuera et al., 2007; Leys et al.,
2013; Tolonen, 1985; Whitlock andMillspaugh, 1996). This explains
the high number of fires recorded with the CharAnalysis method
(based on charcoal area and count), with a lot of overlap between
detected fire periods and the shortest recorded fire-return intervals
(Fig. 2 & Table S5). The use of the CSD and ARCO methods allowed
to remove some of the extra-local fires (Asselin and Payette, 2005b;
Finsinger et al., 2014), however significantly more fires were
recorded from lake sediments than from soils and peat. Never-
theless, it does not necessarily imply that fire periods detected in
lakes but not in other archives all correspond to regional fires. The
spatial heterogeneity of fire propagation (Madoui et al., 2010;
Ouarmim et al., 2016), with zones partially or entirely escaping fire
due to characteristics of the local vegetation and soil moisture
(Ouarmim et al., 2014), prevent the reconstruction of all local fire
events (within an entire watershed) with only one quadrat (soil) or
one core (peat). Thus, some fires could have not been recorded from
soil and peat due to the very localized nature of the sampling done
at both sites (Fig. 1). At the Innu site, no fire was recorded in the
peat before 3000 BP, maybe due to a particularly humid environ-
ment preventing the occurrence of low-severity fires. Particularly
dry atmospheric conditions can also prevent some fires to be
recorded in soil, peat and lake (Conedera et al., 2009; Robin et al.,
2013). Indeed, high fire activity can produce ash rather than char-
coal, or induce re-burning of surficial charcoal which is then
transformed into ash. In addition, some fire events could have been
recorded in lake sediments but not in the studied soil quadrats and/
or peat cores if they occurred, for example, on the opposite side of
the watershed or if the wind was not blowing toward the studied
soil quadrats or peatlands during fire (Gavin et al., 2003). Finally,



Fig. 3. Correspondence between fires detected by different archives and proxies for Lili
(striped) and Innu (crosses) sites. (a) Percentages of fires detected from soil, peat and
tree rings also detected with four different lake charcoal analysis methods. (b) Per-
centages of fires detected by lake charcoal methods corresponding to fires also
detected from peat, soil and tree rings analyses.

Fig. 4. Charcoal assemblages (number and area) of detected fire periods versus no-fire
periods using CharAnalysis (CHARC in blue and CHARA in red), CSD (green) and ARCO
(yellow). The r-values were obtained from Kolmogorov-Smirnov tests. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)
some fire events recorded in lake sediments, peat and soil corre-
sponding to the same fire could be recorded at different dates due
to the potential influence of “inbuilt age” effect (Gavin, 2001). Some
dated charcoals from soil, peat and lake (if charcoals are dated to
build the age-depth model) could have been produced by dead
wood present on the landscape for centuries before being burned,
thus leading to incorrect radiocarbon dates.

Local fires detected from soil, peat and tree-ring analyses are
sometimes recognized asmore spatially and temporally precise and
robust than those detected from lake sediments (Pitk€anen et al.,
2001). Results from the current study also showed that local fire
histories reconstructed from soil and peat charcoal are similar to
those reconstructed from lake charcoal with the CSD and ARCO
methods (Table S4). Several soil quadrats and peat deposits located
in various locations within a watershed should be sampled to more
accurately reconstruct local fire histories, especially if these local
histories are to be combined into regional-scale fire histories
(Payette et al., 2016). Fewer 14C dates could then be obtained per
quadrat/core to keep costs within reasonable limits.
Theoretical models predict that charcoal dispersal distance de-

creases with increasing particle size (Clark et al., 1998; Higuera
et al., 2007; Patterson et al., 1987). Charcoal assemblages (count
or area) of fires detected from lake sediments, including those
filtered by the CSD and ARCO methods, were composed of larger
and more numerous charcoal fragments than those recorded dur-
ing periods with no (local) fires detected (Fig. 4). This result sup-
ports the assertion that local fire periods will result in
proportionately more larger-sized charcoal fragments in lake
sediment assemblages (Asselin and Payette, 2005b; Clark et al.,



Fig. 5. Charcoal assemblages (number and area) of fire periods detected in lake sed-
iments corresponding to fire periods detected or not in soil, peat and tree ring archives.
Same color legend as in Fig. 4. The r-values were obtained from Kolmogorov-Smirnov
tests. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
1998; Gardner and Whitlock, 2001; Lynch et al., 2004; Oris et al.,
2014a). However, charcoal fragments deposited in lake sediments
during fire periods recorded in soil and peat were neither larger nor
more numerous than those deposited during periods without
recorded fires in soil and peat (Fig. 5). This underlines that charcoal
deposition and preservation in the three archives (peat, soil and
lake) is influenced by distinct taphonomical processes. Thus, the
fire signal recorded in peat and soil deposits in our study cannot be
used to verify the local fire signal in lake sediments.

Approximately half of the fires detected with lake charcoal were
considered local by the CSD method. This was not the case with the
ARCO method, which detected around 15% less local fire periods
than the CSD method and showed millennial periods without any
fire recorded. Consequently, the ARCO method led to a mean fire-
return interval of almost 400 years with some periods of more
than 1300 years without fire at the Innu site (Fig. 2 & Table S5). A
similar result was obtained by Oris et al. (2014a) in northwestern
Quebec. Such long periods without fire in coniferous boreal forests
of Quebec are unrealistic, knowing that the study zones are
recurrently affected by intense/severe and large wildfires (Remy
et al., 2017a; Stocks et al., 2003). According to dendrochronolog-
ical investigations, during the last 300 years, the study zones were
characterized by a 100e400-year fire cycle (Bergeron et al., 2004;
Bouchard et al., 2008). Hence, for boreal ecosystems, the CSD
method is more efficient than the ARCO method to detect local fire
periods.

That being said, approximately 50% of the fires detected in soil,
peat and tree rings were not recorded by the CSD method, leading
to longer fire-return intervals (Fig. 3a & Table S5). Some of the
charcoal assemblages deposited in lake sediments during fire pe-
riods recorded in soil, peat and tree rings did not contain enough
charcoal, including large charcoal, to be detected in the lake record.
Thus, the effect of taphonomical processes on lake charcoal could
erase part of the past fire evidence by homogenizing charcoal as-
semblages. Hence, method applied to lake-sediment charcoal re-
cords to remove background noise resulting from taphonomic
processes such as secondary deposition resulting from surface
runoff, sediment mixing and redeposition (Blarquez et al., 2013;
Clark and Royall, 1996; Higuera et al., 2007; Whitlock and
Millspaugh, 1996) were not able to detect all the “true” past fire
events. Consequently, it is conceivable that some local fire events
were recorded in lake sediments, independently of the method
used, but not in soil and peat, and vice versa as explained above.

Some methodological improvements could be investigated to
increase the robustness of fire reconstructions. Some of the main
methodological shortcomings which lead to uncertainties are the
low accuracy of age-depth models, the too short verification period
provided by tree-ring analyses or remote-sensing, and the rela-
tively infrequent occurrence of large fires in these forests
(Hawthorne et al., 2017; Marlon et al., 2016). Other palae-
oenvironmental proxies could help identify local fires with more
accuracy in the future. For example, some studies have noted cor-
respondences between charcoal records and changes in vegetation,
diatoms, geochemical composition or magnetic susceptibility
(Dunnette et al., 2014; Leys et al., 2016; Ponader et al., 2002;
Rummery, 1983; Senici et al., 2013; Swain, 1973).

4.2. Which archives for which objectives?

Due to their age, tree-ring analyses, together with written ar-
chives, satellite imagery and aerial photographs, depending on
availability, remain the most accurate methods to reconstruct local
fire histories in the recent past (generally< 1000 years) (Higuera
et al., 2011; Oris et al., 2014a; Swetnam et al., 1999; Waito et al.,
2018). When fire dynamics must be investigated at longer, multi-
millennial time scales, the choice between archives and proxies
depends on the study objectives and on the spatiotemporal scale
considered (Fig. 6). In line with previous studies (Ali et al., 2009;
Kelly et al., 2013; Lynch et al., 2004; Oris et al., 2014a), we recom-
mend to use charcoal records from lake deposits processed with
CharAnalysis (Table S4) for regional-scale fire history re-
constructions. Indeed, lake-sediment charcoal analyses allow to
reconstruct the longest fire histories and a large number of studies
have validated their use to reconstruct long-term variations of fire
regimes associated with past climate, vegetation dynamics or
anthropogenic activities (Blarquez et al., 2015; Markgraf et al.,
2007; Marlon et al., 2008; Millspaugh et al., 2000; Tinner et al.,
2001; Waito et al., 2018). However, several lakes need to be
analyzed to optimize the reconstructed regional trends in fire his-
tories by minimizing the taphonomic biases specific to each lake
(Ali et al., 2012, 2009; Blarquez et al., 2015; Calder et al., 2015; Clark
and Royall, 1996; El-Guellab et al., 2015; Goring et al., 2012; Kelly



Fig. 6. Guidelines to select archive and proxy to reconstruct past fires in boreal forests.
et al., 2013; Mustaphi et al., 2015; Whitlock and Millspaugh, 1996).
Fire reconstructions based on lake-sediment charcoal should be
used to study low-frequency trends rather than to try and decipher
individual fire events, due to the uncertainty induced by the
interpolation of fire dates from imperfect age-depth models, and
because one peak identified from lake-sediment charcoal series
could enclose one or more fires (Gavin et al., 2006; Higuera et al.,
2010). Additionally, as the topmost (i.e. the most recent) lake sed-
iments often have low density, less charcoal fragments are gener-
ally recovered from the corresponding samples, possibly leading to
underestimating the number of detected fires (Lehman, 1975).
Charcoal from soil and peat can also be used to reconstruct regional
scale fire histories more robustly if several sites are studied
(Fr�egeau et al., 2015; Couillard et al., 2016). However, regional re-
constructions based on soil or peat charcoal will be much more
expensive (requiring much more radiocarbon dates), and more
time-consuming, both in the field and in the lab.

When aiming to reconstruct local fires, different options are
available, depending on the study objectives (Fig. 6). Charcoal
embedded in peat and soil can more accurately date fire events
than charcoal in lake sediments because of the error attributable to
age interpolation of lake sediments whereas charcoals are dated
directly in peat and soil (Asselin and Payette, 2005b; Finsinger et al.,
2014; Robin et al., 2013). Nevertheless, fire events detected from
peat and soil should be inferred from a sufficient number of dated
charcoal particles of from short-lived species to minimize the po-
tential influence of the “inbuilt age” effect (Fr�egeau et al., 2015;
Gavin, 2001; Magnan et al., 2012). Thus, peat and soil are more
adapted archives than lake sediments to study the environmental
processes related to past individual local fires older than the period
covered by tree-ring analyses, such as watershed erosion, biogeo-
chemical cycles and local vegetation dynamics (Garneau et al.,
2018; Payette and Delwaide, 2004; Poirier et al., 2014). However,
charcoal from lake sediments are better suited to reconstruct long-
term fire dynamics in boreal forests, as they give the longest fire
histories and are not subject to loss to re-burning or to variations in
sediment accumulation. Hence, fire histories reconstructed from
the CSD method are more appropriate for studying trends at the
local scale because they remove a large part of the regional fires
(Fig. 6).

To conclude, the choice of which archive and proxy to use to
reconstruct past fire histories depends mainly on the study objec-
tives, particularly on the spatiotemporal scale considered. At the
regional scale, charcoal records from lake sediments treated with
CharAnalysis are currently the most appropriate to reconstruct
low-frequency trends, but require the analysis of several lakes. At
the local scale, more than one archive is suitable for fire history
reconstruction. Charcoal records from lake sediments treated with
CharAnalysis and then filtered with the CSD method allow to
reconstruct the longest local fire histories, but again, focusing on
trends rather than on the identification of individual fire events.
Charcoal records from peat and soils are the best choice if the study
objectives request accurate fire dates. Finally, tree-rings analyses
remain the most efficient method to study fire histories at decadal
to centennial-time scales.
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des Forêts, de la Faune et des Parcs du Qu�ebec, Barrette-Chapais Ltd
and the Institut �Ecologie et Environnement through the GDRI
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