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ABSTRACT
Using a pre-order principle in [Qiu JH. A pre-order principle and set-valued Ekeland variational principle. J 
Math Anal Appl. 2014;419:904–937], we establish a general equilibrium version of set-valued Ekeland 
variational principle (denoted by EVP), where the objective bimap is defined on the product of left-
complete quasi-metric spaces and taking values in a quasi-order linear space, and the perturbation consists 
of the quasi-metric and a positive vector k0. Here, the ordering is only to be k0-closed, which is
strictly weaker than to be topologically closed. From the general equilibrium version, we deduce a number 
of particular equilibrium versions of EVP with set-valued bimaps or with vector-valued bimap. As 
applications of the equilibrium versions of EVP, we present several interesting results on equilibrium 
problems, vector optimization and fixed point theory in the setting of quasi-metric spaces. These results 
extend and improve the related known results. Using the obtained EVPs, we further study the existence 
and the robustness of traps in Behavioural Sciences.

KEYWORDS
Pre-order principle; equilibrium version of Ekeland variational principle; quasi-metric space; Caristi’s fixed point theorem; robust 
trap problem

1. Introduction

As well-known, Ekeland variational principle (briefly, denoted by EVP) is a powerful tool in many
subjects, such as non-linear analysis, applied mathematical analysis and optimization problems (see
[1–4]). Motivated by its wide applications, many authors have been interested in extending EVP to
the case with vector-valued or set-valued maps, see for example, [3–24] and the references therein.
Oettli and Théra [25] started the study of the equilibrium versions of EVP. By an equilibriumproblem
we understand the problem of finding

x̄ ∈ X such that f (x̄, y) ≥ 0 for all y ∈ X,

where X is a given set and f : X × X → R is a given function. This general problem was named
‘equilibrium problem’ by Blum and Oettli [26]. The equilibrium theory is a unified method for
solving several problems, for example, optimizationproblem, saddle point problem,Nash equilibrium
problem, variational inequality problem, complementarity problem, fixed point problem, minimax
problem, etc. Recently, equilibrium versions of EVP have attracted a lot of attention and there
have been many interesting results on this topic, see for example, [27–37]. In [30], Bianchi Kassay
and Pini established an equilibrium version of EVP for quasi-lower semi-continuous vector-valued
functions and obtained the existence result of solutions for vector equilibrium problems in compact
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and noncompact domains, respectively. Zeng and Li [37] further considered a set-valued equilibrium
version of EVP andobtained existence results on solutions for set-valued vector equilibriumproblems
without any convexity assumptions. In order to deal with the case of set-valued maps, Gong [32]
developed the scalarization method with positive linear functionals and provided a new equilibrium
version of set-valued EVP which extends [30, Theorem 1] from vector-valued maps to set-valued
maps. Moreover, he derived an existence theorem for solutions of set-valued vector equilibrium
problems under a weaker condition, which improves [37, Theorem 4.1]. UsingGerstewitz’s functions
instead of positive linear functionals, Qiu [36] further developed Gong’s method and established a
new equilibrium version of EVP in the setting of metric spaces. Applying the new version, he derived
some existence theorems on solutions of set-valued equilibrium problems, which improve the related
results in [32,37]. We also remark that Alleche and Rădulescu [38], László and Viorel [39], and
Kristály and Varga [40] investigated the set-valued equilibrium problems and obtained a number of
interesting results on the existence of solutions and fixed point theory.

On the other hand, recently there have been several interesting results concerning completeness of
quasi-metric spaces and EVPs in the setting of quasi-metric spaces (see for example, [41–48]). Here,
a bifunction q : X × X → R+ := [0,+∞) on a nonempty set X is said to be a quasi-metric on X iff
for all x, y, z ∈ X it satisfies

(q1) q(x, y) ≥ 0 (nonnegativity);
(q2) q(x, y) = 0 ⇐⇒ x = y (coincidence axiom);
(q3) q(x, z) ≤ q(x, y)+ q(y, z) (triangle axiom).

If a quasi-metric q enjoys the axiom of symmetry,

(q4) q(x, y) = q(y, x),

then it is called a metric.
We adopt the notion from [47]. In [41–43], the quasi-metric space is called aT1 quasi-metric space.

Very recently, Bao, Khanh,Mordukhovich and Soubeyran [44–47] presented interesting applications
of quasi-metric versions of EVP to psychology, behavioural sciences, capability theory of wellbeing
and the modelization of organizational change. As pointed out in [47], in the variational rationality
approach in [49,50], costs-to-be-able-to-change verifies, in the simplest prototype case, the following
four assumptions:

(1) no change no cost C(x, x) = 0, ∀x ∈ X;
(2) it is not free to perform a move C(x, y) > 0, ∀x 
= y;
(3) a direct change cost less than any indirect change C(x, y) ≤ C(x, z)+ C(y, z), ∀x, y, z ∈ X;
(4) the cost to perform a change cannot be equal to the cost to undo that change C(x, y) 
=

C(y, x), ∀x, y ∈ X.

Mathematically, such a cost function is indeed a quasi-metric on X. Hence, quasi-metric versions of
EVP arouse our great interest.

In this paper, inspired by the above works, we consider equilibrium versions of set-valued and
vector-valued EVPs in the setting of quasi-metric spaces and their applications. Using a pre-order
principle in [20], we establish a general equilibrium version of set-valued EVP, where the objective
bimap is defined on the product of left-complete quasi-metric spaces and taking values in a quasi-
order linear space, and the perturbation consists of the quasi-metric and a positive vector. Here, the
ordering cone needn’t be topologically closed; it is only required to be k0-closed, where k0 is a positive
vector. The objective bimap only needs to be sequential lowermonotonicity with respect to the quasi-
metric, which is strictly weaker than the usual assumption on lower semi-continuity, and the lower
boundedness of the objective bimap is taking theweakest form. From the general equilibrium version,
we deduce a number of particular equilibrium versions of EVPwith set-valued bimaps or with vector-
valued bimaps in the setting of quasi-metric spaces, which extend and improve the related results
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in [30,32,37,41,45,47,48]. Since a quasi-metric does not enjoy the axiom of symmetry, it needs to
indicate left direction or right direction when one considers some notions on analysis and topology,
such as neighbourhoods, limits, completeness and closedness. Though our main results are stated in
left version, the corresponding results in right version still hold. As applications of the equilibrium
versions of EVP, we present several interesting results in vector optimization, equilibrium problems
and fixed point theory in the setting of quasi-metric spaces. These results extend and improve the
related results in [25,27,29–32,37,41,43,47].

In the final part of the paper, we consider the applications of our set-valued equilibrium EVPs
to behavioural sciences, especially to studying the robust trap problem. This paper is motivated
by applications. It has two sides. At the mathematical level, this paper offers, as seen before, a
general equilibrium version of the set valued Ekeland variational principle (Ekeland [1,2]). At the
behavioural level, this paper considers the modelization and the resolution of the important trap
problem in Behavioural Sciences. In his (VR) variational rationality approach of the dynamics
of human behaviours Soubeyran [49,50] showed, among a lot of applications, how the Ekeland
variational principle (Ekeland [1,2]) and its equivalent formulations give sufficient conditions for the
existence of traps. This paper adds the consideration of an important aspect, the robustness of traps,
that is, how they resist to exogenous variations of the environment and the internal state of the agent,
or group of agents. In this way, its enrichs the resolution of the trap problem in Behavioural Sciences
and differs from a lot of generalizations of variational principles inMathematics which come with no
computational or real life justifications.

The rest of the paper is organized as follows. Section 2 presents preliminary results on convex
cones in real linear spaces and on quasi-metric spaces, which are useful in deriving our main results.
In Section 3, we first recall a pre-order principle in [20]. Using the pre-order principle, we deduce
several equilibrium versions of set-valued and vector-valued EVPs in quasi-metric spaces. In Section
4, we apply equilibrium versions of EVPs in quasi-metric spaces to equilibrium problems, vector
optimization and fixed point theorems. In Section 5, using the obtained EVPs, we study the robust
trap problem in behavioural sciences.

2. Preliminary results on convex cones in real linear spaces and on quasi-metric
spaces

A useful approach for solving a vector problem is to reduce it to a scalar problem. Gerstewitz’s
functions introduced in [51] are often used as the basis of the scalarization. In the framework of
topological vector spaces (briefly, denotedby t.v.s.),Gerstewitz’s functions generated by closed convex
(solid) cones and their properties have been investigated thoroughly, for example, see [3,4,21,22,52]
and the references therein. In order to give more general version of set-valued (or vector-valued)
EVP, we need to consider Gerstewitz’s functions generated by general convex cones in real linear
spaces and re-examine their properties in the more general setting. The main ideas originate from
[3,4,52].

In the following, we always assume that Y is a real linear space. If A,B ⊂ Y and α ∈ R, the sets
A + B and α A are defined as follows:

A + B := {z ∈ Y : ∃x ∈ A, ∃y ∈ B such that z = x + y};
α A := {z ∈ Y : ∃x ∈ A such that z = α x}.

For a nonempty subset A ⊂ Y , the vector closure of A is defined as follows (refer to [53]):

vcl(A) = {y ∈ Y : ∃v ∈ Y , ∃λn ≥ 0, λn → 0 such that y + λnv ∈ A,∀n ∈ N}.
3



For any given v0 ∈ Y , we define the v0-vector closure (briefly, v0-closure) of A as follows:

vclv0(A) = {y ∈ Y : ∃λn ≥ 0, λn → 0 such that y + λnv0 ∈ A,∀n ∈ N}.

Obviously,
A ⊂ vclv0(A) ⊂ ∪v∈Y vclv(A) = vcl(A).

All the above inclusions are proper. Moreover, if Y is a topological vector space (briefly, denoted by
t.v.s.) and cl(A) denotes the closure of A, then vcl(A) ⊂ cl(A) and the inclusion is also proper. A
subset A of Y is said to be topologically closed if A = cl(A); to be vectorially closed if A = vcl(A); to
be v0-closed if A = vclv0(A). In general, a nonempty set A ⊂ Y need not be v0-closed,; a v0-closed
set need not be vectorially closed and a vectorially closed set need not be topologically closed (for
details, see [21]). A nonempty set K ⊂ Y is called a convex cone if K + K ⊂ K and α K ⊂ K for any
α ≥ 0. A convex cone K can specify a quasi-order ≤K (i.e. a binary relation satisfying reflexive and
transitive properties) on Y as follows:

y1, y2 ∈ Y , y1 ≤K y2 ⇐⇒ y1 − y2 ∈ −K .

In this case, K is called the ordering cone or positive cone. And every k ∈ K\ − K is called a positive
vector. We always assume that K is nontrivial, i.e. K 
= {0} and K 
= Y . We can easily prove the
following:

Proposition 2.1 (see [21]): Let k0 ∈ K\ − K. Then,

(i) vclk0(K) is a convex cone containing K ∪ {0}, but not containing −k0;
(ii) for any sequence {εn} with εn > 0 and εn → 0,

vclk0(K) = ∩ε>0(K − εk0) = ∩∞
n=1(K − εnk0);

For any y ∈ Y , if there exists t ∈ R such that y ∈ tk0 − K , then for any t ′ > t, y ∈ t ′k0 − K . Thus,
we can define a function ξk0 : Y → R ∪ {±∞} as follows: if there exists t ∈ R such that y ∈ tk0 −K ,
then define ξk0(y) = inf {t ∈ R : y ∈ tk0 − K}; or else, define ξk0(y) = +∞. Such a function is
called a Gerstewitz’s function generated by K and k0.

Proposition 2.2 (see [21, Lemma 2.6]): There exists z ∈ Y such that ξk0(z) = −∞ iff k0 ∈ −vcl(K).

Proposition 2.3 (see [3,4,21,22]): Let K ⊂ Y be a convex cone and k0 ∈ K\ − vcl(K). Then, the
Gerstewitz’s function ξk0 has the following properties:

(i) y1 ≤K y2 =⇒ ξk0(y1) ≤ ξk0(y2), ∀y1, y2 ∈ Y;
(ii) ξk0(αy) = α ξk0(y), ∀y ∈ Y , ∀α ≥ 0;
(iii) ξk0(y1 + y2) ≤ ξk0(y1)+ ξk0(y2), ∀y1, y2 ∈ Y;
Let y ∈ Y and r ∈ R. Then, we have:

(iv) ξk0(y) < r ⇐⇒ y ∈ rk0 − vintk0(K), where vintk0(K) = (0,+∞)k0 + K;
(v) ξk0(y) ≤ r ⇐⇒ y ∈ rk0 − vclk0(K);
(vi) ξk0(y) = r ⇐⇒ y ∈ rk0 − (vclk0(K)\vintk0(K));
Particularly, ξk0(0) = 0, ξk0(k0) = 1;

(vii) ξk0(y) ≥ r ⇐⇒ y 
∈ rk0 − vintk0(K);
(viii) ξk0(y) > r ⇐⇒ y 
∈ rk0 − vclk0(K);
(ix) ξk0(y + rk0) = ξk0(y)+ r.

Next, we turn to some notions related to quasi-metric spaces; please refer to [41–48].
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Definition 1: Let (X, q) be a quasi-metric space and {xn} be a sequence in X.
The sequence {xn} is said to be left-convergent to a point x̄ ∈ X iff q(xn, x̄) → 0 (n → ∞).
The sequence {xn} is said to be left-Cauchy iff for every ε > 0 there exists nε ∈ N such that

q(xn, xm) < ε, ∀m ≥ n ≥ nε .

The quasi-metric space (X, q) is said to be left-complete iff every left-Cauchy sequence is left-
convergent.

A nonempty subset S ⊂ X is said to be left-closed iff a sequence {xn} ⊂ S and q(xn, x̄) → 0 (n →
∞) imply that x̄ ∈ S.

The quasi-metric space (X, q) is said to be left-Hausdorff iff every left-convergent sequence has
the unique limit, that is, if there exists x̄, ȳ ∈ X such that q(xn, x̄) → 0 (n → ∞) and q(xn, ȳ) →
0 (n → ∞), then one has x̄ = ȳ.

Since a quasi-metric does not enjoy the axiom of symmetry, one can also define the correspond-
ing notions, such as right-convergence, right-Cauchy, right-completeness, right-closed and right-
Hausdorff. As we know, a left-convergent sequence is not necessarily left-Cauchy and a quasi-metric
space might not be left-Hausdorff, for example, see [44,47] and the references therein. Consider
X = [0, 1] and the quasi-metric q on X defined by

q(x, y) =
⎧⎨
⎩

x − y, if x ≥ y;
1 + x − y, if x < y but (x, y) 
= (0, 1);

1, if (x, y) = (0, 1).

It is easy to check that the quasi-metric space (X, q) is not left-Hausdorff since the sequence {xn}with
xn = 1/n satisfies q(xn, x̄) → 0 (n → ∞) and q(xn, ȳ) → 0 (n → ∞), where x̄ = 0 and ȳ = 1.

Now,we consider topologies generated by quasi-metrics. Let (X, q) be a quasi-metric space, x0 ∈ X
and ε > 0 be given.We denote the set {x ∈ X : q(x, x0) < ε} by Bl(x0, ε), which is called the left-open
ball of radius ε centred at x0. A setU is called a left-neighbourhood of x0 iff there exists ε > 0 such that
U ⊃ Bl(x0, ε). We usually denote it by Ul(x0). The left-topology τl(q) of a quasi-metric space (X, q)
can be defined starting from the family {Ul(x)} of neighbourhoods of an arbitrary point x ∈ X. A set
G ⊂ X is τl(q)-open iff for every x ∈ G there exists ε = εx > 0 such that Bl(x, ε) ⊂ G. Obviously,
the convergence of a sequence {xn} to x with respect to τl(q) is exactly the left-convergence, i.e.
q(xn, x) → 0 (n → ∞). Similarly, we can define right-open balls, right-neighbourhoods, the right-
topology, τr(q), τr(q)-open sets, right-convergence, right-completeness and right-closed sets. Since
(q2) holds, both τl(q) and τr(q) are T1-topology (see [41,42]). As a space with two topologies, τl(q)
and τr(q), a quasi-metric space can be viewed as a bitopological space in the sense of Kelly (see [54]).
Remark that the left-topology τl(q) is exactly the topology τ(q̄) , where q̄(x, y) = q(y, x), ∀x, y ∈ X,
and the right-topology τr(q) is exactly the topology τ(q) in [41,42].

As we have seen above, a quasi-metric space might not be left-Hausdorff. Then, a question arises:
under which conditions does a quasi-metric space enjoy the uniqueness of left-limits? In fact, the
uniqueness of left-limits is equivalent to that the left-topology generated by the quasi-metric is
Hausdorff. In the following, we give a condition which can ensure that the left-limit is unique. The
condition is as follows: there exists a function ϕ : (0,+∞) → (0,+∞) satisfying ϕ(t) → 0 when
t → 0 such that for any x, y ∈ X, q(x, y) ≤ ϕ(q(y, x)). Let a sequence (xn) ⊂ X such that

q(xn, x̄) → 0 (n → ∞) and q(xn, ȳ) → 0 (n → ∞).

Then,

q(x̄, ȳ) ≤ q(x̄, xn)+ q(xn, ȳ)
≤ ϕ(q(xn, x̄))+ q(xn, ȳ) → 0 (n → ∞).
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Thus, q(x̄, ȳ) = 0 and x̄ = ȳ. This means that the left limit is unique. Particularly, the function ϕ may
be taken as ϕ(t) = a t, where a > 0 is a constant.

At the behavioural level (see Section 5), the uniqueness of the left-limit works when costs of being
able to change C(x, y) are not too as symmetric, that is when C(x, y) ≤ a C(y, x), a > 0, for all
x, y ∈ X. This is a very reasonable assumption at the behavioural level (a can be very large).

Then, left convergence C(xn, x̄) → 0, n → +∞ and C(xn, ȳ) → 0, n → +∞ imply 0 ≤
C(x̄, ȳ) ≤ C(x̄, xn)+C(xn, ȳ) ≤ a C(xn, x̄)+C(xn, ȳ). Because, by hypothesis, the right hand side of
this last inequality goes to zero, the result follows.

As we know, in the original version of Ekeland’s principle, the objective function f is required
to be lower semi-continuous. Later, the assumption of lower semi-continuity has been weakened
as the sequential lower monotonicity. At the end of this section, we consider the semi-continuity
and the sequential lower monotonicity of set-valued maps defined on quasi-metric spaces. For the
definiteness, we only relate the notions in ‘left’ direction and the corresponding notions in ‘right’
direction can be similarly defined. In the following, we always assume that (X, q) is a quasi-metric
space and Y is a t.v.s. with the quasi-order ≤K induced by a convex cone K .

Definition 2 (refer to [12,14,32,37]): A set-valued map f : X → 2Y\{∅} is said to be left-K-upper
semi-continuous at x0 ∈ X, iff for any neighbourhood V of 0 in Y , there exists a left-neighbourhood
Ul(x0) of x0 such that

f (x) ⊂ f (x0)+ V − K , ∀x ∈ Ul(x0).

And f is said to be left-K-upper semi-continuous onX iff it is left -K-upper semi-continuous at every
x ∈ X.

A set-valued map f : X → 2Y\{∅} is said to be left-K-lower semi-continuous at x0 ∈ X, iff for
any y0 ∈ f (x0) and for any neighbourhood V of 0 in Y , there exists a left-neighbourhood Ul(x0) of
x0 such that

f (x) ∩ (y0 + V + K) 
= ∅, ∀x ∈ Ul(x0).

And f is said to be left-K-lower semi-continuous on X iff it is left-K-lower semi-continuous at
every x ∈ X.

Remark 1: If f : X → Y is a vector-valuedmap, then byDefinition 2, we have the following results:
f is left-K-upper semi-continuous at x0 ∈ X , iff for any neighbourhood V of 0 in Y , there exists

a left-neighbourhood Ul(x0) of x0 such that

f (x) ∈ f (x0)+ V − K , ∀x ∈ Ul(x0). (2.1)

f is left-K-lower semi-continuous at x0 ∈ X, iff for any neighbourhood V of 0 in Y , there exists a
left-neighbourhood Ul(x0) of x0 such that

f (x) ∈ f (x0)+ V + K , ∀x ∈ Ul(x0). (2.2)

Since V may be taken a circled set (see [55]), i.e. V consists of all α x, x ∈ V , |α| ≤ 1, then by
(2.1) and (2.2), we know that f is left-K-upper semi-continuous at x0 ∈ X iff −f is left-K-lower
semi-continuous at x0 ∈ X.
Definition 3: A set-valued map f : X → 2Y\{∅} is said to be quasi left-K-lower semi-continuous
at x0 ∈ X, iff for any b ∈ Y with f (x0) 
⊂ b − K , there exists a left-neighbourhood Ul(x0) of x0 such
that

f (x) 
⊂ b − K , ∀x ∈ Ul(x0).

And f is said to bequasi left-K-lower semi-continuous onX iff f is quasi left-K-lower semi-continuous
at every x ∈ X.

It is easy to prove the following two propositions. Their proofs are omitted
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Proposition 2.4: A set-valued map f : X → 2Y\{∅} is quasi left-K-lower semi-continuous on X iff
for each b ∈ Y, the set {x ∈ X : f (x) ⊂ b − K} is left-closed.
Proposition 2.5: Moreover, assume that K is closed. Then, f : X → 2Y\{∅} being left-K-lower
semi-continuous on X implies that f is quasi left-K-lower semi-continuous on X.

As we know, when the domain X is endowed with the metric d, then a vector-valued map f :
X → (Y ,≤K ) is said to be K-sequentially lower monotone (briefly, denoted by K-slm or slm) iff
f (xn+1) ≤K f (xn), ∀n, and xn → x̄ imply that f (x̄) ≤K f (xn), ∀n (see [13]). In [10], slm is called (H4);
in [6], slm is called monotonical semi-continuity; and in [34], slm is called lower semi-continuity
from above (briefly, lsca). In general, for vector-valued maps, we have: lower semi-continuity ⇒
quasi lower semi-continuity ⇒ slm. And none of the above converses is true. For details, see [8,16].
Now, for maps defined on quasi-metric spaces, we give the following definition.
Definition 4: Let (X, q) be a quasi-metric space and Y be a real linear space with the quasi-order
≤K induced by a convex cone K ⊂ Y . A vector-valued map f : X → Y is said to be left-K-
sequentially lower monotone (briefly, denoted by left-K-slm or left-slm) iff f (xn+1) ≤K f (xn), ∀n,
and q(xn, x̄) → 0 imply that f (x̄) ≤K f (xn), ∀n.

For extended real-valued functions, Bao, Khanh and Soubeyran (see [47]) have already given the
definition of left-K-slm. They call a function f : (X, q) → R ∪ {+∞} to be decreasing left-lower-
semicontinuous iff f (xn+1) ≤ f (xn), ∀n, and q(xn, x̄) → 0 imply that f (x̄) ≤ f (xn), ∀n.Furthermore,
Qiu [35] extended slm to bimaps. Now, for vector-valued bimaps and set-valued bimaps defined on
quasi-metric spaces, we can also give the definition of left-K-slm as follows:
Definition 5: Let (X, q) and Y be the same as in Definition 4. A vector-valued bimap F : X ×X →
(Y ,≤K ) is said to be left-K-sequentially lower monotone (briefly, denoted by left-K-slm or left-
slm) iff F(xn, xn+1) ≤K 0, ∀n, and q(xn, x̄) → 0 imply that F(xn, x̄) ≤K 0. A set-valued bimap
F : X × X → 2Y\{∅} is said to be left-K-sequentially lower monotone (briefly, denoted by left-K-
slm or left-slm) iff F(xn, xn+1) ⊂ −K , ∀n, and q(xn, x̄) → 0 imply that F(xn, x̄) ⊂ −K , ∀n.
Proposition 2.6: Let a set-valued bimap F : X × X → 2Y\{∅} satisfy subadditivity, i.e. F(x, z) ⊂
F(x, y) + F(y, z) − K , ∀x, y, z ∈ X. If for each x ∈ X, the map y �→ F(x, y) is quasi left-K-lower
semi-continuous, then F is left-K-slm.

Proof: Let a sequence {xn} ⊂ X such that F(xn, xn+1) ⊂ −K , ∀n, and q(xn, x̄) → 0. For any p ∈ N,

F(xn, xn+p) ⊂ F(xn, xn+1)+ F(xn+1, xn+p)− K
⊂ · · · · · ·
⊂ F(xn, xn+1)+ F(xn+1, xn+2)+ · · · + F(xn+p−1, xn+p)− K
⊂ −K − K − · · · − K = −K .

From this,

xn+p ∈ {y ∈ X : F(xn, y) ⊂ −K}, ∀p ∈ N.

By the assumption, for each x ∈ X, the map: y �→ F(x, y) is quasi left-K-lower semi-continuous. By
Proposition 2.4, for each b ∈ Y , the set {y ∈ X : F(x, y) ⊂ b−K} is left-closed. Particularly, for each
n, the set {y ∈ X : F(xn, y) ⊂ −K} is left-closed. Now, {xn+p}p∈N ⊂ {y ∈ X : F(xn, y) ⊂ −K} and
q(xn+p, x̄) → 0 (p → ∞), so x̄ ∈ {y ∈ X : F(xn, y) ⊂ −K}, that is, F(xn, x̄) ⊂ −K . Thus, we have
shown that F is left-K-slm.
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3. Equilibrium versions of set-valued and vector-valued EVPs in quasi-metric spaces

For brevity, we call a function ψ : X → (0,+∞) to be F-decreasing iff ψ(x′) ≥ ψ(x) if F(x, x′) ⊂
−K , where F : X × X → 2Y\{∅} is a set-valued bimap. And we denote the set consisting of all such
functions by	F .

Now we come to our main results.
Theorem 3.1: Let (X, q) be a left-complete quasi-metric space, Y be a real linear space, K ⊂ Y be a
convex cone and k0 ∈ K\ − vcl(K) such that K is k0-closed. Let F : X × X → 2Y\{∅} be a set-valued
bimap satisfying the following conditions:

(i) ∃x0 ∈ X such that F(x0, x0) ⊂ −K;
(ii) ∃α ∈ R, ∃s0 ∈ (− ∞,+∞) k0 − K such that

F(x0,X) ∩ (− s0 + α k0 − K) = ∅;

(iii) F(x, z) ⊂ F(x, y)+ F(y, z)− K , ∀x, y, z ∈ X;
(iv) F is left K-slm in (X, q).

Assume that ψ ∈ 	F .
Then, There exists x̄ ∈ X such that

(a) F(x0, x̄)+ ψ(x0) q(x0, x̄) k0 ⊂ −K;
(b) ∀x ∈ X\{x̄}, F(x̄, x)+ ψ(x̄) q(x̄, x) k0 
⊂ −K .

In order to give the proof of Theorem 3.1, we need a pre-order principle proposed by Qiu (see
[20]). As in [9], a binary relation � on X is called a pre-order if it satisfies the transitive property.
Let (X,� ) be a pre-order set. An extended real-valued function η : (X,� ) → R ∪ {±∞} is called
monotone with respect to � iff for any x1, x2 ∈ X,

x1 � x2 =⇒ η(x1) ≤ η(x2).

For any given x0 ∈ X, denote S(x0) the set {x ∈ X : x � x0}. First, we recall a pre-order principle as
follows.

Theorem 3.A: (see [20, Theorem 2.1]): Let (X,� ) be a pre-order set, x0 ∈ X such that S(x0) 
= ∅
and η : (X,� ) → R ∪ {±∞} be an extended real-valued function which is monotone with respect to
�. Suppose that the following conditions are satisfied:

(A) −∞ < inf {η(x) : x ∈ S(x0)} < +∞;
(B) for any x ∈ S(x0) with −∞ < η(x) < +∞ and x′ ∈ S(x)\{x}, one has η(x) > η(x′);
(C) for any sequence {xn} ⊂ S(x0) with xn ∈ S(xn−1) ∀n, such that η(xn) − inf {η(x) : x ∈

S(xn−1)} → 0 (n → ∞), there exists u ∈ X such that u ∈ S(xn) ∀n.
Then, there exists x̄ ∈ X such that

(a) x̄ ∈ S(x0);
(b) S(x̄) ⊂ {x̄}.

Proof of Theorem 3.1: We shall apply Theorem 3.A to prove the result. Define a relation � on X as
follows: for any x, x′ ∈ X,

x′ � x ⇐⇒ F(x, x′)+ ψ(x)q(x, x′)k0 ⊂ −K .
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It is easy to verify that � satisfies the transitive property. Hence � is a pre-order. For any x ∈ X, put
S(x) := {x′ ∈ X : x′ � x}. We define a function η : (X,� ) → R ∪ {+∞} as follows:

η(x) := sup{ξk0(y + s0) : y ∈ F(x0, x)}, x ∈ X.

First, we show that η is monotone with respect to �. Let x, x′ ∈ X such that x′ � x, i.e. F(x, x′) +
ψ(x)q(x, x′)k0 ⊂ −K . Thus,

F(x, x′) ⊂ −ψ(x)q(x, x′)k0 − K .

Combining this with condition (iii), we have

F(x0, x′) ⊂ F(x0, x)+ F(x, x′)− K
⊂ F(x0, x)− ψ(x)q(x, x′)k0 − K .

Take any y′ ∈ F(x0, x′), there exists y ∈ F(x0, x) such that

y′ ∈ y − ψ(x)q(x, x′)k0 − K .

Hence,
y′ + s0 ∈ y + s0 − ψ(x)q(x, x′)k0 − K .

Acting on two sides of the above relation by ξk0 and using Proposition 2.3, we have

ξk0(y
′ + s0) ≤ ξk0(y + s0)− ψ(x)q(x, x′)

≤ sup{ξk0(z + s0) : z ∈ F(x0, x)} − ψ(x)q(x, x′)
= η(x)− ψ(x)q(x, x′).

From this, we have
η(x′) ≤ η(x)− ψ(x)q(x, x′) ≤ η(x).

That is, η is monotone with respect to �. Particularly, if x′ � x and x′ 
= x and η(x) < +∞, then we
have

η(x′) ≤ η(x)− ψ(x)q(x, x′) < η(x). (3.1)

By condition (i), we easily verify that x0 ∈ S(x0) and S(x0) 
= ∅. It is sufficient to prove that conditions
(A), (B) and (C) in Theorem 3.A are satisfied. �

Prove that (A) is satisfied. By condition (ii), s0 ∈ (− ∞,+∞)k0 − K . Hence ξk0(s0) < +∞. By
condition (i), for any y ∈ F(x0, x0), y ∈ −K . Hence,

ξk0(y + s0) ≤ ξk0(s0) < +∞.

Thus,
η(x0) = sup{ξk0(y + s0) : y ∈ F(x0, x0)} ≤ ξk0(s0) < +∞.

By condition (ii), for any x ∈ X and any y ∈ F(x0, x), y 
∈ −s0 + αk0 − K , so ξk0(y + s0) ≥ α and

η(x) = sup{ξk0(y + s0) : y ∈ F(x0, x)} ≥ α.

Thus,
−∞ < α ≤ inf {η(x) : x ∈ S(x0)} ≤ η(x0) ≤ ξk0(s0) < +∞.

That is, (A) is satisfied.
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Prove that (B) is satisfied. Let x ∈ S(x0) such that −∞ < η(x) < +∞ and x′ ∈ S(x)\{x}. By
(3.1), we have η(x′) < η(x) and (B) is satisfied.

Prove that (C) is satisfied. Let a sequence {xn} ⊂ S(x0) such that xn ∈ S(xn−1) ∀n. Since
x1 ∈ S(x0), x2 ∈ S(x1), · · · , xn ∈ S(xn−1), we have

F(x0, x1)+ ψ(x0)q(x0, x1)k0 ⊂ −K ,
F(x1, x2)+ ψ(x1)q(x1, x2)k0 ⊂ −K ,

· · · · · · · · · · · ·
F(xn−1, xn)+ ψ(xn−1)q(xn−1, xn)k0 ⊂ −K .

Adding the above n inclusions up, we have

n∑
i=1

F(xi−1, xi)+
n∑

i=1

ψ(xi−1)q(xi−1, xi)k0 ⊂ −K . (3.2)

By condition (iii),

F(x0, xn) ⊂
n∑

i=1

F(xi−1, xi)− K . (3.3)

Since F(xi−1, xi) ⊂ −K , we have ψ(xi) ≥ ψ(xi−1), i = 1, 2, . . . , n. Thus,

ψ(x0)
n∑

i=1

q(xi−1, xi)k0 ⊂
n∑

i=1

ψ(xi−1)q(xi−1, xi)k0 − K . (3.4)

Combining (3.3), (3.4) and (3.2), we have

F(x0, xn)+ ψ(x0)
n∑

i=1

q(xi−1, xi)k0

⊂
n∑

i=1

F(xi−1, xi)+
n∑

i=1

ψ(xi−1)q(xi−1, xi)k0 − K

⊂ −K − K
= −K .

Thus,

F(x0, xn)+ s0 + ψ(x0)
n∑

i=1

q(xi−1, xi)k0 ⊂ s0 − K . (3.5)

Take any yn ∈ F(x0, xn). By condition (ii), yn 
∈ −s0 + αk0 − K . Thus,

ξk0(yn + s0) ≥ α. (3.6)

By (3.5) and Proposition 2.3, we have

ξk0(yn + s0)+ ψ(x0)
n∑

i=1

q(xi−1, xi) ≤ ξk0(s0) < +∞. (3.7)
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By (3.7) and (3.6), we have

n∑
i=1

q(xi−1, xi) ≤ 1
ψ(x0)

(
ξk0(s0)− ξk0(yn + s0)

) ≤ 1
ψ(x0)

(ξk0(s0)− α) < +∞, ∀n.

Hence ∞∑
i=1

q(xi−1, xi) ≤ 1
ψ(x0)

(ξk0(s0)− α) < +∞.

From this, for anym > n,

q(xn, xm) ≤
m−1∑
i=n

q(xi, xi+1) → 0 (m > n → ∞).

Obviously, {xn} is a left-Cauchy sequence in (X, q). Since (X, q) is left-complete, there exists x̄ ∈ X
such that q(xn, x̄) → 0 (n → ∞). Remarking that xn ∈ S(xn−1), we have F(xn−1, xn) ⊂ −K ,∀n. By
condition (iv), we have

F(xn−1, x̄) ⊂ −K , ∀n. (3.8)
For any fixed n, whenm > n, we have xm ∈ S(xn), i.e.

F(xn, xm)+ ψ(xn)q(xn, xm)k0 ⊂ −K . (3.9)

By condition (iii), (3.8) and (3.9), we have

F(xn, x̄)+ ψ(xn)q(xn, xm)k0
⊂ F(xn, xm)+ F(xm, x̄)− K + ψ(xn)q(xn, xm)k0
⊂ −K − K − K
= −K . (3.10)

From (3.10), we have

F(xn, x̄)+ ψ(xn)q(xn, x̄)k0
= F(xn, x̄)+ ψ(xn)q(xn, xm)k0 + ψ(xn)(q(xn, x̄)− q(xn, xm))k0
⊂ −K + +ψ(xn)(q(xn, x̄)− q(xn, xm))k0
⊂ −K + ψ(xn)q(xm, x̄)k0.

Since q(xm, x̄) → 0 (m → ∞) and K is k0-closed, by Proposition 2.1 we have

F(xn, x̄)+ ψ(xn)q(xn, x̄)k0 ⊂ ∩m>n(− K + ψ(xn)q(xm, x̄)k0) = −K .

That is, x̄ ∈ S(xn), ∀n. Thus, condition (C) is satisfied. �
In Theorem 3.1, we needn’t assume that the ordering cone K is closed, we only assume that K is

k0-closed. The usual assumption on lower semi-continuity of objective map is replaced by a weaker
one: F is left K-slm in (X, q). And the assumption on lower boundedness of F(x0,X) is taking the
weakest form as shown in condition (ii) (please refer to [18,21,22]). As pointed out in [47], condition
(iv) in Theorem 3.1 can beweakened to the so-called limitingmonotonicity property of the set-valued
map S( · ) (see [5]), known also as dynamical closedness in [19].

Definition 6 (refer to [19]): Let (X, q) be a quasi-metric space and let S : X → 2X\{∅} be a set-
valued map. The set-valued map S( · ) is said to be dynamically left-closed at x ∈ X in (X, q) iff for
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any sequence {xn} ⊂ S(x) such that xn+1 ∈ S(xn) ⊂ S(x), ∀n, and q(xn, x̄) → 0 (n → ∞), one
has x̄ ∈ S(x). In this case, we also say that S(x) is dynamically left-closed in (X, q). Moreover, the
set-valued map S( · ) is said to be dynamically left-complete at x ∈ X in (X, q) iff for any sequence
{xn} ⊂ S(x) such that xn+1 ∈ S(xn) ⊂ S(x), ∀n, and q(xn, xm) → 0 (m > n → ∞), there exists
x̄ ∈ S(x) such that q(xn, x̄) → 0 (n → ∞). In this case we also say that S(x) is dynamically
left-complete in (X, q).

Theorem 3.2: Let (X, q) be a left-complete quasi-metric space, Y be a real linear space, K ⊂ Y be a
convex cone and k0 ∈ K\ − vcl(K) such that K is k0-closed. Let F : X × X → 2Y\{∅} be a set-valued
bimap satisfying the following conditions:

(i) ∃x0 ∈ X such that F(x0, x0) ⊂ −K;
(ii) ∃α ∈ R, ∃s0 ∈ (− ∞,+∞) k0 − K such that

F(x0,X) ∩ (− s0 + α k0 − K) = ∅;

(iii) F(x, z) ⊂ F(x, y)+ F(y, z)− K , ∀x, y, z ∈ X;
(iv)′ S( · ) : X → 2X\{∅} is dynamically left-closed at every x ∈ S(x0), where S(x) := {x′ ∈ X :
F(x, x′)+ ψ(x)q(x, x′)k0 ⊂ −K} and ψ ∈ 	F .

Then, there exists x̄ ∈ X such that

(a) F(x0, x̄)+ ψ(x0) q(x0, x̄) k0 ⊂ −K;
(b) ∀x ∈ X\{x̄}, F(x̄, x)+ ψ(x̄) q(x̄, x) k0 
⊂ −K .

Proof: We only need to prove that condition (C) in Theorem 3.A is satisfied. Let a sequence {xn} ⊂
S(x0) such that xn ∈ S(xn−1), ∀n. As done in the proof of Theorem 3.1, we have

∞∑
i=1

q(xi−1, xi) ≤ 1
ψ(x0)

(ξk0(s0)− α) < +∞.

From this, we know that {xn} is a left-Cauchy sequence in (X, q). Since (X, q) is left-complete, there
exists x̄ ∈ X such that q(xn, x̄) → 0 (n → ∞). For any given n, q(xn+p, x̄) → 0 (p → ∞) and
xn+p ∈ S(xn+p−1) ⊂ S(xn), we have x̄ ∈ S(xn) since S(xn) is dynamically left-closed.

Theorem 3.3: Let (X, q) be a left-Hausdorff (see [52,55]) quasi-metric space and let Y ,K , k0 be the
same as in Theorem 3.2. Let F : X × X → 2Y\{∅} be a set-valued bimap satisfying conditions (i), (ii),
(iii) in Theorem 3.2 and the following condition:

(iv)′′ S( · ) : X → 2X\{∅} is dynamically left-complete at every x ∈ S(x0), where S( · ) is the
same as in Theorem 3.2.

Then, there exists x̄ ∈ X such that

(a) F(x0, x̄)+ ψ(x0) q(x0, x̄) k0 ⊂ −K;
(b) ∀x ∈ X\{x̄}, F(x̄, x)+ ψ(x̄) q(x̄, x) k0 
⊂ −K .

Proof: We only need to prove that condition (C) in Theorem 3.A is satisfied. Let a sequence {xn} ⊂
S(x0) such that xn ∈ S(xn−1), ∀n. As done in the proof of Theorem 3.2, we know that {xn} is a
left-Cauchy sequence in (X, q). For any fixed n, {xn+p}p∈N ⊂ S(xn) and xn+p ∈ S(xn+p−1) and
{xn+p}p∈N is a left-Cauchy sequence in (X, q). By condition (iv)′′, S( · ) is dynamically left-complete
at xn ∈ S(x0), so there exists x̄ ∈ S(xn) such that q(xn+p, x̄) → 0 (p → ∞). Since (X, q) is left-
Hausdorff, x̄ is uniquely determined and x̄ ∈ S(xn), ∀n. That is, condition (C) in Theorem 3.A is
satisfied.
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Combining Theorem 3.1 and Proposition 2.6, we immediately obtain the following result, which
extends [32, Theorem 3.1], [37, Theorem 3.1] and [36, Theorem 4.1].
Theorem 3.4: Let (X, q) be a left-complete quasi-metric space, Y be a t.v.s., K ⊂ Y be a closed
convex cone and k0 ∈ K\−K. Let F : X ×X → 2Y\{∅} be a set-valued bimap satisfying the following
conditions:

(i) ∃x0 ∈ X such that F(x0, x0) ⊂ −K;
(ii) ∃α ∈ R, ∃s0 ∈ (− ∞,+∞) k0 − K such that

F(x0,X) ∩ (− s0 + α k0 − K) = ∅;

(iii) F(x, z) ⊂ F(x, y)+ F(y, z)− K , ∀x, y, z ∈ X;
(iv) F is left K-slm in (X, q); or for each x ∈ X, the map: y �→ F(x, y) is quasi left-K-lower

semi-continuous, i.e. for any b ∈ Y, {y ∈ X : F(x, y) ⊂ b − K} is left-closed.
Then, for any ψ ∈ 	F , there exists x̄ ∈ X such that

(a) F(x0, x̄)+ ψ(x0) q(x0, x̄) k0 ⊂ −K;
(b) ∀x ∈ X\{x̄}, F(x̄, x)+ ψ(x̄) q(x̄, x) k0 
⊂ −K .

Condition (ii) in Theorems 3.1–3.4 is strictly weaker than condition (ii) in [32, Theorem 3.1] and
condition (ii) in [30, Theorem 1], i.e. there exists k∗ ∈ K+ with k∗(k0) > 0 such that k∗ ◦ F(x0, ·)
is lower bounded. Here, K+ denotes the dual cone {y∗ ∈ Y∗ : y∗(k) ≥ 0,∀k ∈ K} and Y∗
is the topological dual of Y . For convenience, instead of F(x0, ·) we consider a set-valued map
f : X → 2Y\{∅}, Assume that there exists k∗ ∈ K+ with k∗(k0) > 0 such that k∗(f (X)) is lower
bounded, i.e. there exists γ ∈ R such that

γ ≤ k∗(y), ∀x ∈ X, ∀y ∈ f (x). (3.11)

In fact, (3.11) implies that for any given t0 ∈ Y , there exists ε > 0 such that f (X)∩(t0−εk0−K) = ∅.
If not, for every n, f (X) ∩ (t0 − nk0 − K) 
= ∅. Thus, for each n, ∃xn ∈ X, ∃yn ∈ f (xn), ∃kn ∈ K
such that

yn = t0 − nk0 − kn.
From this, we have

k∗(yn) ≤ k∗(t0)− nk∗(k0), ∀n.
Combining this with (3.11), we have

−∞ < γ − k∗(t0) ≤ k∗(yn)− k∗(t0) ≤ −n k∗(k0), ∀n,

where k∗(k0) > 0. This is impossible. The following example shows that the converse of the above
implication is not true.
Example 1: Let X be R endowed with the usual metric, Y be R2 endowed with the usual topology,
the closed convex cone K ⊂ Y be {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0} and k0 ∈ K\ − K be the point
(1, 1) ∈ Y = R2. A set-valued map f : X → 2Y\{∅} is defined as follows:

f (x) = {(x, 1), (0, x)} ⊂ Y , x ∈ X.

It is easy to verify that
f (X) ∩ (− k0 − K) = ∅.

But, for any y∗ ∈ Y∗\{0}, y∗(f (X)) is not lower bounded.
In Theorems 3.1–3.4, if the ‘left’ is replaced by the ‘right’, we can obtain the corresponding four

theorems. Here, we won’t write the details.
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Particularly, if F(x, y) is a singleton for every (x, y) ∈ X × X, i.e. F : X × X → Y is a vector-
valued bimap, then from Theorems 3.1–3.4, we can obtain the corresponding equilibrium versions
of vector-valued EVP in quasi-metric spaces. Since the case of vector-valued maps is easier to handle
than the case of set-valued maps, we even can obtain better results.
Corollary 3.5: Let (X, q) be a left-complete quasi-metric space, Y be a real linear space, K ⊂ Y be a
convex cone and k0 ∈ K\ − vcl(K) such that K is k0-closed. Let F : X × X → Y be a vector-valued
bimap satisfying the following conditions:

(i) F(x, x) ∈ −K , ∀x ∈ X;
(ii) ∃x0 ∈ X, ∃α ∈ R, ∃s0 ∈ (− ∞,+∞) k0 − K such that

F(x0,X) ∩ (− s0 + α k0 − K) = ∅;

(iii) F(x, z) ∈ F(x, y)+ F(y, z)− K , ∀x, y, z ∈ X;
(iv) F is left K-slm in (X, q).

Then, for any ψ ∈ 	F and any y0 ∈ X such that F(x0, y0) ∈ ( − ∞,+∞)k0 − K, there exists ȳ ∈ X
such that

(a) F(y0, ȳ)+ ψ(x0) q(y0, ȳ) k0 ∈ −K;
(b) ∀y ∈ X\{ȳ}, F(ȳ, y)+ ψ(x̄) q(ȳ, y) k0 
∈ −K .

Proof: For any x ∈ X, by (iii) we have

F(x0, x) ≤K F(x0, y0)+ F(y0, x)

and
F(x0, x)+ s0 ≤K F(x0, y0)+ F(y0, x)+ s0.

By Proposition 2.3 we have

ξk0(F(x0, x)+ s0) ≤ ξk0(F(x0, y0))+ ξk0(F(y0, x)+ s0). (3.12)

By (ii), ξk0(F(x0, x)+ s0) > α. Combining this with (3.12), we have

ξk0(F(y0, x)+ s0) ≥ ξk0(F(x0, x)+ s0)− ξk0(F(x0, y0)) > α − ξk0(F(x0, y0)),

where ξk0(F(x0, y0)) is a usual real number since F(x0, y0) ∈ ( − ∞,+∞)k0 − K . Put α′ = α −
ξk0(F(x0, y0)). Then,

F(y0,X) ∩ (− s0 + α′k0 − K) = ∅.
Now, substituting x0 by y0 in Theorem 3.1, we obtain ȳ ∈ X such that (a) and (b) hold.

Similarly, from Theorems 3.2 and 3.3 we have the following results.
Corollary 3.6: Let (X, q),Y ,K , k0 be the same as in Corollary 3.5. Let F : X × X → Y be a
vector-valued bimap satisfying conditions (i), (ii), (iii) in Corollary 3.5 and the following condition

(iv)′ S( · ) : X → 2X\{∅} is dynamically left-closed at every x ∈ X, where S(x) := {x′ ∈ X :
F(x, x′)+ ψ(x)q(x, x′)k0 ∈ −K} and ψ ∈ 	F .

Then, for any y0 ∈ X such that F(x0, y0) ∈ ( − ∞,+∞)k0 − K, there exists ȳ ∈ X such that (a)
and (b) hold in Corollary 3.5.
Corollary 3.7: Let (X, q) be a left-Hausdorff quasi-metric space and let Y ,K , k0 be the same as in
Corollary 3.5. Let F : X×X → Y be a vector-valuedmap satisfying conditions (i), (ii), (iii) in Corollary
3.5 and the following condition
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(iv)′′ S( · ) : X → 2X\{∅} is dynamically left-complete at every x ∈ X, where S(x) := {x′ ∈ X :
F(x, x′)+ ψ(x)q(x, x′)k0 ∈ −K} and ψ ∈ 	F .

Then, for any y0 ∈ X such that F(x0, y0) ∈ ( − ∞,+∞)k0 − K, there exists ȳ ∈ X such that (a) and
(b) hold in Corollary 3.5.

If Y is a t.v.s., K ⊂ Y is a closed convex cone and k0 ∈ int(K), then k0 −K is an absorbing set and
the assumption that F(x0, y0) ∈ (− ∞,+∞)k0 −K in Corollaries 3.5–3.7. is automatically satisfied.
Particularly, from Corollary 3.5, we can obtain the following corollary, which extends and improves
[30, Theorem 1].
Corollary 3.8: Let (X, q) be a left-complete quasi-metric space, Y be a t.v.s., K ⊂ Y be a closed
convex cone and k0 ∈ int(K). Let F : X × X → Y be a vector-valued bimap satisfying the following
conditions:

(i) F(x, x) ∈ −K , ∀x ∈ X;
(ii) ∃x0 ∈ X, ∃α ∈ R, ∃t0 ∈ Y such that

F(x0,X) ∩ (t0 + α k0 − K) = ∅;

(iii) F(x, z) ∈ F(x, y)+ F(y, z)− K , ∀x, y, z ∈ X;
(iv) F is left K-slm in (X, q); or, for each x ∈ X, the map: y �→ F(x, y) is left-quasi K-lower

semi-continuous (see Proposition 2.6).

Then, for any ψ ∈ 	F and any y0 ∈ X, there exists ȳ ∈ X such that

(a) F(y0, ȳ)+ ψ(y0) q(y0, ȳ) k0 ∈ −K;
(b) ∀y ∈ X\{ȳ}, F(ȳ, y)+ ψ(ȳ) q(ȳ, y) k0 
∈ −K .

Remark 2: It seems that Corollary 3.8 is a particular case of Theorem 3.4. We remark that the
requirements on lower boundedness for objective bimap in Corollary 3.8 and in Theorem 3.4 are
similar. But, the result of Corollary 3.8 is more flexible. It points out that for any y0 ∈ X, there exists
ȳ ∈ X such that (a) and (b) hold. Here, the point y0 is arbitrary, it is not confined to the point x0.

More particularly, if there exists a vector-valued map f such that the bimap F can be written as
the following form: F(x, y) = f (y)− f (x), ∀x, y ∈ X, then from Corollary 3.5 and its right version,
we can obtain the following corollary, which extends [41, Theorem 2.4], [45, Corollary 3.3], [48,
Theorem 4.8] and [47, Theorem 3.2] to the case of vector-valued maps.
Corollary 3.9: Let (X, q) be a left-complete quasi-metric space, Y be a t.v.s., K ⊂ Y be a closed convex
cone and k0 ∈ K\ − K. Let f : X → Y be a vector-valued map, ε > 0 and x0 ∈ X such that

(f (x0)− ε k0 − K) ∩ f (X) = ∅.

Case 1. If (X, q) is left-complete and f is left-K-slm, or f is quasi left-K-lower semi-continuous,
then for any λ > 0, there exists x̄ ∈ X such that

(a) f (x̄)+ ε
λ
q(x0, x̄)k0 ≤K f (x0);

(b) q(x0, x̄) ≤ λ;
(c) ∀x ∈ X\{x̄}, f (x)+ ε

λ
q(x̄, x)k0 
≤K f (x̄).

Case 2. If (X, q) is right-complete and f is right-K-slm, or f is quasi right-K-lower semi-continuous,
then for any λ > 0, there exists x̄ ∈ X such that

(a′) f (x̄)+ ε
λ
q(x̄, x0)k0 ≤K f (x0);

(b′) q(x̄, x0) ≤ λ;
(c′) ∀x ∈ X\{x̄}, f (x)+ ε

λ
q(x, x̄)k0 
≤K f (x̄).
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Proof: We only consider Case 1. Put F(x, y) = f (y) − f (x), ∀x, y ∈ X. Obviously, F satisfies
conditions (i) and (ii) in Corollary 3.5. The assumption that

(f (x0)− ε k0 − K) ∩ f (X) = ∅

is equivalent to that

F(x0,X) ∩ (− εk0 − K) = ∅.
Thus, condition (ii) in Corollary 3.5 is satisfied, where s0 = 0 and α = −ε. Also, f being left-K-slm
implies that F is left-K-slm and condition (iv) in Corollary 3.5 is satisfied. For any λ > 0, we take
ψ = ε/λ a constant. Now, applying Corollary 3.5, we conclude that there exists x̄ ∈ X such that

F(x0, x̄)+ ε

λ
q(x0, x̄)k0 ≤K 0

and

∀x ∈ X\{x̄}, F(x̄, x)+ ε

λ
q(x̄, x)k0 
≤K 0.

From this, we know that (a) and (b) hold.
Assume that q(x0, x̄) > λ. Then, by (a) we have

f (x̄) ∈ f (x0)− ε

λ
q(x0, x̄)k0 − K ⊂ f (x0)− εk0 − K ,

which contradicts the assumption that

(f (x0)− εk0 − K) ∩ f (X) = ∅.

Thus, (b) is proved.
In a similar way, we can prove the result in Case 2.

Similarly, from Corollary 3.6, we can deduce the following corollary, which extends [47, Theorem
3.3] to the case of vector-valued maps.
Corollary 3.10: Let (X, q) be a left-complete quasi-metric space, Y be a t.v.s., K ⊂ Y be a closed
convex cone and k0 ∈ int(K). Let f : X → Y be a vector-valued map satisfying the following
conditions:

(i) ∃t0 ∈ Y , ∃α ∈ R such that

f (X) ∩ (t0 + αk0 − K) = ∅;
(ii) S( · ) : X → 2X\{∅} is dynamically left-closed at every x ∈ X, where S(x) := {x′ ∈ X :

f (x′)+ ψ(x)q(x, x′)k0 ≤K f (x)} and ψ ∈ 	F .

Then, for any x0 ∈ X, there exists x̄ ∈ X such

(a) f (x̄)+ ψ(x0)q(x0, x̄)k0 ≤K f (x0);
(b) ∀x ∈ X\{x̄}, f (x)+ ψ(x̄)q(x̄, x)k0 
≤K f (x̄).

4. Applications to equilibrium problems, vector optimization and fixed point
theorems

In this section, we shall apply equilibrium versions of EVP in quasi-metric spaces to equilibrium
problems, optimization and fixed point theorems.
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Let (X, q) be a quasi-metric space, Y be a t.v.s. quasi-ordered by a closed convex cone K with
int(K) 
= ∅, and let F : X × X → 2Y\{∅} be a set-valued bimap. We consider the set-valued
equilibrium problem (denoted by SEP): finding x̄ ∈ X such that

F(x̄, y) 
⊂ −int(K), ∀y ∈ X. (4.1)

A point x̄ satisfying (4.1) is called a solution (or a equilibrium point) for SEP.
Particularly, if F : X × X → Y is a vector-valued bimap, we consider the vector equilibrium

problem (denoted by VEP): finding x̄ ∈ X such that

F(x̄, y) 
∈ −int(K), ∀y ∈ X. (4.2)

A point x̄ satisfying (4.2) is called a solution (or a equilibrium point) for VEP.
More particularly, if f : X → Y is a vector-valued map and F(x, y) = f (y) − f (x), ∀x, y ∈ X,

then x̄ is a weakly efficient solution for the vector optimization problemMinx∈Xf (x) iff x̄ is a solution
for VEP on F. In this case, (4.2) becomes

F(x̄, y) = f (y)− f (x̄) 
∈ −int(K), ∀y ∈ X. (4.3)

Definition 7: A quasi-metric space (X, q) is said to be left-sequentially compact, iff for every
sequence {xn} ⊂ X , there exists a subsequence {xni } and a point x̄ ∈ X such that q(xni , x̄) →
0 (i → ∞).
Lemma 4.1: If a quasi-metric space (X, q) is left-sequentially compact, then it is left-complete.

Proof: Let {xn} ⊂ X be a left-Cauchy sequence. For any given ε > 0, there exists N ∈ N such that

q(xm, xp) < ε, ∀p > m ≥ N .

Since (X, q) is left-sequentially compact, there exists a subsequence {xni } and a point x̄ ∈ X such that

q(xni , x̄) → 0 (i → ∞).

For the above ε and abovem ≥ N , take i0 ∈ N such that

q(xni , x̄) < ε and ni > m, ∀i ≥ i0.

Thus, whenm ≥ N , we have

q(xm, x̄) ≤ q(xm, xni )+ q(xni , x̄) < ε + ε = 2ε.

That is, q(xm, x̄) → 0 (m → ∞).

Theorem 4.2: Let (X, q) be a left-sequentially compact quasi-metric space, Y be a t.v.s., K ⊂ Y be a
closed convex solid cone and k0 ∈ K\ − K. Let F : X × X → 2Y\{∅} be a set-valued bimap satisfying
the following conditions:

(i) ∃x0 ∈ X such that F(x0, x0) ⊂ −K and for every x ∈ X, F(x, x) ∩ (− ∂K) 
= ∅;
(ii) ∃α ∈ R, ∃s0 ∈ (− ∞,+∞) k0 − K such that

F(x0,X) ∩ (− s0 + α k0 − K) = ∅;

(iii) F(x, z) ⊂ F(x, y)+ F(y, z)− K , ∀x, y, z ∈ X;
17



(iv) F is left-slm, or for each x ∈ X, the map: y �→ F(x, y) is quasi left-K-lower semi-continuous, i.e.
for any b ∈ Y, {y ∈ X : F(x, y) ⊂ b − K} is left-closed;

(v) for each y ∈ X, the map x �→ F(x, y) is left-K-upper semi-continuous.

Moreover, for any x, y ∈ X, F(x, y) ⊂ Y is a compact set.
Then, there exists x̄ ∈ X such that

F(x̄, y) 
⊂ −int(K), ∀y ∈ X.

Proof: Obviously, conditions (i)–(iv) in Theorem 3.4 are satisfied. Taking ψ ∈ 	F to be a constant
λ = 1/n, by Theorem 3.4 we can find x̄n ∈ X such that

F(x̄n, x)+ 1
n
q(x̄n, x)k0 
⊂ −K , ∀x ∈ X\{x̄n}. (4.4)

Since (X, q) is left-sequentially compact, there exists a subsequence {x̄ni } of {x̄n} and a point x̄ ∈ X
such that

q(x̄ni , x̄) → 0 (i → ∞).

Briefly, we denote
q(x̄n, x̄) → 0 (n → ∞). (4.5)

We assert that
F(x̄, y) 
⊂ −int(K), ∀y ∈ X.

If not, there exists a point ȳ ∈ X such that

F(x̄, ȳ) ⊂ −int(K).

Since F(x̄, ȳ) ⊂ Y is a compact set, there exists a circled neighbourhood V of 0 in Y (see [55]) such
that

F(x̄, ȳ)+ V + V ⊂ −int(K). (4.6)

By (4.5), we have
0 ≤ q(x̄n, ȳ) ≤ q(x̄n, x̄)+ q(x̄, ȳ) → q(x̄, ȳ) (n → ∞).

Thus, there exists N1 ∈ N such that

1
n
q(x̄n, ȳ)k0 ∈ V , ∀n ≥ N1. (4.7)

By condition (v), x �→ F(x, ȳ) is left-K-upper semi-continuous at x̄ ∈ X (see Definition 2). Hence,
there exists a left-neighbourhood Ul(x̄) of x̄ such that

F(x, ȳ) ⊂ F(x̄, ȳ)+ V − K , ∀x ∈ Ul(x̄).

Since q(x̄n, x̄) → 0 (n → ∞), there exists N2 ∈ N such that

x̄n ∈ Ul(x̄), ∀n ≥ N2.

Thus,
F(x̄n, ȳ) ⊂ F(x̄, ȳ)+ V − K , ∀n ≥ N2. (4.8)
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Put N = max (N1,N2). Then, for n ≥ N , by (4.8), (4.7) and (4.6), we have

F(x̄n, ȳ)+ 1
n
q(x̄n, ȳ)k0 ⊂ F(x̄, ȳ)+ V − K + V

⊂ −int(K)− K
= −int(K). (4.9)

Assume that there exists n such that ȳ = x̄n. Then, from (4.9) we have

F(ȳ, ȳ) ⊂ −int(K),

which contradicts the assumption that F(ȳ, ȳ) ∩ (− ∂K) 
= ∅. Therefore, for every n, ȳ 
= x̄n. Thus,
(4.9) contradicts (4.4).

Obviously, Theorem 4.2 extends and improves [32, Theorem 4.1] and [37, Theorem 4.1]. Particu-
larly, if F is a vector-valued bimap, then from Theorem 4.2 we can obtain the following result, which
extends and improves [27, Theorem 5.1], [29, Proposition 3.2], [30, Theorem 3] and [31, Theorem
2.2].
Theorem 4.3: Let (X, q) be a left-sequentially compact quasi-metric space, Y be a t.v.s., K ⊂ Y be a
closed convex solid cone and k0 ∈ K\ − K. Let F : X × X → Y be a vector-valued bimap satisfying
the following conditions:

(i) F(x, x) ∈ −∂K , ∀x ∈ X;
(ii) ∃x0 ∈ X, ∃α ∈ R, ∃s0 ∈ (− ∞,+∞) k0 − K such that

F(x0,X) ∩ (− s0 + α k0 − K) = ∅;

(iii) F(x, z) ≤K F(x, y)+ F(y, z), ∀x, y, z ∈ X;
(iv) F is left-slm, or for each x ∈ X, the map: y �→ F(x, y) is quasi left-K-lower semi-continuous, i.e.

for any b ∈ Y, {y ∈ X : F(x, y) ∈ b − K} is left-closed;
(v) for each y ∈ X, the map x �→ F(x, y) is left-K-upper semi-continuous.

Then, there exists x̄ ∈ X such that

F(x̄, y) 
∈ −int(K), ∀y ∈ X.

Remark 3: If k0 in Theorems 4.2 and 4.3 is exactly an interior point of K , i.e. k0 ∈ int(K), then
condition (ii) can be rewritten as the following easier form:

∃x0 ∈ X, ∃α ∈ R, ∃t0 ∈ Y such that

F(x0,X) ∩ (t0 + αk0 − K) = ∅.

More particularly, if F(x, y) = f (y)− f (x), ∀x, y ∈ X, where f : X → Y is a vector-valued map,
then from Theorem 4.3 we can deduce the following existence result concerning solutions of vector
optimization problem, which extends and improves [32, Corollary 4.1].
Theorem 4.4: Let (X, q) be a left-sequentially compact quasi-metric space, Y be a t.v.s., K ⊂ Y be
a closed convex solid cone and k0 ∈ K\ − K. Let f : X → Y be a left-K-lower semi-continuous map
satisfying the following condition:

∃α ∈ R, ∃t0 ∈ Y such that

f (X) ∩ (t0 + αk0 − K) = ∅.
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Then, there exists a weakly efficient solution of the vector optimization problemMinx∈Xf (x), i.e. there
exists x̄ ∈ X such that

f (y) 
∈ f (x̄)− int(K), ∀y ∈ X.

Proof: Put F(x, y) = f (y) − f (x), ∀x, y ∈ X. Clearly, F satisfies conditions (i)–(iii) in Theorem
4.3. Now, f : X → Y being left-K-lower semi-continuous means that for each x ∈ X, the map
y �→ F(x, y) is left-K-lower semi-continuous. From Remark 1 we see that this also means that for
each y ∈ X, the map x �→ F(x, y) is left-K-upper semi-continuous. Thus, conditions (iv) and (v) in
Theorem 4.3 are also satisfied. Applying Theorem 4.3, we obtain the result immediately.

Applying the set-valued and vector-valued EVPs in Section 3, we can also obtain a number of new
fixed point theorems. For example, applying Theorem 3.4, we obtain the following Caristi’s fixed
point theorem, which extends [25, Theorem 3] and [37, Theorem 5.1(3)].
Theorem 4.5: Let (X, q) be a left-complete quasi-metric space, Y be a t.v.s., K ⊂ Y be a closed
convex cone and k0 ∈ int(K). Let F : X × X → 2Y\{∅} be a set-valued bimap satisfying the following
conditions:

(i) ∃x0 ∈ X such that F(x0, x0) ⊂ −K;
(ii) ∃α ∈ R, ∃t0 ∈ Y such that

F(x0,X) ∩ (t0 + α k0 − K) = ∅;

(iii) F(x, z) ⊂ F(x, y)+ F(y, z)− K , ∀x, y, z ∈ X;
(iv) F is left K-slm in (X, q); or for each x ∈ X, the map: y �→ F(x, y) is left-quasi K-lower

semi-continuous, i.e. for any b ∈ Y, {y ∈ X : F(x, y) ⊂ b − K} is left-closed.
Assume that T : X → 2X\{∅} satisfies the following property

(T) F(x, y)+ ψ(x)q(x, y)k0 ⊂ −K , ∀x ∈ X, ∀y ∈ Tx, where ψ ∈ 	F .
Then, there exists x̄ ∈ X such that

(a) F(x0, x̄)+ ψ(x0)q(x0, x̄)k0 ⊂ −K;
(f) Tx̄ = {x̄}.
Assume that T : X → 2X\{∅} satisfies the following property
(T′) ∀x ∈ X, ∃y ∈ Tx such that F(x, y)+ ψ(x)q(x, y)k0 ⊂ −K , where ψ ∈ 	F .
Then, there exists x̄ ∈ X such that

(a) F(x0, x̄)+ ψ(x0)q(x0, x̄)k0 ⊂ −K;
(f′) x̄ ∈ Tx̄.

Proof: By Theorem 3.4, we conclude that there exists x̄ ∈ X such that

(a) F(x0, x̄)+ ψ(x0)q(x0, x̄)k0 ⊂ −K;
(b)

∀x ∈ X\{x̄}, F(x̄, x)+ ψ(x̄)q(x̄, x)k0 
⊂ −K . (4.10)

Since T satisfies property (T), for every y ∈ Tx̄, we have

F(x̄, y)+ ψ(x̄)q(x̄, y)k0 ⊂ −K . (4.11)

Comparing (4.10) and (4.11), we have y = x̄. Hence Tx̄ = {x̄} and (f) holds.
Next, assume that T satisfies property (T′). For x̄ ∈ X, there exists ȳ ∈ Tx̄ such that

F(x̄, ȳ)+ ψ(x̄)q(x̄, ȳ)k0 ⊂ −K . (4.12)

Comparing (4.10) and (4.12), we have ȳ = x̄. Hence, x̄ ∈ Tx̄ and (f′) holds.
20



As we have seen, in Theorems 3.4 and 4.5 we require the bimap F : X × X → 2Y\{∅} satisfy the
following four conditions:

(i) ∃x0 ∈ X such that F(x0, x0) ⊂ −K ;
(ii) ∃α ∈ R, ∃t0 ∈ Y such that F(x0,X) ∩ (t0 + α k0 − K) = ∅;
(iii) F(x, z) ⊂ F(x, y)+ F(y, z)− K , ∀x, y, z ∈ X;
(iv) F is left K-slm in (X, q).

Let us recall the corresponding four conditions on F in [37, Theorems 3.1 and 5.1]:

(i′) 0 ∈ F(x, x), F(x, x) ⊂ −K , ∀x ∈ X;
(ii′) ∃z ∈ Y such that F(x, y) ⊂ z + K , ∀x, y ∈ X;
(iii′) F(x, z) ⊂ F(x, y)+ F(y, z)− K , ∀x, y, z ∈ X;
(iv′) y �→ F(x, y) is quasi K-lower semi-continuous for all x ∈ X.

Comparing the above two groups of conditions on bimap F, at least in form we see that conditions
(i), (ii) and (iv) are weaker than conditions (i′), (ii′) and (iv′), respectively. Next, we give an example
on bimap F, which satisfies conditions (i), (ii), (iii) and (iv); but doesn’t satisfy (i′), (ii′) and (iv′). For
convenience, in our example, space (X, q) is taken as a metric space.
Example 2: Let X be the real number space R endowed with the usual metric and Y be the real
number space R endowed with the usual order (the ordering cone is K = [0,+∞)) and endowed
with the usual topology. Let g : X → 2Y\{∅} be defined as follows:

g(x) =
⎧⎨
⎩

{x + 1} if 0 < x < +∞;[
1/2, 1

]
if x = 0;

{x/(1 + |x|)} if −∞ < x < 0.

Let a bimap F : X × X → 2Y\{∅} be defined as follows:

F(x, y) := g(y)− g(x), ∀x, y ∈ X.

Take x0 = 1 ∈ X. Then,

F(x0, x0) = g(x0)− g(x0) = {x0 + 1} − {x0 + 1} = {0} ⊂ −K .

That is, condition (i) is satisfied. But, condition (i′) is not satisfied, since

F(0, 0) = g(0)− g(0) =
[
1
2
, 1

]
−

[
1
2
, 1

]

⊂ −K = (− ∞, 0].

Take t0 = 0, α = −5, k0 = 1. Then,

F(x0,X) ∩ (t0 + α k0 − K)
= ∪y∈X(g(y)− g(x0)) ∩ (− 5 − K)
= ∪y∈X(g(y)− 2) ∩ (− ∞,−5].

Remarking the expression of g , we have (g(y) − 2) ∩ ( − ∞,−5] = ∅ for all y ∈ X, Hence
F(x0,X)∩ (t0 + α k0 −K) = ∅. Thus, F satisfies condition (ii). But, F doesn’t satisfy condition (ii′).
Assume the contrary. There exists a z ∈ Y = R such that F(x, y) ⊂ z + K , ∀x, y ∈ X. That is,

g(y)− g(x) ⊂ z + [0,+∞), ∀x, y ∈ X. (4.13)
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Take y = −1 and take x ∈ (0,+∞). Then,

F(x, y) = g(y)− g(x) = −1
2

− (x + 1), ∀x > 0.

If we take x > 0 large enough, then we have g(y)− g(x) < z, which contradicts (4.13). Also, it is easy
to see that F satisfies condition (iii).

Finally, we show that F satisfies condition (iv), but doesn’t satisfy condition (iv′). Let a sequence
{xn} ⊂ X satisfy

F(xn, xn+1) = g(xn+1)− g(xn) ⊂ −K , ∀n, and xn → x̄ in X.

We can easily verify that for all n, F(xn, x̄) = g(x̄)− g(xn) ⊂ −K according to the following three
cases: x̄ > 0, x̄ < 0, and x̄ = 0.

Case 1. x̄ > 0. Since xn → x̄, without loss of generality we may assume that all xn ∈ (0,+∞). By
g(xn+1)−g(xn) ⊂ −K , we conclude that xn+1 ≤ xn, ∀n.Thus, x̄ ≤ xn, ∀n, and g(x̄)−g(xn) ⊂ −K ,
i.e. F(xn, x̄) ⊂ −K .

Case 2. x̄ < 0. Without loss of generality we may assume that all xn ∈ ( − ∞, 0). By g(xn+1) −
g(xn) ⊂ −K , we conclude that xn+1 ≤ xn, ∀n. Thus, x̄ ≤ xn, ∀n, and g(x̄) − g(xn) ⊂ −K , i.e.
F(xn, x̄) ⊂ −K .

Case 3. x̄ = 0. By xn → x̄ = 0 and g(xn+1)− g(xn) ⊂ −K , we conclude that all xn ∈ (0,+∞)

and xn+1 ≤ xn, ∀n. Thus,
g(x̄)− g(xn) = [1/2, 1] − (xn + 1) ⊂ −K , i:e: F(xn, x̄) ⊂ −K .

Hence, we have shown that F is K-slm, that is, F satisfies (iv). But, y �→ F(x, y) is not quasi
K-lower semi-continuous, i.e. F doesn’t satisfy (iv′). In fact, let x = 0 and let b = −1/2. Then,

{y ∈ X : f (0, y) ⊂ b − K} = {y ∈ X : g(y)− g(0) ⊂ b − K}
= {y ∈ X : g(y)− [1/2, 1] ⊂ −1/2 − [0,+∞)}
= (− ∞, 0),

which is not closed in X. Thus, the map y �→ f (0, y) is not quasi K-lower semi-continuous (see [37,
Lemma 2.2]).

Similarly, using Corollaries 3.8 and 3.10, we can deduce the following versions of Caristi’s fixed
point theorem.
Theorem 4.6: Let (X, q), Y , K , k0 be the same as in Theorem 4.5. Let F : X × X → Y be a
vector-valued bimap satisfying the following conditions:

(i) F(x, x) ∈ −K , ∀x ∈ X;
(ii) ∃x0 ∈ X, ∃α ∈ R, ∃t0 ∈ Y such that

F(x0,X) ∩ (t0 + αk0 − K) = ∅;
(iii) F(x, z) ∈ F(x, y)+ F(y, z)− K , ∀x, y, z ∈ X;
(iv) F is left K-slm in (X, q); or, for each x ∈ X, the map y �→ F(x, y) is left-quasi K-lower

semi-continuous.

Assume that T : X → 2X\{∅} satisfies the following property
(T) F(x, y)+ ψ(x)q(x, y)k0 ∈ −K , ∀x ∈ X, ∀y ∈ Tx, where ψ ∈ 	F .
Then, for any y0 ∈ X, there exists ȳ ∈ X such that

(a) F(y0, ȳ)+ ψ(y0)q(y0, ȳ)k0 ∈ −K;
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(f) Tȳ = {ȳ}.
Assume that T : X → 2X\{∅} satisfies the following property
(T′) ∀x ∈ X, ∃y ∈ Tx such that F(x, y)+ ψ(x)q(x, y)k0 ∈ −K , where ψ ∈ 	F .
Then, for any y0 ∈ X, there exists ȳ ∈ X such that

(a) F(y0, ȳ)+ ψ(y0)q(y0, ȳ)k0 ∈ −K;
(f) ȳ ∈ Tȳ.

Theorem 4.7: Let (X, q), Y , K , k0 be the same as in Theorem 4.5. Let λ > 0 be a constant and let
f : X → Y be a vector-valued map satisfying the following conditions:

(i) ∃α ∈ R, ∃t0 ∈ Y such that
f (X) ∩ (t0 + αk0 − K) = ∅;

(ii) f is left K-slm in (X, q).

Assume that T : X → 2X\{∅} satisfies the following property
(T) f (y)+ λq(x, y)k0 ≤K f (x), ∀x ∈ X, ∀y ∈ Tx.

Then, for any x0 ∈ X, there exists x̄ ∈ X such that

(a) f (x̄)+ λq(x0, x̄)k0 ≤K f (x0);
(f) Tx̄ = {x̄}.

Assume that T : X → 2X\{∅} satisfies the following property
(f′) ∀x ∈ X, ∃y ∈ Tx such that f (y)+ λq(x, y)k0 ≤K f (x).

Then, for any x0 ∈ X, there exists x̄ ∈ X such that

(a) f (x̄)+ λq(x0, x̄)k0 ≤K f (x0);
(f′) x̄ ∈ Tx̄.

The proofs of Theorems 4.6 and 4.7 are similar to that of Theorem 4.5. Obviously, Theorem 4.7
extends [41, Theorem 2.12], [47, Theorem 4.4] and [43, Corollary 2(2)]. We remark that for right-
complete quasi-metric spaces, we can also obtain the corresponding versions of Caristi’s fixed point
theorem. Here, we won’t write the details.

5. Applications to human dynamics: the existence and the robustness of traps

5.1. Robust traps and the variational rationality approach of human dynamics

This paper belongs to a new line of research on variational principles and algorithms in optimization
(dual descent methods, proximal algorithms, trust region methods, local search algorithms, robust
optimization, ....) more oriented towards applications in human dynamics, using the recent (VR)
variational rationality approach of human behaviours (Soubeyran, [49,50]). A human dynamic starts
in an initial position, including individual or collective doings, havings or beings. Moving away from
this position, it follows an acceptable transition, defined as a succession of acceptable moves (changes
or stays). It possibly ends somewhere, in some desired state or, much before, in some trap. The (VR)
approach starts with a precise definition of an acceptable move as a worthwhile move (change or
stay) such that, at the individual or group level, motivation to move (desirability aspects of a move) is
higher enough relative to resistance to move (feasibility aspects of this move), the various definitions
of these terms being a major topic. A worthwhile move modelizes the degree of rationality of the
agent, who can, each step, improve, improve enough (satisfy), locally optimize, optimize and improve
with costs of being able to improve,· · · . An acceptable transition is then modelized as a worthwhile
transition, that is, a succession of worthwhile changes and stays. In this context, a trap is defined as an
end of a worthwhile transition, worthwhile to reach, but not worthwhile to leave. The trap problem
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being to know when traps exist . An important instance of the trap problem refers to habituation
processes (habit formation and breaking), where agents and organizations, progressively, perform
more and more similar individual and collective actions in similar contexts, ending in habits and
routines.

The behavioural part of our paper considers not only the existence, but also, the robustness of
traps.

5.2. The (VR)modelization of a worthwhilemove

The general formulation of a worthwhile move is given in Soubeyran [49,50]. It includes different
variants. Here, to help the reader, we consider, first, one of its simplest formulations, and, then,
present a specific formulation well adapted to the mathematical part of the paper.

5.2.1. An example of a worthwhile individual move
If, in the previous and current periods, an agent performs the bundles of activities x ∈ X and y ∈ X,
then, x � y 
= x is a change, and x � y = x is a stay. Each period, the main variational question is
between choosing to stay, x� y = x or tomove, x� y 
= x, comparing scalar or vectorial advantages
and inconveniences to change rather than to stay, A(x, y) ∈ Y and I(x, y) ∈ Y , where Y = R or
Y = Rh, h ≥ 1. These advantages and inconveniences generate both motivation and resistance to
change rather than to stayM = M(x, y) = U[A(x, y)] ∈ R and R = R(x, y) = D[I(x, y)] ∈ R, where
U[A] ∈ R+ and D[I] ∈ R+ refer to positive and negative tensions (feelings), that is the utility and
disutility of these advantages and inconveniences (more general formulations being given elsewhere).
A move x � y is worthwhile if motivation to change rather than to stay is high enough relative to
resistance to change rather than to stay, that is, if M(x, y) ≥ ξR(x, y), where ξ > 0 defines the term
‘high enough’. Let us see the simplest example of an advantage and an inconvenience to change rather
than to stay.

An example of advantages to change rather to stay. Suppose that, in the current period, an agent,
doing a bundle of activities y ∈ X, gets the scalar payoff (profit, utility) g(y) ∈ R, while doing again
the previous bundle of activities x ∈ X, gets the payoff g(x) ∈ R. Then, his advantages to change
rather than to stay areA(x, y) = g(y)−g(x), if they are nonnegative. If g = sup

{
g(z), z ∈ X

}
< +∞

represents the aspiration of this agent, then, f (y) = g− g(y) ≥ 0 refers to his residual unsatisfaction
at y. This shows that A(x, y) = g(y) − g(x) = [

g − f (y)
] − [

g − f (x)
] = − [

f (y)− f (x)
]
, that is

A(x, y) = −F(x, y), where F(x, y) = f (y) − f (x) ≥ 0 refers to losses of changing, when they are
nonnegative (unsatisfaction increases with changing).

An example of inconveniences to change rather than to stay. In a simple and scalar case, incon-
veniences to change rather than to stay, I(x, y) = C(x, y) − C(x, x) ≥ 0, refer to the nonnegative
difference between costs of being able to change, C(x, y) ∈ R+, and costs of being able to stay,
C(x, x) ∈ R+. Usually C(y, x) 
= C(x, y). If, furthermore, C(x, x) = 0, and C(x, y) > 0 when y 
= x,
then, q(x, y) = I(x, y) = C(x, y) ≥ 0 defines a quasi distance on X. See [47] for an explicit example.
Notice that costs of being able to change C(x, y), i.e. capability costs, must not be confused with
traditional costs of doing, that is execution costs ρ(y) ∈ R+. These costs of doing ρ(y) appear in the
payoff g(y) = r(y)− ρ(y), where r(y) ∈ R+ are revenues.

Linear utility and disutility. In this simple example, as well as in the present paper, we will suppose
that U[A] = A, and D[I] = I. Then, a move x � y 
= x is worthwhile if A(x, y) ≥ ξ I(x, y), that is, if
g(y)− g(x) ≥ ξk(x)q(x, y).

5.2.2. An example of a worthwhile collectivemove
Consider a group of agents J = {1, 2, . . . ,m} which perform, in the current period, a collective
activity y = {

y1, · · · , yj, . . . , ym
} ⊂ X. Each agent j of the group J carries out the individual

bundle of activities yj ∈ X and benefits from the individual payoff gj(y) ∈ R. The collective payoff
of the group is the vector g(y) = (g1(y), . . . , gj(y), . . . , gm(y)) ∈ Y = RJ . Suppose that the goal
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of each agent is to improve his individual payoff. The ideal collective payoff of the group is g =
(g1, . . . , gj, . . . , gm), where gj = sup

{
gj(z), z ∈ X

}
< +∞ is the agent j aspiration and fj(y) = gj−

gj(y) ≥ 0 is his residual need (unsatisfied aspiration), the collective vector of unsatisfactions being
the vector f (y) = (f1(y), . . . , fj(y), . . . , fm(y)) ∈ Y . Then, collective advantages to change rather than
to stay are A(x, y) = g(y) − g(x) = −F(x, y) ∈ K ⊂ Y , while collective losses of changing rather
than staying are F(x, y) = f (y)− f (x) ∈ K , where K is a nonnegative cone.

Collective costs of being able to change rather than to stay areC(x, y) = (C1(x, y), . . . ,Cj(x, y), . . . ,
Cm(x, y)) ∈ K . Then, if they are nonnegative, collective inconveniences to change rather than to stay
are I(x, y) = C(x, y)− C(x, x) ∈ K .

A collective worthwhile move is a worthwhile move for all members of the group, that is,
A(x, y) ≥K ξ I(x, y).
In order to define individual capability costs Cj(x, y) ∈ R+ for each member j ∈ J of the group,

the group can estimate a total capability cost C(x, y) ∈ R+ and shares it between its members,
Cj(x, y) = θj(x)C(x, y), where�j∈Jθj(x) = 1, θj(x) > 0, j ∈ J .

The total capability cost being a scalar quasi distance, C(x, y) = q(x, y) ∈ R+, the vector of
individual capability costs is

C(x, y) = θ(x)q(x, y), where the vector of shares is
θ(x) = (θ1(x), . . . , θj(x), . . . , θm(x)) ∈ K \ {0} .
In this case inconveniences to change rather than to stay are I(x, y) = θ(x)q(x, y). Then, a

collective move is worthwhile if gj(y)− gj(x) ≥ ξθj(x)q(x, y), ∀j ∈ J , that is,
A(x, y) ≥K ξθ(x)q(x, y), i.e. F(x, y)+ ξθ(x)q(x, y) ≤K 0.

5.2.3. An example of an individual worthwhilemovewithmultiple objectives
Consider, as before, an agent who performs a bundle of activities y ∈ X in the current period, in
order to satisfy several different objectives

(g1(y), . . . , gj(y), . . . , gm(y)),

instead of a scalarized objective g(y) = �j∈Jwjgj(y), wj > 0 for j ∈ J . Then, the agent will have
to practice mental accounting (Thaler [56]) to allocate the given total capability cost C(x, y) ∈ R+
between his different activities to be able to compare each advantage to change rather than to stay
Aj(x, y) = gj(y) − gj(x) with the related inconvenience to change rather than to stay, Ij(x, y) =
Cj(x, y)−Cj(x, x), j ∈ J .Mental accounting allocates to each objective j the capability cost Cj(x, y) =
θj(x) C(x, y), where ,�j∈Jθj(x) = 1, θj(x) > 0, j ∈ J . Then, as before, a worthwhile move is such that
gj(y)− gj(x) ≥ ξCj(x, y), j ∈ J .

5.3. The (VR)modelization of a robust worthwhilemove

Let us show how the mathematical part of the present paper considers robust worthwhile moves,
when vectorial advantages to change depend of an uncertain parameter s ∈ S which belongs to
a given subset S. In this way our set valued Ekeland equilibrium theorem gives a robust version
of a vectorial equilibrium problem. This robust variational principle must be related to robust
optimization programs minx∈X

{
f (x/s), s.t F(x/s) ∈ K ⊂ Rm}

, (Ben-Tal and Nemirovski [57]; Ben
Tal et al. [51]), where s ∈ S is the data element of the problem and x is a decision variable. The data
may be partly or fully ‘uncertain’, and all that is known about the data vector is that it belongs to a
given uncertainty set S.Moreover the constraints F(x/s) ∈ K must be satisfied, whatever the actual
realization of s ∈ S.

5.3.1. The presence of uncertain data s
In this paper, at the level of a group, let us suppose that vectorial advantages to change rather than
to stay A(x, y, s) = (g(y/s) − h) − g(x/s) = f (x/s) − (f (y/s) + h) = −F(x, y, s), where h > 0
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modelizes the presence of a statu quo bias (see below), depend on some uncertain data s ∈ S
while vectorial inconveniences to change rather than to stay I(x, y) do not. We also suppose that
I(x, y) = kq(x, y),where k ∈ K � {0} . This means that shares of the total costs are held constant,
that is θ(x) = k. Then, a robust worthwhile change is such that A(x, y, s) ≥K ξ I(x, y) for all s ∈ S,
where the worthwhile to change ratio ξ = ψ(x) > 0 depends of the statu quo. In terms of losses of
changing, we get F(x, y, s)+ kψ(x)q(x, y) ≤K 0 for all s ∈ S.

Notice that the presence of uncertain data defines uncertain preferences which depend both on
the known statu quo x and the uncertain data s ∈ S, that is, y ≥x,S x iff A(x, y, s) ≥K ψ(x)I(x, y) for
all s ∈ S, where ξ = ψ(x). This situation differs from the case of variable preferences, when weights
over the different objectives change, that is, when the cone K = K(x) is changing with the statu quo
(Bao et al. [44–46]).

5.3.2. Hypothesis relative to F
Let us write F(x, y) = (F(x, y, s) : s ∈ S), where F(x, y, s) = −A(x, y, s) as above.

The subadditivity hypothesis.Eidelman andCrandall [58] defined the statu quobias as an emotional
bias, a preference for the current state of affairs, the status quo being taken as a reference point, and
any change from it being perceived as a loss. When there are uncertain data s ∈ S, the variational
rationality approachmodelizes the status quo bias as follow. Advantages to change from the statu quo
x to y include a statu quo bias h > 0whenA(x, y, s) = (g(y/s)−h)−g(x/s) if y 
= x andA(x, x, s) = 0
if y = x for all s ∈ S. This shows that A(x, z, s) ≥ A(x, y, s) + A(y, z, s) for all x, y, z ∈ X, and all
s ∈ S. Then,

(i) if z 
= x and y 
= x, y 
= z, A(x, z, s) = (g(z/s)− h)− g(x/s) =[
(g(y/s)− h)− g(x/s)

] + [
(g(z/s)− h)− g(y/s)

] + h.
This shows that A(x, z, s) = A(x, y, s) + A(y, z, s) + h, which implies that from F(x, y, s) =
−A(x, y, s),
F(x, z, s) = F(x, y, s)+ F(y, z, s)− h.

(ii) if z 
= x and y = x or y = z,A(x, z, s) = A(x, y, s)+A(y, z, s). That is, F(x, z, s) = F(x, y, s)+
F(y, z, s).

This shows that F(x, z) ⊂ F(x, y)+ F(y, z)− K .
Other hypothesis on F. Their interpretations are the following.

(i) it exists x0 ∈ X such thatF(x0, x0) ⊂ −K means that reference dependent vectorial advantages
to stay A(x, x, s) ≥ 0 are non negative for all s ∈ S.

(ii) it exists α ∈ R, it exists s0 ∈ (−∞,+∞)k0 −K such that F(x0,X)∩ (− s0 + (−∞,+∞)k0 −
K) = ∅ tells us that losses A(x0, y, s) are bounded above in a given direction.

(iii) F is left K-slm in (X, q) is a regularity hypothesis.
(iv) ψ : X → (0,+∞) is such that ψ(x′) ≥ ψ(x) if F(x, x′) ⊂ −K , means that the worthwhile to

change ratio ξ = ψ(x) > 0 must increase when the agent or the group makes an improving
change from x to x′, that is, when A(x, x′) ≥K 0. This hypothesis refers to the goal gradient
hypothesis (Locke and Latham [59]; Kivetz et al. [60]), that is, as humans and other animals
approach reaching a goal, their efforts towards that goal increase, because the more, each step,
they want to improve.

For an explicit example of F(x, y, s) where F(x, y, s) = −A(x, y, s) and A(x, y, s) = (g(y/s)− h)−
g(x/s), the reader can consider [47], where, in the dynamical context of the famous O Ring theory
of the limit of a firm, g(x) = ϕ

[
Q(x), s(x)

] − ρ(x) refers to the current profit of the firm, using a
Cobb Douglas production function, the terminology coming from the NASAApollo program. In the
present paper, g(x/s) = ϕ

[
Q(x), s(x), s

] − ρ(x, s) generalizes g(x), via the introduction of uncertain
data ‘s’ (which have nothing to do with s(x), which represents, in [47], the endogenous quality of the
final good produced by the firm).
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5.4. EVP principles as sufficient conditions for the existence of robust traps

We are now in a good position to see the behavioural signification of our set valued Ekeland
equilibrium Theorem 3.1. Given the behavioural interpretation of all the hypothesis listed in this
theorem (see before), this result shows that, starting from any initial position x0, there exists a robust
trap x ∈ X such that,

(a) it is worthwhile to directly move from x0 to x, for all s ∈ S, i.e. vectorial advantages to
change rather than to stay, A(x0, x, s), are high enough, more than ψ(x0) > 0, relative to vectorial
inconveniences to change rather than to stay, I(x0, x) = q(x0, x)k0 for all s ∈ S.That is,A(x0, x, s) ≥K
ψ(x0)q(x0, x)k0 = ψ(x0)I(x0, x), which is equivalent to, in term of set valued losses of changing,

F(x0, x)+ ψ(x0)q(x0, x)k0 ⊂ −K .
(b) it is not worthwhile to change, starting from this robust trap x, whatever is s ∈ S. That is,
∀x ∈ X\{x}, ∃s ∈ S such that A(x, x, s) �K ψ(x)q(x, x)k0, or in terms of vectorial losses of

changing,
∀x ∈ X\{x}, ∃s ∈ S such that F(x, x, s)+ ψ(x)q(x, x)k0 �K 0.
The set valued formulation follows.
Then, our EVP principle shows in which circumstances traps exist and are robust to the unknown

influences s ∈ S of the external and internal environments of an agent or group of agents, like different
possible experiences, contexts, physiological, physical, cognitive, emotional and social states, and
reference points (including the statu quo, reservation values and aspirations) which lead to variable
preferences. This is an important result in Behavioral Sciences, because it shows that, even in a world
where so many things can change, an agent or a group of agents can be stucked in the middle, in
a robust trap, being unable to reach his desires at the end. Then, variable preferences coming from
the difficulty to predict the internal and external environment do not forbidd the existence of traps.
As an application, this confirms, in a dynamic setting, the importance of the revolution offered by
Kahneman and Tversky [61], Tversky and Kahneman [62], who emphasized the role of reference
dependent preferences in static decision-making theory.
Remark: To save space, the interpretation of results given in Section 4 on equilibrium problems,
vector optimization and fixed point theorems in term of robust desired ends (robust desires) will be
given elsewhere, using the (VR) variational rationality approach of human dynamics [49,50].
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