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Abstract

We present a review of solid solution strengthening models for random concentrated solid solu-

tions of which high entropy alloys are an interesting subset. High entropy alloys (HEAs) usually

refer to a class of multicomponent alloys in equal or near equal concentrations. These complex

compositions break the conventional notion of solutes and solvents. Few attempts have been made

to extend the conventional solute strengthening models to HEAs. Among these, the model based

on an average effective medium , does not include any adjustable parameter, allows all model in-

puts to be computed by atomistic simulations, and has predicted the strength of fcc HEAs in good

agreement with experiments. The basic concepts of this theory is explained and its capabilities are

compared with few other existing models for solute strengthening of HEAs.

a CRL and MS made equal contributions to this work.
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INTRODUCTION

The term “high entropy alloy” (HEA), coined by Yeh et al. , refers to a relatively new

class of multicomponent alloys, usually five or more components, in equal or near equal

concentrations [1]. Instead of the ordered intermetallic phases expected from classical phys-

ical metallurgy, some HEA systems strikingly crystalize as single phase solid solutions with

simple crystal structures [2–6]. The initial reasoning for the formation of HEAs was that

the high configurational entropy would tend to stabilize solid solution formation; hence the

name “high entropy”. This concept was very attractive, in the sense that a single phase cu-

bic alloy with high concentrations showed promise to overcome the strength-ductility trade

off; the cubic structure provides multiple available slip systems, promoting ductility, while

solid solution strengthening in highly concentrated alloys enhances strength, presumably

beyond what is possible by dilute additions. Indeed, a remarkable combination of strength,

ductility and fracture toughness was observed in the fcc FeCoCrMnNi, stimulating several

subsequent studies on this alloy and its quaternary and ternary derivatives [7, 8].

The significance of configurational entropy on mechanical properties – and consequently

the number of components and the equimolar composition – have since been critically ques-

tioned [9, 10]. In fact, a new paradigm is being followed, where instead of a search for

compositions that favor single phase HEAs, formation of second phases are sought after to

take advantage of precipitation hardening [10, 11]. However, the idea of a concentrated solid

solution is still attractive, since in addition to the single phase HEAs, the different phases

of the newer alloys often comprise of concentrated solid solutions. Therefore, understanding

solid solution strengthening mechanisms in concentrated solutions is an important topic,

which applies to a wide range of systems beyond HEAs, such as other finite-concentration

solid solutions, and Ni- and Co-based superalloys.

Solid solution strengthening stems from the interaction of lattice dislocations with solutes.

As a dislocation moves in the crystal, the distortion it induces on the lattice interacts with the

distortions around substitutional solutes. Substitutional solutes in cubic materials distort

a lattice both geometrically – as a result of size mismatch with atoms of the host lattice

– and chemically, by locally introducing a different bonding environment. Consequently,

the dislocation/solute interaction energy typically consists of size misfit and more specific

chemical core contributions [12–14], where the former results from the interaction of the
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volumetric strain field around the solute with the elastic stress field of the dislocation and

the latter is caused by the different bonding environment within the nonlinear core and

stacking fault regions of the dislocations. The motion of a dislocation is hindered by such

interactions, requiring additional resolved shear stress for continued plastic deformation.

Theories of solute strengthening in alloys can be broadly divided into two categories of

strong-pinning and weak-pinning models. The strong-pinning models, such as the ones pro-

posed by Friedel [15] and Fleischer [16, 17], treat the solutes as individual point obstacles

that pin the dislocations. Dislocation then bows out in the regions between the solutes and

can break free from these obstacles upon application of additional stress. On the other hand,

the weak-pinning models, originally proposed by Mott [18] and Labusch [19, 20], consider

the collective effect of a field of randomly-distributed solids on the dislocations. Favorable

fluctuations in the solute distribution lower the energy of the dislocations, thereby pinning

them, and the dislocation bows out between these pinned regions. Under additional resolved

shear stress, the dislocations can escape from these obstacles, resulting in increased yield

strength. In both strengthening models, the dislocation is treated as an elastic line, and its

bow-out has an energetic cost due to the line tension. More recently, Leyson et al. [14, 21]

proposed a parameter-free Labusch-type strengthening model for dilute alloys. Contrary

to the original Labusch’s model, it does not postulate any a priori interaction range –

this typical length scale naturally emerges from the theory – and includes the specific dis-

location/solute interaction within the core, that are possibly computed by first principle

methods. This model has been successfully applied to predict the solute strengthening of

range of fcc [14, 21] and hcp [22, 23] slip and even twinning modes [24], and has shown great

agreement with experiments. Moreover, Leyson and Curtin [25] compared the applicability

of Friedel vs Labusch-type strengthening models, and concluded that, except for the highly

localized dislocation cores, Labusch-type models control the strengthening for concentra-

tions greater than 10−4 and temperatures greater than 78K, i.e ranges relevant to most

engineering alloys.

The above historical models are developed with the assumption of dilute alloys, where a

base element makes the host lattice, and small amounts of alloying elements are introduced

as solutes. This assumption is clearly not valid in the case of highly concentrated solid

solutions. The contrast is even more pronounced for equiatomic alloys, where the definition

of solute and solvent breaks down.
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Here we review the solid solution strengthening theories for general random alloys with

high elemental concentrations. The initial attempts by Toda-Caraballo et al. [26] were based

on application of the Labusch model, in its original form, and assuming only elastic misfits

contributions to strengthening. The only new theory for solid solution strengthening in

concentrated solid solutions, is proposed by Varvenne et al. [27]. This theory assumes an

effective average medium as the matrix and individual elemental types as solutes interacting

with dislocations into the average medium. In the limit of dilute concentrations, this model

reduces to the modified Labusch-type model of Leyson et al. [14, 21]. We describe this full

theory, some numerical validations, useful model simplifications, and some examples of its

successful application, in the following section. Other efforts in modeling solute strength-

ening in HEAs are listed and discussed afterwards. Finally, we conclude by discussing the

influence of several materials inputs of existing models as well as future work directions.

EFFECTIVE-MEDIUM-BASED THEORY OF SOLUTE STRENGTHENING

Varvenne et al. proposed a theory for predicting the yield strength of random fcc alloys

with arbitrary compositions [27]. The theory is based on the assumption that in a general

random alloy, each elemental component can be regarded as “solute” in an effective “solvent”

representing the average properties of the alloy. The solvent in then formally defined as an

effective matrix at the overall average composition (mean field alloy), and solutes correspond

to local composition-fluctuation with respect to the overall composition of the effective-

matrix reference state [28].

Presentation of the full model

First, the reference material is defined with the average lattice parameter a, elastic con-

stants {Cij} and stable and unstable stacking fault energies γSF and γUSF , all of which

correspond to the composition of the random alloy. The usual {111}(110) slip systems are

considered in this effective fcc matrix, where a (110) type dislocation dissociates onto two

Shockley partials, bounding a stacking fault on {111} type planes. This setup is shown

schematically in Figure 1 taken from Ref. [27].

For an N-component alloy, the interaction energy for a solute of type n at position (xi, yj)
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FIG. 1. Effective medium concept for dislocation/solute interactions. (a) shows a random 3-

component alloy, with component types A, B and C, containing a dissociated edge dislocation; (b)

shows the effective average matrix of the same alloy, with an embedded A “solute” at position

(xi, yj , zk) relative to the dislocation centered at the origin, with interaction energy Un(xi, yj , zk).

Adapted from Varvenne et al. [27].

from the center of a straight dislocation and at position zk along the dislocation line is named

Un(xi, yj, zk). Major contributions to this interaction energy are from the elastic interaction

of the dislocation’s stress field with the misfit strain tensor of the solute and from the

chemical misfit resulting from the change in the bonding environment of the solutes in the

partial dislocation core geometry and the stacking fault region between them. In a random

solute distribution, local fluctuations in the solute concentrations arise where the dislocation

is attracted to the locally favorable fluctuations and is repelled by the unfavorable ones. The

dislocation potential energy is lowered by finding the favorable solute fluctuations, requiring

higher levels of shear stress to free the dislocation from these obstacles.

An important concept in the theory developed by Varvenne et al. is the energy change of

a straight segment of dislocation ζ during the glide over a distance w. The relative change

5



in the position of the dislocation and fixed solutes results in a potential energy change given

by

∆Utot(ζ, w) =
∑
i,j,k,n

snijk[U
n(xi − w, yj, zk)− Un(xi, yj, zk)], (1)

where snijk is an occupancy parameter, which equals 1 if a n-type solute occupies position

(xi, yj, zk) and 0 otherwise. The typical favorable fluctuation in the interaction energy – i.e

those that pin the dislocation by lowering its energy – is given by the standard deviation of

the total potential energy change

σ∆Utot(ζ, w) =
[
〈∆U2

tot(ζ, w)〉 − 〈∆Utot(ζ, w)〉2
]1/2

, (2)

where the brackets are ensemble averages over the occupancy parameters snijk. This aver-

aging can be performed analytically along the dislocation line segment zk, neglecting any

correlation between the different chemical occupations of atomic sites, which yields

σ∆Utot(ζ, w) =

(
ζ√
3b

)1/2

∆Ẽp(w), (3)

where

∆Ẽp(w) =

[∑
i,j

cn((Ūn(xi − w, yj)− Ūn(xi, yj))
2 + σ2

∆Unij
)

]1/2

. (4)

In the above equation, Ūn(xi − w, yj) is the average value of Un(xi, yj, zk) over the sites

along the dislocation line zk at in plane position (xi, yj), and σ2
∆Unij

is the associated standard

deviation.

While a straight segment of dislocation L reduces its energy by bowing towards the favor-

able solute interactions, the increase in dislocation line – from straight to wavy configurations

– costs energy due to the line tension.

Figure 2 shows the schematic of the original straight dislocation of length L adopting a

wavy configuration consisting of straight segments of length 2ζ and of amplitude w as it

moves through the random field of solutes. The total energy change corresponding to this

event is given by, assuming w � ζ

∆Etot(ζ, w) = ∆ELT (ζ, w)− σ∆Utot(ζ, w)

(
L

2ζ

)
=

[
Γ
w2

2ζ
−
(

ζ√
3b

)1/2

∆Ẽp(w)

](
L

2ζ

)
,

(5)

where Γ is the dislocation line tension. The pinned dislocation geometry is obtained by

minimizing the total energy change with respect to both the segment length ζ and the
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FIG. 2. Schematic of a straight dislocation segment of length L, adopting a low-energy wavy con-

figuration as it moves through the random field of solutes. The configuration consists of segments

of length 2ζ with amplitude w. The total dislocation energy is optimized with respect to both ζ

and w to obtain the critical lengths ζc and wc. Adapted from Varvenne et al. [27].

amplitude w. The critical segment length ζc is

ζc(w) =

(
4
√

3
Γ2w4b

∆Ẽ2
p(w)

)1/3

. (6)

The subsequent optimization with respect to w needs to be done numerically to obtain the

critical amplitude wc. In fact, multiple minima – i.e. multiple pairs of (ζ(wc), wc) values –

can be found [22, 27, 29, 30], especially when there exist a large dissociation between the

partial dislocations, like in HEAs. This is further elaborated in the discussion section.

In the minimum energy configuration, segments of ζc sit in a local potential energy well.

Approximating this energy well with a sinusoidal function gives the total energy barrier as

∆Eb = 1.22
(
w2
cΓ∆Ẽ2

p(wc)

b

)
for the dislocation to escape the energy well, i.e to unpin. The

dislocation overcomes this barrier through a thermally activated process, assisted by an

applied resolved shear stress. The zero temperature flow stress required to overcome ∆Eb is

then

τy0 =
π

2

∆Eb
bζc(wc)wc

= 1.01

(
∆Ẽ4

p(wc)

Γb5w5
c

)1/3

. (7)

At finite temperature, the energy barrier can be overcome with lower stress levels τy(T, ε̇)

as

τy(T, ε̇) = τy0

[
1−

(
kT

∆Eb
ln
ε̇0
ε̇

)2/3
]
, (8)

where ε̇ is the plastic strain rate and ε̇0 is a reference strain rate value obtained from the
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dislocation density, Burgers vector, typical slip distance and attempt frequencies from the

Orowan relationship [14, 27].

At higher temperature/lower stress regimes [14, 29, 31] the flow stress is better represented

by

τy(T, ε̇) = τy0 exp

(
− 1

0.51

kT

∆Eb
ln
ε̇0
ε̇

)
. (9)

In the dilute alloy limit, the present theory is equivalent to the previous predictive model

of Leyson et al. [14, 21, 22, 30]. The inputs to the generalized parameter-free model are

the Burgers vector b, the dislocation line tension Γ, and the various {Un(xi, yj, zk)}, i.e. the

interaction energies of the various “solutes” with the dislocation. All these quantities are

evaluated with respect to the effective-medium reference state. To validate some aspects

of this model, Varvenne et al. [27] compared direct molecular statics simulations of the

flow stress of short dislocation segments in a series of model (FeNi)1−xCrx alloys to the

theory predictions, with all inputs computed from atomistics (using an EAM potential [32]).

Note that with these short segments, the dislocations remain straight under applied stress

in molecular simulations, and thus model predictions are made without the line tension

contribution. A good agreement was obtained for the different investigated alloys, thus

validating the simplified description of the potential energy landscape, and the internal

length scales controlling the materials strength.

Considering real alloy systems, in the dilute limit, and assuming solutes do not alter the

core geometry of the dislocation, the key interaction energies can be computed via direct

first principles calculations of the dislocation [13, 23, 33, 34]. However, in HEAs, modeling

the dislocation core with first principles calculations is very difficult, in particular due to

large simulation sizes necessary to capture chemistry changes along the dislocation line (see

discussion section).

Model simplification using elasticity

Alternatively, the dislocation/solute interaction energy can be approximated by a com-

bination of size misfit – interaction of the solute misfit volume with the pressure field of the

dislocation – and of chemical misfit – interaction of the solute with stacking faults as a sur-

rogate for the dislocation core – contributions to the interaction energy [30, 35]. Beyond the

dilute limit, calculations of the size and stacking fault misfit parameters are still challenging
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and require several simulations of sufficient size and accuracy to capture the fluctuations

from the average values caused by high concentrations of multiple elements [36]. In light

of these complications, Varvenne et al. [27] presented a reduced version of their theory of

strengthening to consider only the main elasticity, i.e the size misfit, contribution to the

interaction energy. This interaction energy is a result of the work done by the pressure field

of the dislocation p(xi, yj) on the misfit strain created by inserting an atom of a different

size in the host lattice, and is given by

Un
el(xi, yj, zk) = −p(xi, yj)∆Vn(xi, yj, zk), (10)

where ∆Vn(xi, yj, zk) is the change in total volume of the average medium as a solute of type

n is inserted at position (xi, yj, zk).

Representing the dislocation pressure field with p(xi, yj) = − µ(1+ν)
3π(1−ν)

f(xi, yj), where

f(xi, yj) is a dimensionless pressure field from a distribution of normalized Burgers vectors

on the glide plane and µ and ν are the elastic constants, and substituting Equation 10 into

Equation 4 results in

∆Ẽp(w) =
µ(1 + ν

3π(1− ν)

[∑
ij

∆f 2
ij(w)

]1/2

×

[∑
n

cn

(
∆V

2

n + σ2
∆Vn

)]1/2

. (11)

In the above equation ∆fij(w) = f(xi − w, yj)− f(xi, yj). The term
∑

n cn

(
∆V

2

n + σ2
∆Vn

)
emerges as the main misfit volume quantity, in which ∆V n is the average misfit volume of

solute n and σ∆Vn is the standard deviation. Following the procedure in Equations 5-7 yields

τy0 and ∆Eb as

τy0 = 0.051α−1/3µ

(
1 + ν

1− ν

)4/3

f1(wc)×

∑n cn

(
∆V

2

n + σ2
∆Vn

)
b6

2/3

, (12)

∆Eb = 0.274α1/3µb3

(
1 + ν

1− ν

)
f2(wc)×

∑n cn

(
∆V

2

n + σ2
∆Vn

)
b6

1/3

. (13)

Here, f1(wc) =

[(
b
wc

)5/2∑
i,j ∆f 2

ij(wc)

]2/3

and f2(wc) =
[(

wc
b

)2∑
i,j ∆f 2

ij(wc)
]1/3

are the

minimized dislocation core coefficients, and the line tension is approximated by the elasticity

relation Γ = αµb2, where α = 0.123 is a dimensionless number rescaled from direct atomistic

simulations [27].
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FIG. 3. Comparison between experimental and theoretical prediction of strength. Yield stress

vs. temperature are shown for (a) CrFeCoNi and (b) MnCrFeCoNi equiatomic alloys [37, 38],

as measured (black symbols) after subtraction of the Hall-Petch contribution to strength and as

predicted by the theory (blue symbols) Adapted from Varvenne et al. [27]. Theoretical predictions

of flow stress are converted into uniaxial yield strengths σy(T, ε̇) by applying the Taylor factor of

3.06.

The elasticity-based reduced version of the theory is fully analytic and easily transfer-

able to any new alloy system: the only inputs to this model are elastic constants, lattice

parameters, dislocation core structure, and accurate solute misfit volumes, at the targeted

composition. These parameters are either fairly computable by atomistic simulations or can

be extracted/evaluated from experiments.

Comparison with experiments

Varvenne et al. [27] first applied the reduced theory to predict the strength of NiCoCr-

FeMn high entropy alloy and some of its derivatives, using only experimental information.

In particular, the average misfit volumes ∆V n are obtained from experimentally measured

atomic volumes in various alloys from this family and application of the Vegard’s law.

Figure 3 shows the comparison between theory and experiments in predicting the strength

of a set of equiatomic alloys from the NiCoCrFeMn. The agreement is generally great,

particularly at moderate temperatures, given the approximations in the reduced version of

the model. At T=77 K, the theory underestimates strength. The authors attribute this

to a possible combination of (i) line tension effect – not precisely known – which influence
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is examined in the discussion section, (ii) need for more accurate calculations of misfit

volumes, dislocation core structures and interaction energies with solutes (for example via

direct first principles calculations), and (iii) potential Å-scale fluctuations, which are not

captured in the model, and could become dominant at very low temperatures. The overall

agreement highlights the robustness of the reduced model, in the sense that it takes only a

few simple quantities as inputs, and without any adjustable parameters, predicts strength in

very good agreement with experiments. Later, Varvenne and Curtin applied this model to

CoCrFeNiAlx and CoCrFeNiMnAlx family of alloys [39], and to the PdPtRhIrCuNi Noble

Metal HEA [40], with similarly good agreement with experimental predictions.

More recently, Laplanche et al. measured the activation volumes of plastic flow in

CrMnFeCoNi alloy to identify the operative deformation mechanisms [41]. Activation

volume corresponds to the volume of the material that is involved in a thermally activated

process under the resolved shear stress τ at a certain temperature and is given by

V = − ∂∆G(τ)

∂τ

∣∣∣∣
T

,

where ∆G(τ) is the stress-dependent Gibbs free energy corresponding to the gliding dis-

location overcoming various obstacles (eg. solute atoms, precipitates, forest dislocations).

The activation volumes range from the order of b3 (where b is the magnitude of the Burgers

vector) for individual point defects to ≈ 1000b3 for collective solute fluctuations in dilute al-

loys. Therefore, measuring activation volumes reveals the intrinsic length scales involved in

the thermally activated processes of plasticity, thereby providing insight into the operative

deformation mechanisms. Measurements of activation volumes in the CrMnFeCoNi showed

that the plastic flow in this alloy is governed by a combination of (i) rate-independent Hall-

Petch strengthening (ii) thermally activated solute strengthening and (iii) forest hardening;

a behavior typical of other usual FCC alloys. In particular, the thermally-activated solid

solution strengthening component was compared to the theoretical predictions of activation

volume by the model of Varvenne et al. The agreement between theoretical and experimen-

tal activation volumes is comparable to the one achieved for dilute alloys [14], showing that

the effective-medium theory captures the essential concept of solute strengthening in these

alloys and consequently, the compositional complexity of this alloy does not induce any new

strengthening mechanism.
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OTHER MODELING APPROACHES

One of the first attempts to model solute strengthening in HEAs was made by Toda-

Caraballo and Rivera [26]. The authors start from the original Labusch’s approach and con-

sider its extension to dilute multi-component solid solutions [19, 42]. The zero-temperature

solute strengthening is expressed there as

∆τss =

[∑
n

B3/2
n cn

]2/3

, (14)

where cn is the concentration of solute n, Bn is the hardening parameter defined as

Bn = 3µε4/3n Z0; εn =
(
η′

2
n + α2

0δ
2
n

)1/2

, (15)

where µ is the shear modulus of the alloy, εn a mismatch parameter and Z0 a fitting constant,

i.e. an adjustable parameter. εn incorporates the modulus and size misfits η′n and δn as

η′n =
ηn

1 + 0.5|ηn|
; ηn =

1

µ

dµ

dcn
; δn =

1

a

da

dcn
, (16)

where a is the lattice parameter of the alloy and α0 is an empirical parameter that dif-

ferentiates between edge and screw dislocation interactions with solutes. The adaptation

to HEAs proposed by Toda-Caraballo and Rivera consists in redefining the modulus and

size misfits for high concentration materials, actually making an implicit effective medium

assumption as all quantities are defined with respect to the average HEA composition. The

temperature-dependence of the strength is then introduced with a functional form analogous

to Eq. 9, with an energy barrier taken as a constant dependent on the material. Assuming

then Vegard’s law for the lattice constant and linear variation of shear modulus with com-

position, misfit parameters and consequently the hardening parameters for the HEAs were

calculated and compared with experimental values, and good qualitative agreements were

achieved. In particular, the dominant role of the elastic size misfit in FCC materials was

identified.

To make connection with the effective medium model presented in the previous section,

we proceed from the reduced elasticity version of Eq 12, neglecting the misfit volume stan-

dard deviation terms. Then, Eq. 12 for the zero-temperature can be matched to Eq. 14 by

imposing Bn = 0.051α−1/3f1(wc)
(

1+ν
1−ν

)
µ
(

∆Vn
b3

)4/3
, to be compared with Bn = 3α

4/3
0 Z0 µδ

4/3
n
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when the modulus misfit is neglected. Both approaches are thus similar, showing the impor-

tance of the HEA shear modulus and of the size misfit quantity. However the derivation by

Varvenne et al. includes additional material inputs (dislocation core structure, line tension,

etc.) - that are embedded into an adjustable parameter by Toda-Caraballo and Rivera - and

the full version of the theory includes the solute/dislocation interactions, computable from

atomistic simulations, and thus going beyond the elasticity assumptions. In particular, ig-

noring the details of the core structure and of the energy barrier variation with composition

and material quantities, Toda-Caraballo and Rivera’s model will not be able to predict the

high-temperature strengthening regime that as been discussed elsewhere [27, 29, 30] (see

also the discussion section).

More recently, Walbrühl et al. [43] proposed an Integrated Computational Materials En-

gineering (ICME) approach to model solid solution strengthening in multicomponent alloys.

Their perspective is much more pragmatic, and stems from the difficulty to compute the

material inputs for a high number of systems in physically-based models. Instead, they fol-

low an empirical approach, still using the Labusch’s c
2/3
n dependence of the strength – where

cn is again the concentration of element n – but considering a nonlinear composition depen-

dence of the strengthening parameters that are globally fitted in order to directly reproduce

the hardness of a database of 895 alloys from the literature. The adopted functional forms

are not physically derived, but are meant to account for both substitutional and interstitial

solute strengthening and includes the presence of various phases. The solute strengthen-

ing part of the yield strength is converted into hardness by applying a constant factor for

all materials. After an adjustment procedure, they provide a database of parameters for

predicting strengthening in a wide range of multicomponent alloys.

While the authors recognize the lack of physical basis / derivation of their model, they

assign the adjustable parameters to various physical mechanisms, i.e. Peierls-like resistance

and solute strengthening (the latter embeds both solute and precipitate strengthening in

their model). Incidentally they attempt to draw physical conclusions, e.g. in the CoCrFeN-

iMn HEA, where only half of the strength would be due to solid strengthening, whereas

Peierls stress is almost null in FCC materials, as already shown numerically for random

multicomponent alloys [28]. This should be proscribed in a fully empirical approach. Next,

the agreement between the fitted model and the experimental data for the hardness is within

13%, a quite large deviation for a data interpolation. Part of this is due to uncertainties in
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experimental measurements, and to the uncontrolled Hall-Petch effect, as the grain size is

often not reported in the experimental hardness database, even if its impact on the strength

can be important [37, 38]. Finally, the transferability of this model to other alloy systems is

not ensured, which is a general issue of fitting approaches that require recalibration of the

model parameters for investigation of new materials. And the transferability could possibly

be lowered by the identified issues on the adjustment hardness database. Consequently, if

one is keen on getting pragmatic, adopting machine learning / deep learning approaches,

completely leaving physical arguments, and having much flexible functional forms and num-

ber of parameters, would be even more appropriate for material design.

DISCUSSION

In this section, the effective-medium theory of strengthening for random alloys, providing

a firm theoretical foundation for the observed strengthening trends without any adjustable

parameter, is used to discuss the influence of several material inputs, and how they could

be computed for specific materials. All along the discussion, we highlight remaining issues

and challenges for future work in the area.

Importance of the line tension

While a useful concept to describe the elastic energy cost of a dislocation bow-out [15,

19, 21, 27, 44, 45], the line tension is not an easy quantity to estimate for a given material.

It depends on the dislocation length, dislocation character, dislocation core, and on the

anisotropy of the matrix material [46–48]. The most common assumption in both historical

and more recent models is to assume a unique and fixed value per studied material for

the line tension, and to assume isotropic elasticity. In Ref. [27], a rescaling Γ = αµb2 was

proposed, with α = 0.123 estimated for edge dislocations by comparison with direct line

tension measurements in atomistic simulations, performed on a FeNiCr equiatomic alloy,

using an EAM potential [32]. This approach presents the advantage of an easy estimate of

Γ for any new material of interest.

The importance of such simplifications can be examined through a sensitivity analysis.

A representative example is shown in Fig. 3a (dashed lines), where the strength is predicted
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with Γ values either twice or half the rescaled value using α = 0.123. Strengths at interme-

diate temperatures are only weakly dependent on Γ, while below T = 77K, the effect of Γ

becomes more visible. This can be rationalized by computing the first derivative of strength

with respect to the line tension as ∂τy(T )/∂Γ = −τy(T )/3Γ, using Eq.9, and noting that

τy0 ∝ Γ−1/3 and ∆Eb ∝ Γ1/3. Thus, at intermediate temperatures, when doubling Γ, the

effect on τy0 will be partially compensated by the effect on ∆Eb, and the strength will not be

modified. On the other hand, for T → 0, ∂τy(T )/∂Γ ' −τy0/3Γ ∝ Γ−4/3 and then doubling

Γ will have much impact on the strength. Consequently, refined line tension measurements

would be worth only for the prediction of very low-temperature strengths. Note that similar

sensitivity to Γ has been observed [41] for activation volumes due to solute strengthening.

Nevertheless, a detailed methodological work, going beyond this simple analysis, and with

a proper investigation of the effect of the dislocation length [30] and elastic anisotropy on

the line tension, and thus the predicted alloy solute strengthening quantities, remains to be

done.

Role of the dislocation core structure

Accurate knowledge or modeling of the dislocation core structure is usually important for

plasticity [49], and in particular has been underlined in the context of solute strengthening

in dilute alloys, by various authors [13, 14, 21, 25, 45, 50, 51]. This motivated first-principles

computations of the dislocation core structures in the pure elemental materials of interest,

or of the less cumbersome generalized stacking fault energy (GSFE) maps, that can be used

as inputs to Peierls-Nabarro models so as to obtain the dislocation core structure.

In HEAs or any concentrated solid solution alloy, the core structure also matters for the

strength; this appears in the reduced elasticity model of Eq. 10 for the solute / dislocation

interaction, and Eqs. 12 and 13 for the strength. The core structure determines the dislo-

cation pressure field, and then the characteristic lengths (ζ(wc), wc) and the minimized core

coefficients f1(wc) and f2(wc) of τy0 and ∆Eb, respectively. Its influence on the strength

is then analyzed through a parametric study, with the Burgers vector distribution of the

FCC edge dislocation modeled by a double gaussian function db
dx
∼ e−

1
2(x−d/2σ )

2

+ e−
1
2(x+d/2σ )

2

,

with d the splitting distance between the partial Shockley dislocations, and σ the partial

spreading, and using isotropic elasticity to compute the dislocation pressure field. The com-
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puted minimized core coefficients versus d, and for σ = 1.5b, are displayed in Fig. 4a and

b. For sufficiently large d values (typically d > 10b), there exist two minimum energy con-

figurations leading to two different minimized core coefficients for both τy0 and ∆Eb. The

first minimized core coefficients f1(wc1) and f2(wc1) are associated with the high stress /

low-temperature regime, and are insensitive to d, that is related to the stable stacking fault

energy (SFE) as d = µb(2 + ν)/(24π(1− ν)γSF), following an isotropic elasticity model. The

second minimum energy configuration corresponds to a larger wc value, and is active at a

lower stress / higher temperature regime. It is associated with a high energy barrier – typ-

ically 3-5 eV – which thus provides a high temperature plateau stress whose value is much

more sensitive to d and thus to γSF. The effect of the partial spreading is finally investigated

by comparing the core coefficient values for the first minimum, obtained with σ = 1, 1.5,

and 2b (Fig.4). The f1(wc1) and f2(wc1) values for large d are entirely fixed by σ, a value

roughly scaling with the inverse of the unstable stacking fault energy (USFE), σ ∼ γUSF

[52]; accurate estimate of σ would be required. For smaller separation distances, d and σ

both induce variations in f1(wc) and f1(wc), meaning that in these cases the knowledge of

both SFE and USFE is important for the strength.

Discussing now specifically the case of HEAs, both experiments and ab initio calculations

estimated low γSF / large d values [53–55] for the Co-Cr-Fe-Ni-Mn class of HEAs, suggesting

that the exact knowledge of d would not be necessary for HEA strength at low to intermediate

temperature. Concerning σ, a value of 1.5b was proposed [27] as a typical value resulting

from atomistic simulations of model EAM HEAs and various elemental alloys, and provided

good agreement with experimental strengths [27, 39, 40]. However, any systematic and

intensive investigation of GSFE curves versus HEA composition coupled to Peierls-Nabarro

modeling of the core, aiming at (i) establishing if large d is a generic behavior in HEAs and

(ii) understanding the effect of partial core spreading on the strength, would be beneficial

to the community.

The role of the dislocation core structure has been discussed here within with the as-

sumption of isotropic elasticity for the dislocation pressure field, whereas many alloys are

elastically anisotropic. A more detailed analysis, accounting for the elastic anisotropy of the

HEAs, would be an interesting direction for future work.
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FIG. 4. Influence of the dislocation core structure on the minimized core coefficients (a) f1(wc) and

(b) f2(wc), appearing in Eqs. 12 and 13 for τy0 and ∆Eb, respectively. See main text for details.

Difficulties for DFT computation of model inputs

Introduction of HEAs, where the notion of solute and solvents is to be revisited, stimu-

lated the need to rethink the solute strengthening models. The available physically-based

models take as inputs, in the more general version, precise dislocation core geometry, so-

lute/dislocation interaction energies and the dislocation line tension, preferably directly com-

puted with first principles calculations. Such direct calculations are currently prohibitive in

case of HEAs; the elasticity reduction of the model, with simplified inputs (Burgers vector,

elastic constants, stable and unstable stacking faults, and misfit volumes), is thus valuable

and has been shown to capture the main contributions to strengthening, as validated by

experiments. The state-of-the art techniques to account for chemical disorder, i.e. the su-
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percell approach coupled to the concept of special quasi-random structures (SQS) [56, 57],

or the approach based on the coherent potential approximation (CPA) [58–61], allow to

compute these materials quantities, with some care. Using the first approach, large simu-

lations sizes and / or several simulations are necessary to capture the reliable statistics of

the “average” response of the alloy and the local fluctuations, causing deviations from the

average behavior. This has been demonstrated in the simpler case of stacking fault calcula-

tions in Refs [55, 62]. Alternatively, the second approach reproduces a perfectly disordered

state very efficiently, but is unable to include the local lattice distortions, which importance

depends on the computed quantity. As a consequence, both approaches remain competitive.

Currently, first principles values of b, Cij, γSF and γUSF have been reported for several HEAs,

as nicely summarized in Ref. [36]. Misfit volume values are less common; a few computations

of average bond lengths, bond length fluctations and elastic size misfit can be found [63, 64].

Note finally that any progress in more detailed calculations of solute/dislocation interac-

tion energy and dislocation core structure should make the strengthening predictions even

more robust.

Short range ordering

An important assumption in all previously discussed strengthening models is a random

distribution of atoms in the alloy. This is certainly a good approximation for dilute alloys

as well as several HEA systems that are shown to be random experimentally [37, 39, 41, 65],

likely due to the so-called “sluggish diffusion” effect in HEAs. However, short range ordering

(SRO), i.e. correlation at small distances between chemical occupations of the atomic posi-

tions in the alloy, is thermodynamically expected when approaching transition temperatures.

Such SRO arises from interactions between alloy elements, and has been experimentally ob-

served or theoretically predicted for some multicomponent alloys [66–70]. In dilute alloys,

the effect of SRO on strengthening has been historically envisioned through the formation of

pairs, triplets or clusters, due to solute/solute interactions. Those clusters are then consid-

ered as new, independant and randomly distributed species interacting with the dislocation,

and applying conservation laws their contribution to strengthening can be included in the

framework of the standard strengthening models. Either additional strengthening or soften-

ing as compared to equivalent solid solutions having only isolated solutes is then observed
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[42, 71]. SRO also modifies the statistics of dislocation/solute and solute/solute interactions

(cf Eq. 4); this would be possible to include in the Labusch-type models but would likely

lead to a loss of analyticity in the equations. In HEA systems, the effect of SRO could be in-

cluded in the generalized theory presented here, with a more comprehensive energetic model

and appropriate treatment of statistics, and re-defining the notion of clusters, similarly to

what has been done for solutes in random concentrated alloys. The details of addition of

SRO effect and an assessment of its relevance to total strengthening, particularly at finite

temperatures, remains a challenging task.

Conclusion

The Labusch-type models conbined with an effective-medium approach work well in HEA

systems with low Peierls barrier, such as FCC alloys. In materials such as BCC alloys

the generally accepted deformation mechanism is kink-pair nucleation for screw dislocation

motion. Depending on the effect of solutes on this process, solutes can soften as well as

strengthen the dislocation motion [72, 73]. Therefore, solution strengthening/softening of

BCC high entropy alloys await for (i) identification of the relevant operating mechanisms and

(ii) for the development of a related mechanistic theory, dealing with arbitrary compositions.
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