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Abstract  13 

 14 

Among comparative metabolomic studies used in marine sciences, only few of them are dedicated to macroalgae 15 

despite their ecological importance in marine ecosystems. Therefore, experimental data are needed to assess the 16 

scopes and limitations of different metabolomic techniques applied to macroalgal models. Species of the genus 17 

Lobophora belong to marine brown algae (Family: Dictyotaceae) and are widely distributed, especially in 18 

tropical coral reefs. The species richness of this genus has only been unveiled recently and it includes species of 19 

diverse morphologies and habitats, with some species interacting with corals. This study aims to assess the 20 

potential of different metabolomic fingerprinting approaches in the discrimination of four well known 21 

Lobophora species (L. rosacea, L. sonderii, L. obscura and L. monticola). These species present distinct 22 

morphologies and are found in various habitats in the New Caledonian lagoon (South-Western Pacific).We 23 

compared and combined different untargeted metabolomic techniques: liquid chromatography-mass 24 

spectrometry (LC-MS), nuclear magnetic resonance (1H-NMR) and gas chromatography (GC-MS). 25 

Metabolomic separations were observed between each Lobophora species, with significant differences according 26 

to the techniques used. LC-MS was the best approach for metabotype distinction but a combination of 27 

approaches was also useful and allowed identification of chemomarkers for some species. These comparisons 28 

provide important data on the use of metabolomic approaches in the Lobophora genus and will pave the way for 29 

further studies on the sources of metabolomic variations for this ecologically important macroalgae. 30 
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1.Introduction 35 

Specialized metabolites are often considered as low molecular weight molecules, end products of cellular 36 

regulatory processes, and final responses of biological systems to genetic and/or environmental changes (Fiehn, 37 

2002). They can be regarded as products of natural selection during evolution. These secondary metabolites play 38 

also an important role in shaping algal chemical diversity (Wink, 2003). The set of metabolites present in the 39 

organisms can be highly complex and their biosynthesis can also be related to the associated microbiota 40 

(Roessner and Bowne, 2009). Traditionally, the chemical composition of an organism is explored through 41 

natural product chemistry which includes long and tedious steps of isolation and structure elucidation of 42 

metabolites (Robinette et al., 2011). This approach is time consuming and incomplete as it focuses mostly on the 43 

major compounds produced. Recent advances in more global approaches called metabolomics allow the analysis 44 

of a wider part of the metabolome by the simultaneous detection of hundreds to thousands of the metabolites of a 45 

small sample in a short period of time. In environmental sciences, metabolomics has therefore appeared as a 46 

quick and useful approach to examine the metabolite diversity of species and study their variations with time, 47 

geography, biotic interactions or other environmental factors (Bundy et al., 2009). Compared to the plant 48 

kingdom, relatively few environmental metabolomics studies have been reported on marine organisms. 49 

Taxonomy-based metabolomics has been applied for marine organisms like sponges (Ivanišević et al., 2011a; 50 

Pérez et al., 2011), zoanthids (Costa-Lotufo et al., 2018; Jaramillo et al., 2018) and microalgae (Mooney et al., 51 

2007). Variability in the metabolomic profiles were explored in time and space for some sponges (Rohde et al., 52 

2012), ascidians (López-Legentil et al., 2006), zoanthids (Cachet et al., 2015) and corals (Slattery et al., 2001) 53 

but also in response to environmental factors like temperature or salinity (Abdo et al., 2007; Bussell et al., 2008). 54 

Among the chemical studies dedicated to macroalgae, only a few used metabolites as a taxonomic tool targeting 55 

specific compounds or classes like phenolics (Connan et al., 2004) or diterpenes (Campos De Paula et al., 2007). 56 

While these studies traditionally focus on potentially active compounds with pharmaceutical interests, a more 57 

global approach using metabolomics can represent a useful tool to explore the metabolome of macroalgae and its 58 

fluctuations. For example, metabolomics was applied on the red alga Asparagopsis taxiformis to study the 59 

spatio-temporal variation of its metabolome (Greff et al., 2017). Another study on the red alga Portieria 60 

hornemannii explored different sources for the variation of non-polar metabolites between cryptic species and 61 

life stages (Payo et al.,2011). Metabolomics also appeared as a complementary tool to understand defense or 62 

tolerance mechanisms of macroalgae in an ecological context (Rempt et al., 2012; Ritter et al., 2014). Marine 63 

brown macroalgae from the genus Lobophora (Family Dictyotaceae) have already been studied chemically. 64 

Gerwick & Fenical (1982) first described 1-(2,4,6-trihydroxyphenyl)hexadecan-1-one in L. papenfussii. Three 65 

sulfoquinovosyldiacylglycerols (SQDGs) and later lobophorolide were identified from L. variegate (Cantillo-66 

Ciau et al., 2010; Kubanek et al., 2003). Recently, seven nonadecaketides named lobophorols, lobophopyranones 67 

and lobophorones (Gutiérrez-Cepeda et al., 2015) were found in the Atlantic L. variegate while the 68 

polyunsaturated lobophorenols A, B and C were described in the tropical L. rosacea (Vieira et al., 2016). 69 

Abundant in tropical coral reef habitats, some Lobophora species are closely associated with corals and therefore 70 

strongly involved in coral-algal interactions (Rasher & Hay, 2010), leading in some cases to negative impacts on 71 

corals. The high specific diversity of Lobophora genus has recently been unveiled (Vieira et al.,2014, 2017), 72 

with species exhibiting various morphologies and habitats, questioning the link between chemical diversity and 73 



species diversity. Due to this chemical diversity, species of this genus are therefore good candidates to undergo 74 

metabolomics-based study to explore the metabolic variability among the different species. 75 

We first decided to assess the potential of different approaches in metabolomic fingerprinting to separate four 76 

well-known Lobophora species (L. rosacea, L. sonderii, L. obscura and L. monticola), with distinct morphology 77 

and present in diverse habitats of the New Caledonian lagoon (South-Western Pacific). The systematics of these 78 

species being well described, we aimed at providing important insights on the relevance of these approaches to 79 

first discriminate species. The results of these preliminary data will then pave the way for deeper metabolomic 80 

studies on the presence of cryptic species, the influence of environmental parameters or biotic factors like the 81 

reproductive cycles. In terms of reproduction, little is known about Lobophora in New Caledonia and this genus 82 

is supposed to be reproductive all year round (Vieira, pers. com.). Our knowledge on the main specialized 83 

metabolites found in L. rosacea was a prerequisite to guide our study as they are presumed to have a taxonomic 84 

relevance. We used untargeted metabolomic approaches using three different techniques: UHPLC-MS-QToF, 85 
1H-NMR and GC-MS followed by unsupervised and supervised analyses to highlight chemical differences 86 

among species. 87 

 88 

2.Results 89 

2.1.1H-NMR  90 

The matrix obtained after data analyses was composed of 7,998 buckets. A value of 33.5% of variance was 91 

explained by the two first components of the PCA (Fig. 1a) and mainly due to L. rosacea characterized by a 92 

different metabolomic fingerprint than the other three species (PPLS-DA, CER = 0.328, p = 0.001, post hoc p < 93 

0.05, Fig. 1b,Table S1). In the central cluster of the PCA that grouped the three other species, only L. monticola 94 

and L. obscura present significant different metabolomic fingerprints (p = 0.018), whereas L. sonderii is not 95 

chemically different from the two others (Table S1, p > 0.05). 96 

The overlay of 1H NMR spectra (Fig. 2), indicated that the major signals are shared by all Lobophora species: 97 

intense signals at δH 1-2 ppm due to the methylenes of long chain fatty acids, and signals at δH 2.8 and 5.3 ppm 98 

attributed to carbon-carbon unsaturations. More variable regions containing characteristic signals of the 99 

polyunsaturated lobophorenols A, B and C were observed between δH 3.2-4.5 (chlorinated and hydroxylated 100 

methines), 4.8-5.2 and 5.0-5.8 ppm (terminal olefinic protons, Fig. 2 and S1). Due to the high number of 101 

generated bins, Kruskal-Wallis loading plot (Fig. S2) was used to identify chemical markers, which separate 102 

metabolic diversity of Lobophora species (with p < 0.05, Table S2). The regions corresponding to the signals of 103 

lobophorenols are the main markers of differences between species and are mostly present in L. rosacea. 104 

 105 

2.2.UHPLC-QToF 106 

 107 

After LC-MS data analyses and filtering, 600 metabolic features were finally considered. The variance on the 108 

two first components of the PCA was explained by 38.7% (Fig.1c), a value slightly higher than for NMR 109 

analysis. The LC-MS approach permitted a better separation of each species’ metabolome than NMR (CER = 110 



0.115, p = 0.001, p< 0.05 for each tested pair, Fig. 1d, Table S1). The difference between chemical groups was 111 

mainly quantitative as shown in the Venn diagram (Fig. S4). 112 

Among chemomarkers, two compounds, lobophorenol B (m/z 334.272 [M + NH4]
+, C21H32O2) and lobophorenol 113 

C (m/z 336.287 [M + NH4]
+, C21H34O2), previously isolated in L. rosacea (Vieira et al., 2016) were mainly 114 

detected in this species (Fig. 3, Table S3). They were also detected in L. monticola, but with high variability and 115 

not in L. sonderii and L. obscura. The other chemomarkers of each species were tentatively annotated based on 116 

the construction of a molecular network but no other match was found in the current database, with the majority 117 

of them appearing as minor intensity ions. 118 

To combine data obtained by LC-MS with those by NMR, a multiple factor analysis (MFA) was performed (Fig. 119 

4). The four Lobophora species were well separated despite a lower variance of 21.7% on the two first 120 

dimensions. 121 

 122 

2.3. GC-MS 123 

The richness in non-polar specialized metabolites in Lobophora led us to analyze the CH2Cl2 fractions by GC-124 

MS while attempts to use NMR for those fractions were unfruitful due to intense lipidic peaks. The explained 125 

variance on axis 1-2 of the PCA was 35.7%, a value similar to the values obtained with the two other techniques 126 

(Fig.1e). All algal metabotypes were differentiated with this technique (CER = 0.304, p = 0.001, Fig.1f) except 127 

for L. monticola vs L. rosacea (p = 0.431, Table S1). Among the chemomarkers contributing to the 128 

discrimination of the species metabotypes, we identified a small carboxylic acid: 2-pentenoic acid (M5), an 129 

amide: maleimide, 2-methyl-3-vinyl (M18), and two esters: methyl stearate (M38) and hexanoic acid, 2-ethyl-, 130 

hexadecyl ester (M48) (Table 1). M5 and M48 are specific to L. obscura while this species contained lower 131 

amount of M38 compared to the three other species. Lobophora sonderii and L. rosacea exhibit higher levels of 132 

M18 (Fig. S5). 133 

Moreover, some compounds known as plastic pollutants were found in all species and contribute to differences 134 

in their chemical profiles (Phenol, 2,4-di-tert-butyl; tributyl acetyl citrate; o-xylene; naphthalene, 2,6-dimethyl-; 135 

p-cresol, 2,6-di-tert-butyl-; N-methyl-N-benzyltetradecanamine). 136 

 137 

3. Discussion 138 

 139 

Even though LC-MS is a method largely employed in metabolomics studies due to its high sensitivity, it is not 140 

suitable for all metabolites and more appropriate for polar, weakly polar and neutral compounds (Wang et al., 141 

2015). Moreover, it relies on ionization process, limiting the study of poorly-ionizable compounds. GC-MS is 142 

then more suitable when non-polar metabolites are found as the main major specialized metabolites. On the 143 

contrary and even if much less sensitive, NMR is more universal and does not rely on ionization processes nor 144 

the separation of analytes by HPLC, and solubilization of the metabolites is the only limitation. NMR spectra are 145 

able to provide a better snapshot of what are the major metabolites and their relative concentrations in the 146 

studied specimens. This information is highly relevant for major metabolites that may correspond to specialized 147 



metabolites providing useful information concerning species discrimination. NMR would therefore be less 148 

affected by environmental changes often linked to minor metabolites (Ivanišević et al., 2011b). 149 

The four species of Lobophora are well described morphologically and their phylogeny resolved in 2014 using 150 

mitochondrial gene Cox3 (Vieira et al., 2014). Lobophora monticola, L. obscura, L. rosacea and L. sonderii are 151 

distantly-related species. They are distributed evenly across the Lobophora evolutionary tree, with L. rosacea the 152 

most basal species of the four (Fig. S6)(Vieira et al., 2014, 2017). In the current study, the algal species have 153 

been separated based on their metabolomic fingerprints, and depending on the used technique. The LC-MS 154 

approach was the most effective technique for the separation of the four species of this genus (PPLS-DA, CER = 155 

0.115), but NMR and GC-MS (CERNMR = 0.328, CERGC/MS = 0.304) also provided interesting complementary 156 

results. While less sensitive than LC-MS or GC-MS, NMR provides the highest reproducibility among 157 

metabolomic measuring platforms (Farag et al., 2012a). 158 

In our study, NMR analyses performed on the same methanolic fractions as LC-MS allowed a clear distinction 159 

of L. rosacea from the other three species, in agreement with phylogenetic data where this species appears as the 160 

most basal. Like LC-MS, NMR highlighted lobophorenols as discriminating metabolites in L. rosacea, with 161 

most of the signals responsible for the chemical divergence corresponding to characteristic signals of these 162 

molecules. Lobophorenol A was not detected by LC-MS while it was observed as marker in NMR because of 163 

some characteristic signals at δH 3.70 (H-4) and 6.02 ppm (H-2; see Fig. S1). The absence of detection of 164 

lobophorenol A by LC-MS might stem from a high reactivity of the chlorinated derivative during ionization. 165 

These lobophorenols have been shown to present allelopathic effects against the coral Acropora muricata (Vieira 166 

et al., 2016). Molecular networking based on MS2 spectra analyses did not allow identification of additional 167 

chemomarkers. Annotation of compounds from marine organisms, especially macroalgae, is still challenging 168 

with the lack of specific databases. Altogether, LC-MS and NMR provide complementary approaches to analyze 169 

the metabolome and their combination is highly relevant to discriminate Lobophora species, as supported by the 170 

MFA. 171 

 172 

NMR analyses also showed the rich composition in lipidic derivatives of Lobophora species, which may be 173 

problematic because intense long-fatty-chain signals may mask other signals. However, this issue could be 174 

resolved using GC-MS, allowing the study of the non-polar part of the metabolome. Compared to the poor 175 

specialized LC-MS database, the available GC-MS databases enabled the annotation of some chemomarkers. 176 

However, the discrimination between species metabotypes was partly explained by compounds presumably 177 

identified as pollutants from plastic origin and present in the coastal sites, which were likely differently 178 

accumulated in the algae or at their surface as seen in Sargassum spp. and Fucus vesiculosus (Chan et al., 2004; 179 

Gutow et al., 2016). This result potentially highlights more different adhesion capacities of microplastics 180 

between species rather than metabolic differences. Other markers evidenced by the NMR method include: 2-181 

pentenoic, which is a small unsaturated fatty acid previously found in plants (Wu and Chen, 1992). Pentenoic 182 

acid was found up-regulated under salinity stress in the halophyte Aeluropus lagopoides (Paidi et al.,2017). 183 

Maleimide, 2-methyl-3-vinyl was also detected in the algal samples. This metabolite may be a transformation 184 

product of chlorophylls and bacteriochlorophylls (Naeher et al., 2013). We hypothesize that these compounds 185 

originate in part from micro-organisms associated to Lobophora species. Indeed, epiphytes often colonized the 186 



algal surface (Egan et al., 2013). Then, by extracting the algal metabolome, we may also extract compounds 187 

from bacteria or epiphytes and metabotypes observed in our study may arise, at least in part, from the algal-188 

associated organisms. Even if we carefully removed epiphytes from their surface, microorganisms are still 189 

present and may contribute to the global metabolome of the specimens. For example, methyl stearate has been 190 

found in bacteria and plants but also microalgae, ascidians and macroalgae (De Rosa et al., 2001; Sharmin et al., 191 

2016; Takeara et al., 2008; Terekhova et al., 2010) and is assumed to have antibacterial and cytotoxic activities 192 

(Elshafie et al., 2017; Takeara et al., 2008). The influence of species-specific microbial communities, which can 193 

produce minor compounds, may also explained the better result obtain by LC-MS in the discrimination of 194 

Lobophora species. 195 

Even if less important than interspecific differences, intraspecific variability can be explained by their 196 

development stage, life history traits and evolution and may also result from their environment. Lobophora life 197 

cycle is not documented in New Caledonia lagoon and reproductive state has been seen all year round (Vieira, 198 

personal observation). Gametophytes and sporophytes are not easily dissociable but may potentially present 199 

different chemical profiles as seen in other macroalgae, like the red algae Portieria hornemannii in the 200 

Philippines (Payo et al., 2011). The close association of L. rosacea and L. monticola with corals could lead to 201 

chemical adaptation or specification in the algal chemistry, notably against coral associated microbiome. On the 202 

other hand, growing in algal beds, L. sonderii is more exposed to herbivores and its chemistry probably evolved 203 

differently, notably to repulse predators. Lobophora obscura is also exposed to other organisms but its 204 

encrusting form with thick and coarse thalli, may deter predators. Less effort in metabolites production may be 205 

balanced by its protective morphology. Because very few chemomarkers were identified, these hypotheses 206 

should be further investigated and tested. Moreover, regarding the good discrimination observed with LC-MS in 207 

this work, this method may be useful to separate cryptic species of Lobophora, as successfully applied for 208 

Portieria dioli (Payo et al., 2011). 209 

The choice of the technique to accurately distinguish species is pivotal and only few studies comparing these 210 

techniques have been published to date, most of them being applied to plants. For example, untargeted LC-MS 211 

was the most effective to discriminate several green tea (Kellogg et al., 2017). Other authors used multiple 212 

approaches to study the metabolomic fingerprint in zoanthids (Costa-Lotufo et al., 2018) or in the plant kingdom 213 

(Agnolet et al., 2010; Farag et al., 2012b). Multiple metabolomics approaches are rare on macroalgae. Notably, 214 

LC-MS and HR-MAS NMR were used to evaluate the relevance for taxonomical purpose in five species of the 215 

genus Cystoseira (Jégou et al., 2010). Due to the high diversity in metabolites, with diverse physico-chemical 216 

properties and different concentration ranges, the global analysis in metabolites is challenging. Using multiple 217 

metabolomics approaches allow a broader analysis. It is a good tool to appreciate the chemical diversity among 218 

species and can bring complementary information to the phylogenetic data, the unavoidable base for 219 

classification. These approaches enabled a better exploration of the chemical speciation or evolution among 220 

genus or even at a broader scale, as realized by Belghit et al.(2017) on 21 species belonging to red, green and 221 

brown algae. With the increase of shared metabolomics platforms, metabolomic fingerprinting might be applied 222 

to other macroalgae and marine organisms, and when coupled with genomics or transcriptomics, it will greatly 223 

improve our understanding of adaptive mechanisms involved in multi-stressors environments. This coupling has 224 

been recently applied to macroalgae, like in the model Ectocarpus siliculosus where transcriptomic and genomic 225 

data available allowed to better understand the metabolic changes during saline and oxidative stress (Dittami et 226 



al., 2011) or under different CO2 and O2 concentrations (Gravot et al., 2010). While Lobophora genus is not a 227 

typical model organism, the decreased cost and increased sequencing capabilities of Next Generation 228 

Sequencing make it possible to examine species beyond traditional models (Konotchick et al., 2013; Unamba et 229 

al., 2015). In particular, it is an example of common brown alga widely distributed in tropical waters and 230 

producing major non-polar metabolites and therefore can represent a model for other metabolomic studies 231 

applied to brown algae. A coupling between metabolomics and meta-genomics could also help to understand the 232 

diversity of associated bacteria and better assess their contribution to the algal metabolome. Because associated 233 

microorganisms are commonly species-specific, this could partly explain the better results obtained with LC-MS. 234 

While a multiple metabolomic approach is promising for several applications in macroalgae, data interpretation 235 

remain the biggest challenge to date and more metabolomics studies on macroalgae are needed. 236 

 237 

4. Conclusion 238 

Metabolic fingerprinting with LC-MS was the most appropriate technique in the discrimination of different 239 

Lobophora species, but the coupling with NMR is also useful as the main metabolites can be observed with these 240 

methods and identified as chemomarkers. Indeed, lobophorenols, previously identified specialized metabolites in 241 

L. rosacea, were detected as chemomarkers with both LC-MS and NMR while they were not detected by GC-242 

MS, which appeared a less useful technique for analyzing the Lobophora genus. This study demonstrates that an 243 

untargeted metabolomic approach via LC-MS/NMR will be helpful for further ecological studies in Lobophora. 244 

Notably, this technique is appropriate to explore the sources of metabolomic variations in this genus at the 245 

temporal and spatial scales, influenced by environmental factors, and also in response to different biotic 246 

interactions. 247 

 248 

5.Experimental 249 

5.1. Sampling  250 

Lobophora rosacea, L. sonderii and L. obscura were collected by SCUBA during summer 2016 at Ricaudy 251 

(22°18.956’S; 166°27.405’E, Nouméa, New Caledonia). Lobophora monticola was collected during summer 252 

2016 at Sainte-Marie (22°18.269’S; 166°28.791’E, Nouméa, New Caledonia). Species identifications were 253 

performed by combining morphological and genetic analyses following Vieira et al.(2014). Vouchers for each 254 

species are kept at IRD herbarium (IRD10213, IRD10195, IRD10187, IRD10199). Lobophora rosacea has a 255 

thin fan-shaped thallus, growing fixed by the basal part within coral branches like Acropora spp. Lobophora 256 

monticola is also found associated to branching corals, and thalli grows partially or completely in contact with 257 

them. Lobophora sonderii forms dense erected blades, mixed with other brown seaweeds in Sargassum beds. 258 

Conversely, L. obscura has encrusting and thick leather-like thalli, strongly attached to dead corals or coral 259 

rubbles (Fig. 5). Specimens (six for L. rosacea, L. monticola and L. obscura and five for L. sonderii) were placed 260 

in separate ziplock plastic bags, immediately placed into ice and stored at -20 °C until sample grinding.  261 

 262 

5.2. Metabolite extractions 263 



Algae were freeze-dried and manually ground with liquid nitrogen in a mortar. Samples were then stored in 264 

silicagel until chemical extractions. For each replicate, a mass of 250 mg was extracted 3 times with 5 mL of 265 

MeOH/CH2Cl2(1:1) during 5 min in an ultrasonic bath. Supernatants were pooled and filtered from samples. The 266 

extracts were concentrated to dryness in the presence of C18 silica powder (100 mg, Polygoprep 60-50, 267 

Macherey-Nagel®) using a rotary evaporator, and the solid was then fractioned by Solid Phase Extraction (SPE, 268 

Strata C18-E 500 mg/6 mL, Phenomenex®) by the successive elution of H2O (6 mL), MeOH (6 mL) and CH2Cl2 269 

(6 mL) after cartridge cleaning (6 mL MeOH/CH2Cl2) and conditioning (6 mL H2O). The MeOH fractions were 270 

then filtered on syringe filters (PTFE, 0.20 μm, Phenomenex®), dried in a speedvac and further used for 271 

UHPLC-QToF and NMR analyses. The CH2Cl2fractions were only analyzed by GC/MS. 272 

 273 

5.3. Metabolomic analyses 274 

5.3.1. NMR 275 

Dry samples were dissolved in 0.5 mL CDCl3. 
1H-NMR spectra were recorded on a cryoprobe-equipped 600 276 

MHz Agilent spectrometer. The following parameters were used for data acquisition: 16 ppm spectral width, 1 s 277 

relaxation delay with water pre-saturation (PS), number of scans 32, acquisition time 1.7 s, 16 K complex data 278 

points, 90° pulse angle.  279 

5.3.2 UHPLC-QToF 280 

Metabolomic fingerprints were recorded on an UHPLC (Dionex Ultimate 3000, Thermo Scientific®) coupled to 281 

an accurate mass spectrometer equipped with an ESI source (QqToF Impact II, Bruker Daltonics®). Metabolite 282 

separation were performed on a C18 UHPLC column (Acclaim™ RSLC 120 C18 150 x 2.1 mm, 2.2 μm, 283 

Thermo Scientific®) at 40 °C. The mobile phase consisted in a mix of H2O + 0.1 % formic acid + 10 mM 284 

ammonium formate (solvent A) and acetonitrile/H2O (95:5) + 0.1 % formic acid + 10 mM ammonium formate 285 

(solvent B). Injection volume was set to 3 μL and elution flow to 0.4 mL min-1. The elution gradient was 286 

programmed as follows: 40 % B during 2 min, increased up to 100 % B from 2 to 8 min, followed by an isocratic 287 

step of 100% B during 4 min. The initial conditions were gradually recovered from 12 to 14 min, and hold 3 min 288 

for column equilibration for a total runtime of 17 min. MS parameters were set as follows: nebulizer gas N2 at 40 289 

psig, gas temperature 300 °C, drying gas N2 flow 4 L min-1, capillary voltage 3500 V. Mass spectra were 290 

acquired in positive ionization mode from 50 to 1,200 amu at 2 Hz. Auto-MS² spectra were acquired according 291 

to the same conditions then previously. A quality control sample (QC) was prepared with 25 µL of each sample. 292 

It was used to check MS shift over time and to normalize data according to injection order. The run started with 293 

three blank injections, followed by 10 injections of the QC for mass spectrometer stabilization. Samples were 294 

then randomly injected, inserting one QC every five samples. A final blank was injected to check any memory 295 

effect of the compounds on the column. 296 

 297 

5.3.3 GC-MS 298 

CH2Cl2 fractions were analyzed on a gas chromatograph (7890B GC System - 7693 autosampler, Agilent 299 

Technologies®) coupled to a mass selective detector (5977A MSD, Agilent Technologies®). Separation of 300 

metabolites was performed on a HP-5MS 5% Phenyl-Methyl Silox column (30 m x 0.25 mm, 0.25 μm, Agilent 301 

Technologies®) with helium as mobile phase. The run started at 40 °C for 5 min and increased by 10 °C min-1 up 302 



to 300°C for a total runtime of 31 min. A constant flow rate was set to 1 mL min-1. A volume of 1 μL of each 303 

sample was injected in splitless mode at 250°C. A solution with a mix of C8-C20 and C21-C40 alkanes (Fluka 304 

Analytical) was also injected for the determination of compound retention index. 305 

 306 

5.3.4 Data treatment 307 

1H-NMR spectra were automatically Fourier-transformed and processed on MesReNova 11. Spectra baselines 308 

were automatically corrected followed by the Whittaker smoother correction. An equal width bucketing of 309 

0.001 ppm was applied between 0-8 ppm to finally obtain the data matrix. Data were auto-scaled and log-310 

transformed before statistical analyses.  311 

LC–MS raw data files were first calibrated before converting them to netCDF files (centroid mode) using Bruker 312 

Compass DataAnalysis 4.3. NetCDF files were processed using the package XCMS for R software (version 313 

3.3.2, XCMS version 1.50.1). Optimized parameters for XCMS were used as follows: peak picking 314 

(method= “centwave”, peakwidth= c(2,20), ppm= 15, mzdiff= 0.05, prefilter= c(0,0)), retention time correction 315 

(method = “obiwarp”), matching peaks across samples (bw= 30, mzwid= 0.015, minfrac= 0.3) and filling in 316 

missing peaks. The matrix was then cleaned according to blanks and pooled samples to remove analytical 317 

variability. Molecular network based on MS² spectra were constructed with GNPS (Wang et al., 2016) and 318 

managed under Cytoscape 3.5.0 (Shannon et al., 2003). 319 

Agilent data files acquired from GC-MS analysis were exported into CDF files using MSD Chemstation 320 

(F.01.001903, Agilent Technologies®). CDF files were then processed using the package eRah (version 1.0.5, 321 

Domingo-Almenara et al., 2016) under R performing preprocessing, peak deconvolution (min.peak.width = 2.5, 322 

min.peak.height=2500, noise.threshold=500, avoid.processing.mz=c(73,149,207)), peak alignment 323 

(min.spectra.cor=0.90, max.time.dist=60, mz.range=40:500) and missing compound recovery (with presence 324 

required in 3 samples at least). Compound annotation was performed manually by comparing mass spectra with 325 

NIST 2011 database completed with the calculation of Kovàts' index (Van Den Dool and Kratz, 1963). The 326 

matrix obtained was finally filtered according to the blank. Data from LC-MS and GC-MS were normalized by 327 

log-transformation before statistical analyses. 328 

 329 

5.4. Statistical analyses 330 

Principal component analysis (PCA) was used to visualize the metabolome variation according to species (ade4 331 

package for R). Powered Partial Least-Squares-Discriminant Analysis (PPLS-DA) identified the maximum 332 

covariance between our data set and their class membership and permutational tests based on cross model 333 

validation (MVA.test and pairwise.MVA.test) were used to test differences between groups (RVAideMemoire 334 

package). Discriminating compounds were then identified according to the PPLS-DA loading plots (correlation 335 

circles; RVAideMemoire package). Multiple Factor Analysis (MFA, variables scaled to unit variance) was used 336 

to combine data obtained from LC-MS and NMR (FactoMineR and factoextrapackages for R). Kruskal-Wallis 337 

tests were performed in MetaboAnalyst 3.0 and R (PMCMR package). Post-hoc Conover’s test was done on R 338 

software (PMCMR package). Venn diagram was constructed with Venny 2.1 (Oliveros 2007-2015). 339 

 340 
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 523 

Figure and Table captions 524 

 525 

Fig. 1. Discriminant power of the three chemical approaches via unsupervised (Principal Component Analysis, 526 

PCA, a, c, e) and supervised discriminant (Powered Partial Least-Squares-Discriminant Analysis, PPLS-DA, b, 527 

d, f) analyses of Lobophora species metabolome analyzed by (a, b) NMR for MeOH fractions and (c, d) LC-MS 528 

for MeOH fractions and (e, f) GC-MS for CH2Cl2 fractions (LO: L. obscura in red, LR: L. rosacea in orange, 529 



LM: L. monticola in green and LS: L. sonderii in blue). CER = classification error rate with p-value after double 530 

cross model validation. 531 

Fig. 2. Overlay of 1H-NMR (600 MHz) spectra of the four Lobophora species (one representative sample per 532 

species was chosen, the full overlay spectra is available in Fig. S3. L. monticola in red, L. obscura in green, L. 533 

rosacea in blue and L. sonderii in purple). Regions of discriminating signals are highlighted by black rectangles. 534 

 535 

Fig. 3. Box plots of lobophorenols B and C (and chemical structure of lobophorenols A-C) among the four 536 

Lobophora species and blank (log-transformed data, y-axis), detected by LC-MS, expressed as mean normalized 537 

intensities ± SD (n = 3 for blank, n = 6 for LM, LO, LR and n = 5 for LS)(LM: L. monticola in green, LO: L. 538 

obscura in red, LR: L. rosacea in orange and LS: L. sonderii in blue, x-axis). The statistical analyses were 539 

performed using Kruskal-Wallis (KW) followed by post-hoc Conover’s test. Letters indicate significant 540 

differences between groups based on post-hoc pairwise comparisons (p < 0.05).  541 

Fig. 4. Multiple Factor Analysis (MFA) obtained with LC-MS and NMR data from the MeOH fractions of 542 

Lobophora species (LM: L. monticola in green, LO: L. obscura in red, LR: L. rosacea in orange, and LS: L. 543 

sonderii in blue). Confidence level used to construct the ellipses = 0.95, variables scaled to unit variance. 544 

Fig. 5. Pictures of Lobophora species: (a) L. rosacea, (b) L. sonderii, (c) L. obscura and (d) L. monticola. 545 

Arrows indicate algal thalli (algae were collected at Ricaudy for (a), (b), (c) and Sainte-Marie for (d); images by 546 

G. Boussarie). 547 

Table 1.Chemomarkers detected by GC-MS in the CH2Cl2 fraction of Lobophora species, annotated with NIST 548 

2011 database (COMP. = compound, RI = Van Den Dool and Kratz Retention Index, EXP. = experimental, LIT. 549 

= literature). 550 
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Table 1. Chemomarkers detected by GC-MS in the CH2Cl2 fraction of Lobophora species, annotated with NIST 2011 

database (COMP. = compound, RI = Van Den Dool and Kratz Retention Index, EXP. = experimental, LIT. = literature).

COMP. MOLECULAR NAME CHEMICAL 
FAMILY

CAS 
NUMBER

RAW 
FORMULA

% 
MATCH 

NIST 
2011

LIT. 
RI

EXP. 
RI

M5 2-pentenoic acid carboxylic acid 626-98-2 C5H8O2 94 873 921

M18 maleimide, 2-methyl-3-
vinyl

amide 21494-57-5 C7H7NO2 91 1261 1262

M38 methyl stearate ester 112-61-8 C19H38O2 98 2130 2129

M48 hexanoic acid, 2-ethyl-, 
hexadecyl ester

ester 59130-69-7 C24H48O2 64 - 2468
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Fig. S6. Lobophora species tree 
reconstructed with BEAST using the 
mitochondrial marker cox3 and the 
chloroplast markers psbA and rbcL 
(adapted from Vieira et al. 2016, 2017) 
(LO: L. obscura, LR: L. rosacea, LM: L. 
monticola and LS: L. sonderii) 
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Fig. S7. Example of chromatogram obtained by GC-MS on the CH2Cl2 fraction of Lobophora rosacea. 

	
	
	



	 7	

	
Fig. S8. Example of chromatogram obtained by LC-MS on the MeOH fraction of Lobophora rosacea with the elution peaks corresponding to the lobophorenols B and C. 
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Fig. S9. Molecular network on MS² spectra managed under Cytoscape 3.5.0, with parent mass label. Lobophorenol B (m/z 334.272) and lobophorenols C (m/z 336.287) are in 
red. 
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Table S1. Post-hoc permutational pairwise test based on crossed model validation for metabotype differentiation 
according to species by NMR, LC-MS or GC-MS (999 permutations, p-value adjustment method: fdr). 
Significant p-values (p < 0.05) are in bold. 

NMR LC-MS GC-MS 

 LM LO LR  LM LO LR  LM LO LR 

LO 0.018 - - LO 0.006 - - LO 0.006 - - 

LR 0.022 0.006 - LR 0.044 0.006 - LR 0.431 0.008 - 

LS 0.276 0.276 0.018 LS 0.006 0.018 0.006 LS 0.012 0.008 0.018 

 

Table S2. Selection of the most significant regions in the spectra varying among Lobophora species (from 
Kruskal-Wallis test, with p-value < 0.05). Characteristic signals (ppm) of lobophorenols A, B and C are also 
assigned to the corresponding chemical shift range. 

Max ppm area Range ppm area Characteristic signals (ppm) 
0.678 0.662 - 0.68 - 
0.892 0.823 - 0.997 Lobophorenol C: 0.97 
1.214 1.237 - 1.253 - 
1.446 1.407 -1.501 Lobophorenol C: 1.47 

Lobophorenol A, B & C: 1.46 
2.05 2.035 - 2.077 Lobophorenol B: 2.06, A & C: 2.07 
2.3 2.08 - 2.386 Lobophorenol A: 2.10/2.25, B: 2.14, C: 2.24 
2.412 2.318 - 2.433 Lobophorenol B & C: 2.36 
2.816 2.747 - 2.836 Lobophorenol A, B & C: 2.82 
2.956 2.85 - 3.08 Lobophorenol A: 2.86/2.87 
3.374 3.240 - 3.442 Lobophorenol C: 3.32 
3.512 3.365 - 3.595 Lobophorenol B: 3.48, C : 3.46 
3.714 3.536 - 3.721 Lobophorenol A: 3.70  
4.004 3.854 - 4.302 Lobophorenol B: 3.94 
4.37 4.103 - 4.398 Lobophorenol A: 4.38 
5.014 4.927 - 5.102 Lobophorenol A, B & C: 4.94 and 5.00 
5.291 5.244 - 5.397 Lobophorenol A: 5.34,  A, B & C: 5.37 and 5.38 
5.488 5.398 - 5.667 Lobophorenol A: 5.48/5.49, B & C: 5.45 and Lobophorenol B: 5.51, C: 5.52 
5.599 5.399 - 5.74 - 
5.708 5.589 - 5.860 Lobophorenol B & C: 5.82 
5.987 5.837 - 6.013 Lobophorenol B:  5.92 
6.18 6.009 - 6.377 Lobophorenol A: 6.02 
6.522 6.365 - 6.534 - 
6.961 6.682 - 7.12 - 
7.52 7.376 - 7.529 - 
7.715 7.684 - 7.779 - 
	

Table S3. Lobophora ions responsible for the difference according to species after LC-MS analysis. The 
mSigma (mS) value is a measure for the goodness of fit between experimental mass and isotopic pattern with 
theoretical ones: lower is the mS, better is the annotation. 

m/z rt Ion 
assignation Ion formula error (ppm) mS 

334.2741 606 [M + NH4
+] C21H36NO2 -2.5 9.4 

336.2898 619 [M + NH4
+] C21H38NO2 -1.5 21.5 


