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ABSTRACT
In this paper, we propose a new variance reduction method for quantile regressions with 
endogeneity problems, for alpha-mixing or m-dependent covariates and error terms. First, we 
derive the asymp-totic distribution of two-stage quantile estimators based on the fit-ted-value 
approach under very general conditions. Second, we exhibit an inconsistency transmission 
property derived from the asymptotic representation of our estimator. Third, using a reformula-
tion of the dependent variable, we improve the efficiency of the two-stage quantile 
estimators by exploiting a tradeoff between an inconsistency confined to the intercept estimator 
and a reduction of the variance of the slope estimator. Monte Carlo simulation results show the 
fine performance of our approach. In particular, by com-bining quantile regressions with first-
stage trimmed least-squares estimators, we obtain more accurate slope estimates than 2SLS, 
2SLAD and other estimators for a broad set of distributions. Finally, we apply our method to 
food demand equations in Egypt.
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1. Introduction

This paper considers an innovative strategy to improve the efficiency of the estimation 
of some regression models, especially when there is some interest in the distribution of 
effects. Improving the efficiency of estimates under endogeneity has always been a chal-
lenge as many attempts to correct for endogeneity, e.g., by using instrumental variables, 
much increase the asymptotic and small sample variances of the estimators. We focus 
on the estimation of a structural equation using quantile regression. Since the seminal 
work by Bassett and Koenker (1978) and Koenker and Bassett (1978), the literature on 
quantile regression has grown rapidly. However, models estimated with this method 
often involve endogenous variables, which lead to inconsistent estimation.
These endogeneity issues can be dealt with different approaches all based on some 

kind of instrumental or identifying variables. However, the often relatively low accuracy 
of quantile regressions (e.g., as compared to OLS in cases close to normality) is gener-
ally further deteriorated by these procedures, due to the imperfect correlation of instru-
ments with the endogenous independent variables.
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In this paper, we consider the ‘fitted-value approach’ of dealing with these endogene-
ity issues because it allows us to propose and exploit a new method of variance reduc-
tion for quantile regressions. This implies to consider two estimation stages: first, an 
ancillary estimation of the fitted-values for the endogenous regressors, based on a set of 
exogenous independent variables; and second, the final estimation of the structural 
equation in which the endogenous regressors are substituted with their fitted-values.
A concrete empirical example that we shall use in our practical illustration is that of 

food demand Engel curves from household survey data. The dependent variable is the 
budget share of a given consumption category, say food for example. The main inde-
pendent variable is typically the household total consumption expenditure. In that case, 
the total expenditure variable is likely to be endogenous, firstly, because any measure-
ment error in the dependent variable, for example due to omissions of food transactions 
during the collection, should also appear in the total expenditure variable. Secondly, 
other factors may simultaneously affect both kinds of expenditure variables. We show 
results for such an example in our application in Sec. 5.
In social sciences, other empirical contexts where two-stage IV estimation is con-

venient are for equations of individual agent outcomes or individual decisions, as they 
generally involve endogenous independent variables. Some sources of such 
endogene-ity are common data contamination of dependent and independent 
variables, unob-served heterogeneity correlated with both kind of variables, and 
possibly two-side causality issues. Consider for example an individual wage 
equation for a sample of workers, in which the dependent variable (yt) is the 
logarithm of individual wage rate, while the two independent variables in this 
equation are a dummy variable for the industrial sector (x1t ) and the 
worker’s education level  (Yt). The individual birth quar-ter (x2t ) is often used as an 
instrument for the education level that is typically sus-pected to be the sole 
endogenous independent variable in the structural model, as in Angrist and Krueger 
(1991).

In other sciences, any common unobserved factors simultaneously correlated 
with dependent and independent variables would generate the same kind of endogeneity 
issues. For example, in medical sciences, an unobserved climatic factor (say, rains in 
tropical areas) may simultaneously affect (1) health status through disease such as malaria 
due to the multi-plication of anopheles mosquitoes, and (2) transport costs due to flooded 
roads. In that case, understanding some changes in infant weights, which may reflect 
inefficient health care delivery in villages, may be hampered by endogeneity issues. In this 
context, examining low quantiles may be vital as they are typically related to measures of 
child malnutrition.
A leading issue with the instrumentation strategy in statistics to deal with endogene-

ity problems is that it generally much diminishes the accuracy of estimates. Then, 
improving estimation efficiency is crucial. An example of a method to improve effi-
ciency in statistics is by ‘shrinking’ a given estimator towards a fixed point or a data-
dependent point. In their seminal work, Stein (1955) and James and Stein (1960) 
showed the inadmissibility of the LS estimator and introduced shrinkage methods based 
on an “optimal trade-off” between consistency and efficiency. This research direction 
has now given birth to a large literature.1 Other approaches combining estimators with

1For example: Green and Strawderman (1991), Judge and Mittelhammer (2004), Tong and Wang (2007), Liang et 
al.(2011), Raheem et al. (2012).



the aim of reducing variance are also used in the literature exploiting ‘control variate’ 
settings, e.g. Henderson et al. (2012) for combinations of contaminated measurements, 
or Cheng and Peng (2007) recently for local likelihood models.
In all these cases, the optimal combination weight of the considered estimation is 

determined by minimizing the asymptotic variance of the combined estimator.2 

However, this approach is unattractive for the above two-stage estimation because it 
either makes the entire estimator inconsistent, (i.e., all coefficients of the model are 
affected by inconsistencies with shrinking estimators), and/or it requires the estimation 
of the joint distribution of the two combined estimators.

In this paper, in order to raise the efficiency of two-stage quantile regression esti-
mators, we build on Amemiya (1982) and Powell (1983) for two-stage LAD and we

combine the dependent variable yt with its fitted value ŷt from a preliminary estima-
tion, using a weight q, so that qyt þ ð1�qÞŷt can be used as the dependent variable 
in the final stage of a two-stage quantile regression. This method was never analyzed
comprehensively in general random settings. In particular, its complete asymptotic 
properties have never been established, extensive finite-sample properties have not 
been studied, and the method has never been empirically applied. As a consequence, 
the performance of this approach was unknown, and we fill this gap. We also ana-
lyze how the combination weight q can be determined optimally and estimated 
consistently.
Then, we make several contributions. First, we derive the asymptotic distribution 

and the variance-covariance matrix of the two-stage quantile estimator under very 
general conditions on both error terms and explanatory variables. Second, we exhibit 
an ‘inconsistency transmission property’ that characterizes the asymptotic representa-
tion of our estimator. We then use this property to facilitate the analyses of the link 
of the reduced-form and structural models, and to confine inconsistencies on the 
intercepts. Third, we propose estimators of optimal weights in redefined dependent 
variables in order to raise the efficiency of the slopes for two-stage quantile 
regressions.
We show theoretically, with Monte Carlo simulations, and empirically, that using the 

‘optimal’ composite dependent variable can substantially enhance the efficiency of the 
slopes of the two-stage quantile estimator, notably when compared to 2SLS or 2SLAD.
Note that although the estimators of the coefficients of the independent variables are 

consistent, allowing for analyses of explanatory or correlation structures, the predictor 
of the quantile levels emerging from the regression is generally inconsistent because of 
the inconsistent estimator of the intercept. Therefore, even though the estimation results 
can be used for inferences about the effects of independent variables, they cannot be 
used for inferences about the estimated quantile levels.
The paper is organized as follows. Sec. 2 discusses the model and the two-stage quan-

tile regression. In Sec. 3, we show the asymptotic properties of the two-stage quantile 
regression estimator. In Sec. 4, we present Monte Carlo simulation results. In Sec. 5, we 
apply our method to Engel curve estimation. Finally, Sec. 6 concludes. All technical 
proofs are collected in Appendix A.

2For example, see James and Stein (1960), Sen and Saleh (1987), and Kim and White (2001).



2. The model and the two-Stage Quantile Regression Estimators

We are interested in estimating the parameter (a) in the following structural equation 
by quantile regression:

yt ¼ x01tbþ Y 0
tcþ ut ¼ z0taþ ut; (1)

for t ¼ 1; :::;T and where ½yt;Y 0
t � is a ðGþ 1Þ row vector of endogenous variables, x01t is

a K1 row vector of exogenous variables, zt ¼ ½x01t;Y 0
t �0; a ¼ ½b0; c0�0 and ut is an error

term. We denote by x02t the row vector of the K2 exogenous variables excluded from (1).
By assumption, the first element of x1t is 1. This crucial assumption will allow us to

confine inconsistencies to an intercept parameter, often less interesting for analysts than
the slope coefficients. We further assume that Yt can be predicted from the exogenous
variables using the following linear equation that is assumed to be correctly specified:

Y 0
t ¼ x0tPþ V 0

t ; (2)

where x0t ¼ ½x01t; x02t� is a K row vector with K ¼ K1 þ K2 , P is a K�G matrix of
unknown parameters and V 0

t is a G row vector of unknown error terms. The DGP will
be completed by Assumptions 2 (or 20 ) and 3(iv) below. However, we first discuss the
reduced form as the restriction on errors in the DGP will be more conveniently
expressed in terms of the reduced-form errors.
Using (1) and (2), yt can also be expressed as follows:

yt ¼ x0tpþ vt; (3)

for t ¼ 1; :::;T and where

p ¼ H Pð Þa with H Pð Þ ¼ IK1

0

� �
;P

� �
(4)

P̂

and vt ¼ ut þ Vt
0c:

Eqs. (2) and (3) are the basis of the first-stage estimation that yields estimators p̂ and 
respectively of p and P. This is important for this paper because, first, we follow the fit-
ted-value approach that requires a preliminary estimation of P and, second, we use a 
reformulation of the dependent variable that requires a preliminary estimation of p.
There are two strands in the literature about quantile regression in the presence of endo-

geneity. The first one, which we call the ‘structural approach,’ corresponds to models 
specified in terms of the conditional quantile function of the structural equation and usu-
ally allows for heterogeneous (or non-constant) quantile effects.3 On the other hand, the 
second one, which we refer to as the ‘fitted-value approach,’ is based on the conditional 
quantile function of the reduced-from equation. In the latter approach, the analysts substi-
tute the endogenous regressors with their fitted values obtained from some auxiliary 
regression. As mentioned in Blundell and Powell (2006) in relation to the fitted-value 
approach: “the reduced-form for y may be of interest if the values of instrumental variables 
are control variables for the policy maker.” For example, social program targeting can be

3The literature on the structural approach for quantile regressions is abundant. See for example: Kemp (1999), MaCurdy 
and Timmins (2000), Abadie et al. (2002), Chen et al. (2003), Hong and Tamer (2003), Honore and Hu (2004), 
Chernozhukov and Hansen (2005, 2006, 2008a,b), Ma and Koenker (2006), Chernozhukov, Imbens and Newey (2007), 
Lee (2007), Sakata (2007).



improved by using individual living standard predictions based on exogenous correlates 
and descriptive quantile regressions, for example to better focus transfer schemes on the 
poor (Muller and Bibi 2010). We follow the fitted-value approach in this paper because it 
will allows us to develop a new variance reduction method, which is not possible with the 
structural approach.
The fitted-value approach has been used empirically to estimate homogeneous (or 

constant) quantile effects.4 The theoretical foundation for the fitted-value approach was 
first laid by Amemiya (1982) and Powell (1983) who investigated the two-stage least-
absolute-deviations estimator in a simple setting. Chen (1988) and Chen and Portnoy 
(1996) study two-stage quantile regression in which the trimmed least squares (TLS) 
and least absolute deviations (LAD) estimators are employed as the first-stage estima-
tors, assuming that the error terms are independent and identically distributed. Kim 
and Muller (2004) use a similar approach with instead quantile regression in the first 
stage. Although the fitted-value approach has sometimes been used in applied work in 
which data are affected by serial correlation and heteroskedasticity, no theoretical results 
under such general conditions have been provided.

So far, we did not mention any restriction on errors. The precise error restrictions 
will be introduced below in Assumptions 3 and 4 when dealing with examples of first-
stage estimators. This is because we wish to keep the framework as general as possible 
until we deal with these examples. However, to set ideas, the reader may consider con-
ditional quantile or conditional mean restrictions on vt in the fitted-value approach.
Let us now say more about two-stage quantile regressions in our setting. For any quan-

tile h
function.

2 ð0;
If
1Þ,
the
we define
orthogonality

qhðzÞ ¼ zw
conditions,

hðzÞ; 
E
where

z 
wh

u
ðzÞ ¼  

0
h�1½z

were
�0� and

satisfied,
1½:� is

then
the 

the
indicator

usualð twhð tÞÞ ¼ ; one-stage quantile regression 
estimator (QR) would be consistent. However, when ut and
Yt (a sub-vector of zt) are statistically linked under weak endogeneity of Yt, these condi-
tions may not be satisfied. In that case, the QR of a is generally not consistent. This is the 
endogeneity problem that prevents us from using elementary quantile regressions.

As an extension of Amemiya (1982), Powell (1983) and Chen and Portnoy (1996) to
more general DGPs, we define, for any quantile h, the Two-Stage Quantile Regression
(2SQR(h; q)) estimator â of a as a solution to the following program:

min
a

ST a; p̂; P̂; q; h
� �

¼
XT
t¼1

qh qyt þ 1�qð Þŷt�x0tH P̂ð Þa
� 	

; (5)

where ŷt ¼ x0tp̂ , q is a positive scalar constant, and p̂; P̂ are first-stage estimators. In
the quantile regression in (5), the dependent variable q

yt þ ð1�qÞŷt is a weighted aver-
age of yt and of its fitted-value ŷt obtained from the reduced-form equation in (3). The
combination weight q is restricted to be positive for a technical reason discussed in the
proof of Theorem 1 below. Alternatively, as in Powell (1983), the case q negative is also
possible
The 

by
reformulation

imposing h
of
¼ 0
the
:5, i.e.,

dependent
with the

variable
LAD 

as
estimator.

qy 

5

t þð1�qÞŷt was originally sug-gested by Amemiya 
(1982) to improve efficiency under normality in two-stage

4For example, Arias et al. (2001), Garcia et al. (2001), Chevapatrakul et al. (2009) and Chortareas et al. (2012).
5Powell does not deal with variance reduction, while he considers the case of OLS in the first stage and LAD in the 
second stage.



P

estimation with 0<q<1 and LAD second-stage estimators. In our setting, the case q ¼ 1
corresponds to the usual two-stage quantile regression estimator, while q ¼ 0 corre-
sponds to the inverse regression estimator under exact identification. Thus, the new
dependent variable introduces a tradeoff between two estimation methods. Chen and 
Portnoy (1996) use LS and Trimmed LS estimators in the first stage and quantile regres-
sion estimators in the second stage, relaxing the normality assumption in Amemiya, 
while they do not consider the reformulation of the dependent variable.

3. Asymptotic properties of the 2SQR estimator

3.1. Hypotheses

It is generally possible to employ consistent estimators in the first stage. However, in 
order to exploit later on a tradeoff between bias and efficiency, we allow in Assumption 
1 for inconsistent first-stage estimation with bounded asymptotic bias terms. This form 
is convenient for including the contribution of first-stage estimators in the asymptotic
distribution of our final estimator. The precise restrictions on vt and Vt corresponding 
to p and P will be brought up later on.

Assumption
1=
1.
2 ^
There exist finite bias vectors Bp and BP such that T1=2ðp̂�p�BpÞ ¼

Opð1Þ and T ð �P�BPÞ ¼ Opð1Þ.
Assumption 1 allows for primitive assumptions that will be developed for each special

case of interest later on (Assumption 30 for OLS, Assumption 300 for Trimmed Least 
Squares), as explained in Subsection 3.4. In the current form, it preserves the possibility 
of extending our analysis to other first-stage estimators if wished. When the inconsist-
ency terms Bp and BP are vanishing as T ! 1, the first-stage estimators are consistent. 
A case of inconsistency is when the reduced-form equation in (3) is estimated by LS to
produce the first-stage estimator p̂ , whereas the usual conditional quantile restriction
(i.e., the zero quantile restriction) is placed on vt in the same equation. In that case, the
zero mean restriction on vt cannot be simultaneously satisfied in general. This implies 
that the intercept estimator in p̂ is inconsistent.
We now specify the hypotheses for the data generating process.

Assumption 2. The sequence fðx0t; ut; vtÞg is a�mixing with mixing numbers faðsÞg of 
size �2ð4K þ 1ÞðK þ 1Þ.

Assumption 20. The sequence fðx0t; ut; vtÞg is m-dependent.

Assuming an a-mixing process is assuming an asymptotic independence property.6 It 
corresponds to an unusual generality for the DGPs considered in the quantile regression 
literature. One step in this direction was made by Portnoy (1991), who derived asymp-
totic results of quantile estimators in dependent and even non-stationary cases, using 
m(n) -decomposability of random variables. Using a-mixing hypotheses not only avoids

6The sequence fWtg of random variables is a�mixing if aðsÞ decreases towards 0 as s ! 1, where
aðsÞ ¼ supt supA2Ft�1 ;B2F1tþs

jPðA \ BÞ�PðAÞPðBÞj
for s � 1 and Fts denote the r-field generated by ðWs; :::;WtÞ for �1 � s � t � 1. The sequence is called a�

mixing of size – a if aðsÞ ¼ Oðs�a�eÞ for some e>0.



to have to decide the relevant value of m to assume for m -dependent processes, but 
also allows for some heterogeneity in the m, and for long term memory. Finally, it cap-
tures the idea that the dependence may be vanishing asymptotically. In that sense, it 
seems to be more plausible than m-dependence for many scientific or economic phe-
nomena. For example, Chen, Hansen and Carrasco (2010) have shown that stationary 
diffusion that may approximate some stable physical processes, are a-mixing. In particu-
lar, in finance analyses, bond prices can be described with a -mixing processes.
To obtain the asymptotic distribution of the 2SQR(h; q) estimator, we impose the fol-

lowing usual regularity conditions.

Assumption 3.
(i) HðPþ BPÞ is of full column rank.
(ii) Let Ftð:jxÞ be the conditional cumulative distribution function (CDF) and

ftð:jxÞ be the conditional probability density function (PDF) of vt. The condi-
tional PDF ftð�jxÞ is assumed to be Lipschitz continuous for all x, strictly posi-
tive and bounded by a constant f0 (i.e., ftð�jxÞ<f0, for all xÞ.

(iii) The matrices Q ¼ limT!1 E 1
T

PT
t¼1 xtx

0
t

h i
and Q0 ¼ limT!1

E 1
T

PT
t¼1 ftð0jxtÞxtx0t

h i
are finite and positive definite.

(iv) EðwhðvtÞjxtÞ ¼ 0, for an arbitrary h.
There exists a positive number C

(v) > 0 such that Eðkxtk3Þ<C<1 for any t.

Assumption 3. (v0) xt is a bounded random vector.

Assumption 3(i) is analogous to the usual identification condition for simultaneous
equations models. The inconsistency term BP appears in the condition because the
first-stage estimator converges towards P þ BP. Assumption 3(ii) simplifies the demon-
stration of convergence of some remainder terms to zero for the calculation of the
asymptotic representation.
The second part of Assumption 3(iii) is the counterpart of the usual condition for 

OLS that the sample second moment matrix of the regressor vectors converges towards 
a finite positive definite matrix, which corresponds to the first part. In the case when
OLS were used for estimating P and a, Assumption 3(i) jointly with the first part of
Assumption 3(iii) would ensure that E½xtYt� 6¼ 0. When other estimators are used for P, 
and when a is estimated using quantile regression in the second stage, identification
results from Assumption 3(i) and the second part of Assumption 3(iii), as we shall dis-
cuss in the proof of Theorem 1. The last condition is akin to the one in the conven-
tional IV approach since it is necessary for consistency and for the inversion of the
relevant empirical process to establish asymptotic normality.

Assumption 3(iv) is the assumption that zero is the given hth -quantile of the condi-
tional distribution of vt. It identifies the coefficients of the model. Assumption 3(v), the 
moment condition on the exogenous variables, is necessary for the stochastic equiconti-
nuity of our empirical process, which is used to derive the asymptotic representation in
the m�dependent case of Assumption 20 . We also use it to limit the asymptotic covari-
ance matrix of the parameter estimators. The conditions on the exogenous regressors
are weaker than what is usually employed in the two-stage quantile regression literature.



However, if one wishes to extend the results to the a�mixing case of Assumption 2, 
then Assumption 3(v) must be replaced by the stronger Assumption 3(v0).
Assumption 3(iv) is central to our fitted-value approach. As traditional in the fitted-

value approach, the conditional quantile restriction is placed on the reduced-form error 
vt and the information set used for the conditional restriction exclusively consists of 
exogenous variables xt. It has been used in simpler settings in Amemiya (1982), Powell 
(1983), Chen and Portnoy (1998) and Kim and Muller (2004).
Given that vt is a function of the structural error ut and the prediction equation error 

Vt, interpreting the quantile restriction in Assumption 3(iv) may not appear to be 
straightforward, although it has been used for a long time in the literature. One justifi-
cation for Assumption 3(iv) is when the reduced form is interesting in itself, for 
example for policy makers using it to assess the effect of exogenous correlates on the 
dependent variable, without involving any structural reasoning. A case in which 
Assumption 3(iv) is satisfied is when ut and Vt are independent of the xt, which implies 
that vt is independent of the xt by construction. Finally, if one considers the most gen-

Y
eral 

E Y x
reduced-form

. In that
model
case, 

for
one 

the
would have

conditional
by 

mean,
construction

one 
E
would

v x 
have

0 . As
instead

a 
v

conse-
t � 

t� ð tj tÞ ð tj tÞ ¼  quence, 
replacing xt in (3) with some high degree polynomials of the xt may approxi-
mate EðYtjxtÞ well enough to allow the assumption that vt � Yt�x0tP satisfies 
approximately EðvtjxtÞ ¼  0. The same kind of approximation reasoning can be 
applied to EðwhðvtÞjxtÞ in Assumption 3(iv). Obviously, such an approach would work 
only if enough exogenous variables and large samples are available.
Under Assumption 3(iv), only constant effect quantile models can be specified and 

estimated. In that case, the intercept estimates for different quantile indices describe the 
parallel shifts in the unconditional quantiles of the error term.
Despite being limited to constant effect quantile models, the fitted-value approach 

has several advantages worth mentioning. First, it is computationally inexpensive, even 
with a large number of endogenous and exogenous variables. Second and chiefly, con-
sidering the fitted-value approach provides us with an opportunity to develop a new 
powerful method of variance reduction. We now study the asymptotic properties of 
2SQR(h; q) in the next section.

3.2. The asymptotic representation

Combining Lemma 1 in Appendix B and Assumption 2 allows us to obtain the asymp-

totic representation for the 2SQR(h; q ) estimator, with a possible bias term Ba, 
as follows.

Theorem 1. Suppose that Assumptions 1-3 and 3(v0 ) hold, or that Assumptions 1, 20 

and 3 hold. Then, the asymptotic representation for the 2SQR(h; q) estimator is:
T1=2 â�a�Bað Þ ¼ RT�1=2

XT
t¼1

xtqwh vtð Þ þ 1�qð ÞRQ0T
1=2 p̂�p�Bpð Þ

�RQ0T1=2 P̂�P�BP

� �
cþ op 1ð Þ;

where



Ba¼RQ0fð1�qÞBp�BPcg;R¼Q	�1
zz HðP	Þ0;Q	

zz¼HðP	Þ0Q0HðP	 ) and P	 ¼PþBP:

P

The asymptotic representation of 2SQR(h; q) is composed of four additive right-hand-
side terms. The first term does not perturb consistency under Assumption 3(iv) and 
corresponds to the contribution of the second stage to the uncertainty of the estimator.

The second and third terms correspond to the respective contributions of p̂ and P̂ to 
this uncertainty. Then, when p̂ and P̂ are consistent, it is straightforward to show that
the 2SQR(h; q) is consistent. If q ¼ 1, the influence of p̂ vanishes. The presence of the 
component in p̂ may imply contradictions between some chosen restrictions on errors
in the first and second stages and cause inconsistencies, which will be explained in
detail in the next section. The formula of Ba is obtained as the value allowing
T1=2ðâ�a�BaÞ ¼  Opð1Þ , and is derived from the first-order conditions of the second-

stage estimation, which is discussed in detail in Appendix A. We note that the consist-
ency of â to a þ Ba naturally follows from Theorem 1.

3.3. The inconsistency

In this section, we show how an inconsistency on the intercept of the first-stage estima-

tor can be appropriately dealt with the 2SQR(h; qÞ. One reason why this result has not 
been exhibited in the literature may be that in the traditional approach of examining
the conditional quantile defined as the inverse of the conditional distribution function, 
it is not obvious how the inconsistency is transmitted to the two-stage estimator. Our 
analysis is based on the algebraic structure of the asymptotic representation. This repre-
sentation implicitly includes a projection that conveys the asymptotic properties of the 
first-stage estimators to the two-stage estimator. We shall show that this implies that 
inconsistencies on the intercepts of the first-stage estimators affect exclusively the inter-
cept of the two-stage estimator.

According to the asymptotic representation in Theorem 1, inconsistencies in p̂ and
in P̂ are transmitted to the 2SQR(h; q) through the matrix RQ0. This feature occurs for 
any two-stage estimation procedure that shares the same algebraic structure for the 
asymptotic representation.

To isolate the intercept of the first-stage estimators, we decompose matrix Q0 and the 
first-stage estimators p̂ and ^ as follows. Let Q0 ¼ ½Q1 Q2 � where Q1 is the first col-umn of Q0 and Q2 is a K � ðK�1Þ matrix consisting of the remaining columns of Q0,

and let p̂�p ¼
h p̂ð1Þ�pð1Þ
p̂ð2Þ�pð2Þ

i
, where p̂ð1Þ is the estimator of the constant coefficient. This

yields RQ0ðp̂�pÞ ¼ RQ1ðp̂ð1Þ�pð1ÞÞ þ RQ2ðp̂ð2Þ�pð2ÞÞ; where the first term in the right-
hand-side term is inconsistent, while the second term is consistent, by assumption. The

contribution of P̂ can be similarly decomposed. The characterization of RQ1 in the
next theorem will be useful to exhibit some features of the inconsistency of â in the 
case of consistent first-stage slope estimators.

Theorem 2. Given that R ¼ ½HðP	Þ0Q0HðP	Þ��1HðP	Þ0 and Hð�Þ is defined as in (4), 
we have



RQ1 ¼ 1
0 K1þG�1ð Þ�1

� �
:

Theorem 2 implies that, in that case, the only coordinate of â with a possible incon-
sistency is the intercept. Theorem 2 is useful because empirical researchers may often
pay little attention to the intercept term, whereas the slope coefficients often carry
clearer explanatory meaning.
Consider an example in which one performs the first-stage estimations of (2) and (3)

by using LS. In that case, since under Assumption 3(iv), the zero mean condition on vt
cannot be satisfied, the intercept LS estimator cannot be consistent.7 However, the
remaining slope coefficients can still be consistently estimated if the covariates are
exogenous. Depending on the distributional restrictions on Vt imposed by the
researcher, she may also use an estimator for P yielding an inconsistent intercept term,
although this case may be little relevant in practice.
Clearly, the researcher can eliminate the inconsistency completely by choosing q¼ 1

(i.e., not using the composite dependent variable) and by placing some suitable restric-
tion on Vt to make P̂ consistent. We propose instead to choose q 6¼ 1 and to use first-
stage estimators with inconsistent terms confined only to the intercept. In that case, the
slope coefficients in the structural equation can be consistently estimated, while its
asymptotic variance depends on q. This generates a tradeoff between the inconsistency
in the intercept estimator (the first coordinate in â) and the efficiency of the slope esti-
mator (the remaining coordinates in â). Our approach contrasts with the shrinking esti-
mators for which all of coefficients estimators are made inconsistent to reduce
their variance.
Let v	t ¼ vt�F�1

vt jxtðhÞ . Then, Eðwhðv	t ÞjxtÞ ¼ h�P½v	t � 0jxt� ¼ h�P½vt � F�1
vtjxt

ðhÞjxt� ¼
h�h ¼ 0, which describe the conditional quantile restriction characterizing v	t . As a con-
sequence, it is easy to obtain a reduced-form quantile regression restriction, provided
one accepts the introduction in the regression of a possible nuisance inconsistency term
F�1
vtjxt

ðhÞ. This term may affect all coefficients of the model, whether it is linear in xt, or
nonlinear. Let us now assume that ut and Vt are independent of ext , defined as xt from
which has been eliminated the constant variable. Since vt ¼ ut þ Vtc, this independence
restriction implies F�1

vtjxt
ðhÞ ¼ F�1

vt ðhÞ , and the nuisance term is thus confined to the
intercept. Then, according to Theorem 2, an inconsistency is generated exclusively on
the intercept term of the structural model.
However, the restriction F�1

vtjxt
ðhÞ ¼ F�1

vt ðhÞ for all h also implies constant effect in the
quantile regressions of interest. Although such characterization of instrumental variables
may be deemed to be strong by some authors, it is often the way instrumental variables
are intuitively found by empiricists: variables that are not connected at all with the
model error seen as a remainder of the explanation of the dependent variable given the
effects of explanatory variables.
On the other hand, starting instead from EðwhðvtÞjxtÞ ¼ 0 and assuming that vt and

Vt are both independent of ext , we obtain the ‘structural’ restriction Eðwhðu	t ÞjxtÞ ¼ 0,
where u	t ¼ ut�F�1

ut ðhÞ , for a structural model with the correct value of parameters,

7Unless the probability support of vt does not include the interval between the mean and the quantile of interest.



except perhaps for a non-vanishing inconsistency term F�1
ut ðhÞ on the intercept. In that

sense, under the independence assumption that F�1
vtjxt

ðhÞ ¼ F�1
vt ðhÞ for all h, reduced-

form quantile regressions and structural quantile regressions can be seen as emerging 
from akin restrictions, with perhaps the exception of the intercept.

3.4. Asymptotic normality and covariances with LS and trimmed-LS predictions

In this sub-section, we examine the case of (non-robust) LS estimation and (robust) 
trimmed-least-squares (TLS) estimation of p and P in the first stage. There are several 
reasons to consider LS estimation in the first stage. First, LS estimation is popular and 
can be readily used. Second, using LS estimation in the first stage may preserve some 
efficiency of the final two-stage quantile estimator, when errors are close to normal. 
Alternatively, using TLS in the first stage guarantees the robustness of this estimation 
stage, while some efficiency may be lost. Using twice the same quantile regression in 
both stages was studied in Kim and Muller (2004). In this special case, there is no 
inconsistency issue, but also no opportunity for asymptotic variance reduction either, as 
the asymptotics is invariant to the choice of parameter q.
Since we consider constant effect quantile models, the conditional mean includes the 

coefficients of the model, as conditional quantiles do, and one may want to assume that 
xt is mean-independent of vt and Vt as in Assumption 30 below. This is more restrictive 
than what was assumed for Theorems 1 and 2, because we now wish to confine the pos-
sible bias to the intercept exclusively. Moreover, such assumption is typical in LS esti-
mation, which is our first stage do.

Assumption 30. 
0
(i) EðvtjxtÞ ¼ EðvtÞ and (ii) EðVtjxtÞ ¼  EðVtÞ:

Assumption 3 imposes the orthogonality of the reduced-form errors with all non-
constant exogenous variables. As stated before, an issue of using LS estimation in the
first stage is that the condition EðvtÞ ¼ 0, which makes the LS estimator p̂ in (3) con-
sistent, conflicts with the restriction EðwhðvtÞÞ ¼ 0 , which is implied by Assumption 
3(iv); that is, the hth quantile and the mean of vt cannot be zero at the same time.
Then, to be able to use the usual Bahadur representation of the LS estimator, we define
the centered errors v	t ¼ vt�EðvtÞ and V	

t ¼ Vt�EðVtÞ . By construction, Eðv	t jxtÞ ¼ 0
and EðV	

t jxtÞ ¼ 0:
The reduced-form equations for Yt and yt in (2) and (3) can then be rewritten by

reallocating the bias to the intercept coefficient as follows:

Y 0
t ¼ x0tP

	 þ V 0	
t ; (6)

where P	 ¼ Pþ BP with BP ¼ ½EðVtÞ0; 00; :::; 00�0, which is a ðK � GÞ matrix, and

yt ¼ x0tp
	 þ v	t ; (7)

where p	 ¼ pþ Bp with Bp ¼ ½EðvtÞ; 0; :::; 0�0, which is a ðK � 1Þ matrix.
The inconsistency term Bp is generally non-zero for q 6¼ 1. In contrast, BP can be

non-vanishing or not, even with q ¼ 1; depending on the restrictions imposed on Vt. In
the case q¼ 1, a natural specification suggests EðVtjxtÞ ¼ 0 when using OLS to estimate
(2) and no bias at all. In other cases, Bp and BP may have to be taken into account.



Let eP and ep be the first-stage LS estimators based on (6) and (7) respectively and letea ea isbe the corresponding 2SQR(h; q ) estimator. The asymptotic representation for 
shown in Appendix B.
Due to the characterization of Ba in Theorem 2, we have Ba ¼

ðð1�qÞEðvtÞ�EðVt
0Þc; 0; :::; 0Þ0 . As seen before, the intercept estimator is inconsistent, 

while the slope estimators are not. To derive the asymptotic normality of ea; we impose

the following additional regularity assumptions.

Assumption 4.
(i)

There exist finite constants Dv and DVj , such that Ejxtiv	t j3<Dv and
EjxtiV	

jtj3<DVj ; for all i, j and t.
(ii) The covariance matrix VT ¼ varðT�1=2 PT

t¼1 StÞ is positive definite for T suffi-
ciently large, where St ¼ ðqwhðvtÞ; qv	t�u	t Þ0 
 xt; u	t ¼ v	t�V	0

t c and 
 is the
Kronecker product.

Assumption 4(i) is used to apply a CLT appropriate for the a-mixing case. It can be 
much relaxed in the iid case. Assumption 4(ii) ensures the positive definiteness of the 
variance in the CLT.

Theorem 3. Suppose that Assumptions 1, 3, 30 and 4 hold. Then,

D�1=2
T T1=2 ea�a�Bað Þ!d N 0; Ið Þ;

2

where DT ¼ MVTM0 and M ¼ R½I; �Q0Q�1�.
The asymptotic result in Theorem 3 shows that the asymptotic variance-covariance of 

the 2SQR(h; q) estimator depends on the combination weight q through VT, while the 
consistency of the slope estimator is not affected by the presence of q. To improve effi-
ciency, q can be replaced with an optimal value (q	) obtained by minimizing the asymp-
totic covariance matrix shown in Theorem 3. There are many ways of minimizing a 
multi-dimensional covariance matrix. For example, one may minimize some norm of 
the matrix (e.g., the mean square error). One may also minimize the standard error for 
a given coefficient of interest in the structural model.
In some special cases (e.g., IID), the effect of q on DT is concentrated in all these cal-

culus in a scalar function that summarizes the contributions of all the error terms in 
this matrix. In that case, a unique optimal value q	 can be obtained. In the general case, 
q	 can also be made explicit when the MSE is minimized. Consistent preliminary esti-
mation of q	 does not perturb the asymptotic properties of the 2SQR, which can be 
characterized as a MINPIN estimator (Andrews 1994, p. 2263), as long as a stochastic 
equicontinuity condition of the global empirical process is valid.
Let us now consider a case with an explicit formula for q	. Assume fðx0t; ut; vtÞg is iid 

and ftð0jxtÞ ¼ f ð0Þ; for any t. Then, the asymptotic 
�1

covariance matrix in Theorem 3 
simplifies

0 
into r20ðqÞQ�

zz
1; where r20ðqÞ ¼  Eðft Þ; ft ¼ qf ð0Þ whðvtÞ þ  ut	�qvt

	 and Qzz ¼ HðP	Þ QHðP	Þ. In this case, we can easily obtain the optimal weight q	 and its 
consist-ent estimator q̂ in Lemma 2 in Appendix B.

To address robustness concerns, we now propose an alternative estimator based on a 
robust first-stage estimator: the symmetrically trimmed-LS estimator (TLS). The TLS of
p in the model y ¼ Xp þ v is p̂TLS ¼ ðX0AXÞ�XAy , where A ¼ ðaijÞ; i; j ¼ 1; :::; p and



aij ¼ I½i¼j and Xi
0 ̂pðlÞ<yi<Xi

0 ̂pð1�lÞ�; p̂ðlÞ is the quantile regression estimator centered on a 
given quantile l chosen a priori. Chen and Portnoy (1996) provide the TLS Bahadur
representation. Let a� be the estimator built from the TLS in the first stage and the
quantile regression in the second stage. We adjust Assumptions 30 and 4 as follows, 
with analogous interpretations of the different conditions.

Assumption 300
(i) EðvtjxtÞ�Eðt vtÞ�l½F�1

v ðlÞ þ F�1
v ð1� lÞ� ¼ 0, where t vt� vt:I½F�1

v ðlÞ<vt<F�1
v ð1�lÞ�

is the truncated error term.
(ii) EðVitjxtÞ�Eðt VitÞ�l½F�1

Vi
ðlÞ þ F�1

Vi
ð1� lÞ� ¼ 0, where Vit is the ith element of

Vt and t Vit ¼ Vt:I½F�1
V ðlÞ<Vt<F�1

V ð1�lÞ� is the truncated error term.

Assumption 40
(i) There exist finite constants Dev and D�V j

such that Ejxtiev	t j3<Dev and
EjxtieV 	

jtj3<D�V j
, for all i, j and t, where

ev	t ¼ vt�E t vtð Þ�l F�1
v lð Þ þ F�1

v 1� lð Þ
h i

and eV 	
jt ¼ Vjt�E t Vitð Þ�l F�1

Vj
lð Þ þ F�1

Vj
1� lð Þ

h i
:

(ii) The covariance matrix eVT ¼ varðT�1=2PT
t¼1

eStÞ is positive definite for T suffi-
ciently large, where eSt ¼ ðqwhðvtÞ; qev	t�eu	

t Þ0 
 xt and eu	
t ¼ ev	t�eV 	0

t c.

The Bahadur representation, obtained from Theorem 1, and the representation for 
TLS (Ruppert and Carroll 1980) can be used to obtain the asymptotic representation of 
a�, which is shown in Appendix B. The non-vanishing inconsistency term is given by
ð1�qÞfEðt vtÞ þ l½F�1

v ðlÞ þ F�1
v ð1� lÞ�g�eBP;1c , where eBP;1 is a G-row vector whose

jth element is given by Eðt VjtÞ þ l½F�1
Vj
ðlÞ þ F�1

Vj
ð1� lÞ�. The asymptotic representation
00 0(24) in Appendix B together with Assumptions 3 and 4 delivers the following charac-

terization of the asymptotic normality of a�.

Theorem 4. Suppose that Assumptions 1,3, 300 and 40 hold. Then,eD�1=2
T T1=2 �a�a�eBa

� �
!d N 0; Ið Þ;

Table 1(a). Simulated Bias Means and Standard Deviations of 2SQR1 (h, q¼ 1) : N(0,1).

h 0.05 0.25 0.50 0.75 0.95

T¼ 50 eb0 Mean �0.75 �0.35 �0.01 0.31 0.77
Std 2.18 1.15 0.83 0.67 0.58eb1 Mean 0.01 0.00 0.00 0.00 0.00
Std 0.35 0.23 0.21 0.23 0.35ec Mean �0.01 0.00 0.00 0.01 0.00
Std 0.51 0.34 0.31 0.33 0.49

T¼ 300 eb0 Mean �0.84 �0.34 �0.01 0.33 0.81
Std 0.83 0.43 0.33 0.26 0.22eb1 Mean 0.00 0.00 0.00 0.00 0.00
Std 0.14 0.09 0.09 0.09 0.13ec Mean 0.00 0.00 0.00 0.00 0.01
Std 0.19 0.12 0.12 0.13 0.19



where eDT ¼ MeVTM0 and M ¼ R½I;�Q0Q�1�. The corresponding formulae for the opti-
	mal weight q and its consistent estimator q̂ are shown in Lemma 3 in Appendix B.

Let us say a few words about comparision with 2SLS from a theoretical point of view. 
With 2SLS, the Assumptions 1, 2 or 2’, 3(i) can be kept the same. Assumptions 3(ii),
(iii), (iv), (v), (v’) can be weakened. In particular, it is not necessary to define a matrix 
Q0 that is now replaced by matrix Q in the calculus. Assumption 3(iv) is replaced by 
Assumption 30 (i), which centers the reduced-form error term in the mean instead of 
the hth quantile. In these conditions, there is no conflict between first-stage and second-
stage semi-parametric restrictions, and no bias terms Bp and BP that are now zero, and 
therefore no point of examining a bias transmission property. The parameter q disap-
pears from the asymptotic representation, and therefore there is no opportunity of vari-
ance reduction by choosing this parameter. The well-known asymptotic representation 
of the 2SLS, which we don’t show, shows that the estimation is now not robust outliers 
in the errors from the first and the second stages. The well-known formula of the 
asymptotic variance-covariance matrix of the 2SLS is much simpler than that of the
2SQR(h; q), in particular because now M ¼ R½I; �I� and the function wh is replaced by
the identity. However, the ordering of the two variance-covariance matrices is ambigu-
ous and depends on the subjacent distribution of the errors, as suggest the following 
Monte Carlo simulations. All these reflections extend to other common estimators. In 
the next section, we present Monte Carlo simulation results, which exhibit how much 
variance reduction can be achieved in finite samples.

4. Monte Carlo simulations

We base our simulations on a simultaneous equation system with two equations, which 
is presented in Appendix C along with the simulation set-up. The first equation, which 
is the ‘structural’ equation of interest, contains two endogenous variables and two 
exogenous variables including a constant. A total of four exogenous variables are pre-
sent in the whole system.

We study the finite sample properties of our two proposed two-stage estimators: (1) 
the OLS plus quantile regression estimator (2SQR1), and (2) the TLS plus quantile

Table 1(b). Simulated Bias Means and Standard Deviations of 2SQR1 (0, q ¼ q	) : N(0,1).
h 0.05 0.25 0.50 0.75 0.95
(q	) (0.0013) (�0.0003) (0.0002) (0.0003) (0.0027)

T¼ 50 eb0 Mean 0.59 0.23 �0.01 �0.26 �0.62
Std 1.19 0.89 0.71 0.54 0.36eb1 Mean 0.00 0.00 0.00 0.00 0.00
Std 0.19 0.19 0.18 0.18 0.19ec Mean 0.00 0.00 0.00 0.00 0.00
Std 0.27 0.26 0.26 0.26 0.27

T¼ 300 eb0 Mean 0.72 0.29 �0.01 �0.31 �0.74
Std 0.44 0.34 0.27 0.21 0.14eb1 Mean 0.00 0.00 0.00 0.00 0.00
Std 0.07 0.07 0.07 0.07 0.07ec Mean 0.00 0.00 0.00 0.00 0.00
Std 0.10 0.10 0.10 0.10 0.10



regression estimator (2SQR2). We impose EðwhðvtÞjxtÞ ¼ 0 for each given h. That is: for
each h, we regenerate the error terms such that EðwhðvtÞjxtÞ ¼  0 is satisfied, which 
means that we consider models centered differently according to the different h. The 
equation of interest is assumed to be over-identified and the parameter values are set to
b0 ¼ ðb1; b2Þ ¼ ð1; 0:2Þ and c ¼ 0:5. We generate the error terms by using three alterna-
tive distributions: the standard normal N(0,1), the Student-t with 3 degrees of freedom
t(3) and the Lognormal LN(0,1). The exogenous variables xt are drawn from a normal 
distribution independently of the errors. For each of the 1000 replications, we estimate

the parameter values b and c using 2SQR1 and 2SQR2, and we calculate the deviations 
of the estimates from the true values. Then, we display the sample mean and sample
standard deviation of these deviations over the 1,000 replications. The optimal value q	 

is obtained by simulating the formula in (22) or (25), while q̂ is estimated through (23)
or (26).8

We first discuss the results for the 2SQR1(h; q) with N(0,1), t(3) and LN(0,1) errors, 
shown in Tables 1–3 for the case of iid errors. We have conducted the same set of sim-

ulations for the case of heteroskedastic errors and have found that the results are quali-
tatively the same as in the iid case. We first comment the results when the error terms
are drawn from N(0,1) shown in Table 1. In all cases, as expected, the intercept estimate 
exhibits biases that do not vanish as the sample size increases. When there is regular
convergence towards a non-zero value, the bias should increase or decrease with T, until
the limit point. Here it increases. The standard errors decreasing with T illustrate the 
convergence. Besides, we checked with higher T that the estimate does not go to the
infinity. Comparing results with q	 and q̂ show that the slow convergence of the inter-
cept estimator towards its asymptotic value is partly due to the slow convergence of q̂
towards q	. For the latter, the intercept estimates at T ¼ 50 and T ¼ 100 are closer.

On the other hand, the 2SQR1(h; q) estimates for the slope parameters (b1 and c) are 
consistent for all specifications, all evaluations of q and all h0s, and even with a sample

size as small as 50. Using the optimal value q	 dramatically improves the accuracy of

Table 1(c). Simulated Bias Means and Standard Deviations of 2SQR1 (h, q¼ q̂) : N(0,1).
h 0.05 0.25 0.50 0.75 0.95

T¼ 50 eb0 Mean 0.22 0.15 �0.01 �0.20 �0.26
Std 1.49 0.91 0.72 0.54 0.40eb1 Mean 0.00 0.00 0.00 0.00 0.00
Std 0.22 0.19 0.18 0.19 0.22ec Mean 0.01 0.01 0.00 0.01 0.01
Std 0.33 0.26 0.26 0.27 0.32

q̂ Mean 0.19 �0.01 �0.05 0.07 0.31
Std 0.33 0.23 0.20 0.20 0.20

T¼ 300 eb0 Mean 0.62 0.25 �0.01 �0.27 �0.62
Std 0.46 0.34 0.27 0.21 0.16eb1 Mean 0.00 0.00 0.00 0.00 0.00
Std 0.07 0.07 0.07 0.07 0.07ec Mean 0.00 0.00 0.00 0.00 0.00
Std 0.10 0.10 0.10 0.10 0.10

q̂ Mean 0.08 0.00 �0.05 0.00 0.10
Std 0.09 0.11 0.12 0.11 0.09

8See Appendix B.



Table 2(a). Simulated Bias Means and Standard Deviations of 2SQR1 (h, q¼ 1) : t (3).
h 0.05 0.25 0.50 0.75 0.95

T¼ 50 eb0 Mean �1.07 �0.34 0.01 0.42 1.36
Std 7.32 2.04 1.42 1.06 1.05eb1 Mean 0.04 0.02 0.01 �0.01 �0.01
Std 0.88 0.33 0.28 0.34 0.85ec Mean �0.06 �0.02 �0.01 �0.01 �0.1
Std 1.48 0.59 0.51 0.54 1.43

T¼ 300 eb0 Mean �1.18 �0.40 �0.02 0.37 1.20
Std 2.17 0.59 0.40 0.33 0.33eb1 Mean 0.02 0.00 0.00 0.00 0.00
Std 0.29 0.11 0.10 0.12 0.30ec Mean 0.00 0.00 0.01 0.01 0.01
Std 0.43 0.17 0.14 0.17 0.42

Table 2(b). Simulated Bias Means and Standard Deviations of 2SQR1 (h, q¼ q	) : t (3).
h 0.05 0.25 0.50 0.75 0.95
(q	) (�0.079) (0.537) (0.835) (0.538) (�0.078)

T¼ 50 eb0 Mean 0.90 0.01 0.02 0.10 �0.74
Std 2.98 1.89 1.42 1.00 0.43eb1 Mean 0.02 0.02 0.01 0.01 0.02
Std 0.35 0.32 0.28 0.31 0.34ec Mean �0.03 �0.02 �0.01 �0.02 �0.03
Std 0.58 0.55 0.51 0.50 0.53

T¼ 300 eb0 Mean 0.87 �0.06 �0.02 0.02 �0.92
Std 0.94 0.56 0.40 0.32 0.16eb1 Mean 0.00 0.00 0.00 0.00 0.00
Std 0.12 0.11 0.10 0.11 0.12ec Mean 0.01 0.01 0.01 0.01 0.01
Std 0.18 0.16 0.14 0.16 0.18

Table 2(c). Simulated Bias Means and Standard Deviations of 2SQR1 (h, q¼ q̂): t (3).
h 0.05 0.25 0.50 0.75 0.95

T¼ 50 eb0 Mean �0.19 0.10 0.07 �0.01 �0.22
Std 13.6 2.02 1.66 1.04 0.86eb1 Mean 0.03 0.01 0.01 0.01 0.01
Std 0.56 0.30 0.31 0.31 0.52ec Mean 0.07 �0.01 �0.02 �0.02 �0.01
Std 2.74 0.58 0.59 0.52 1.19

q̂ Mean 0.19 0.30 0.32 0.32 0.29
Std 0.54 0.30 0.27 0.28 0.37

T¼ 300 eb0 Mean 0.80 0.01 �0.01 �0.04 �0.87
Std 1.02 0.57 0.40 0.33 0.29eb1 Mean 0.00 0.00 0.00 0.00 0.00
Std 0.12 0.11 0.10 0.11 0.13ec Mean 0.01 0.01 0.00 0.00 0.01
Std 0.19 0.16 0.15 0.16 0.19

q̂ Mean 0.01 0.45 0.57 0.44 0.04
Std 0.16 0.18 0.16 0.18 0.16



Table 3(a). Simulated Bias Means and Standard Deviations of 2SQRl (h, q¼ 1) : LN(0,l).
h 0.05 0.25 0.50 0.75 0.95

T¼ 50 eb0 Mean �0.50 �0.35 �0.10 0.37 2.00
Std 1.43 1.26 1.56 2.06 3.00eb1 Mean 0.02 0.02 0.02 0.01 0.03
Std 0.21 0.21 0.30 0.48 1.73ec Mean �0.05 �0.05 �0.05 �0.05 �0.14
Std 0.35 0.33 0.47 0.88 2.64

T¼ 300 eb0 Mean �0.74 �0.57 �0.33 0.15 1.85
Std 0.49 0.50 0.56 0.66 1.08eb1 Mean 0.00 0.00 0.00 0.01 0.02
Std 0.08 0.09 0.11 0.19 0.65ec Mean 0.00 0.00 0.00 0.01 0.02
Std 0.11 0.13 0.16 0.27 0.91

Table 3(b). Simulated Bias Means and Standard Deviations of 2SQRl (h, q¼ q	) : LN(0,l).
h 0.05 0.25 0.50 0.75 0.95
( q 	) (l.0388) (l.051) (0.972) (0.167) (�0.146)

T¼ 50 eb0 Mean �0.56 �0.41 �0.08 0.18 �1.25
Std 1.41 1.25 1.56 1.57 0.91eb1 Mean 0.02 0.02 0.02 0.02 0.03
Std 0.21 0.21 0.30 0.40 0.45ec Mean �0.05 �0.04 �0.05 �0.06 �0.07
Std 0.35 0.33 0.47 0.65 0.71

T¼ 300 eb0 Mean �0.79 �0.62 �0.31 �0.08 �1.42
Std 0.49 0.50 0.56 0.54 0.32eb1 Mean 0.00 0.00 0.00 0.00 0.00
Std 0.08 0.09 0.11 0.16 0.18ec Mean 0.00 0.00 0.00 0.00 0.01
Std 0.11 0.13 0.16 0.22 0.24

Table 3(c). Simulated Bias Means and Standard Deviations of 2SQRl (h, q ¼q̂) : LN(0,l).
h 0.05 0.25 0.50 0.75 0.95

T¼ 50 eb0 Mean �0.39 0.04 0.18 0.21 �1.01
Std 1.55 1.58 2.20 2.38 1.82eb1 Mean 0.02 0.02 0.02 0.02 0.02
Std 0.22 0.25 0.34 0.40 0.75ec Mean �0.06 �0.05 �0.06 �0.07 �0.11
Std 0.37 0.41 0.66 1.01 2.06

q̂ Mean 0.92 0.65 0.55 0.28 0.02
Std 0.11 0.13 0.25 0.40 0.37

T¼ 300 eb0 Mean �0.68 �0.40 �0.23 �0.03 �1.37
Std 0.50 0.52 0.56 0.55 0.37eb1 Mean 0.00 0.00 0.00 0.00 0.00
Std 0.09 0.09 0.11 0.16 0.18ec Mean 0.00 0.00 0.00 0.00 0.01
Std 0.12 0.13 0.16 0.23 0.25

q̂ Mean 0.96 0.85 0.85 0.38 �0.17
Std 0.04 0.04 0.06 0.31 0.08



Table 4(b). Simulated Standard Deviations of 2SQR2 (h, q) with T ¼ 50.
Estimator First Stage Second Stage N(0,1) t (3) LN(0,1)

Trim ðlÞ -2SQRðh; 1Þ Trim(0.25) Quantile(h¼ 0.05) b̂1 0.36 0.82 0.15
ĉ 0.52 1.22 0.22

Trim ðlÞ-2SQRðh; 1Þ Trim(0.25) Quantile(h¼ 0.25) b̂1 0.24 0.31 0.17
ĉ 0.37 0.44 0.25

Trim ðlÞ-2SQRðh; 1Þ Trim(0.25) Quantile(h¼ 0.50) b̂1 0.23 0.24 0.23
ĉ 0.36 0.39 0.35

Trim ðlÞ -2SQRðh; 1Þ Trim(0.25) Quantile(h¼ 0.75) b̂1 0.24 0.31 0.42
ĉ 0.37 0.48 0.63

Trim ðlÞ -2SQRðh; 1Þ Trim(0.25) Quantile(h¼ 0.95) b̂1 0.35 0.79 1.63
ĉ 0.51 1.14 2.33

Trim ðlÞ-2SQRðh; q̂Þ Trim(0.25) Quantile(h¼ 0.05) b̂1 0.24 0.51 0.15
ĉ 0.40 0.85 0.23

Trim ðlÞ -2SQðh; q̂Þ Trim(0.25) Quantile(h¼ 0.25) b̂1 0.21 0.26 0.18
ĉ 0.36 0.39 0.27

Trim ðlÞ -2SQðh; q̂Þ Trim(0.25) Quantile(h¼ 0.50) b̂1 0.21 0.24 0.23
ĉ 0.34 0.44 0.35

Trim ðlÞ -2SQðh; q̂Þ Trim(0.25) Quantile(h¼ 0.75) b̂1 0.22 0.26 0.29
ĉ 0.36 0.40 0.46

Trim ðlÞ -2SQðh; q̂Þ Trim(0.25) Quantile(h¼ 0.95) b̂1 0.23 0.36 0.46
ĉ 0.36 0.53 0.65

Table 5(a). Simulated Standard Deviations of 2SQRl ðh; q̂Þ and Cramer-Rao Bounds with T ¼ 300.
Estimator First Stage Second Stage N(0,l) t (3) LN(0,l)

CR bounds b̂1 0.07 0.08 0.02
ĉ 0.10 0.12 0.02

2SLS LS LS b̂1 0.07 0.12 0.16
ĉ 0.10 0.18 0.22

2SQRðh; q̂Þ LS Quantile(h¼ 0.05) b̂1 0.07 0.12 0.09
ĉ 0.10 0.19 0.12

2SQRðh; q̂Þ LS Quantile(h¼ 0.25) b̂1 0.07 0.11 0.09
ĉ 0.10 0.16 0.13

2SQRðh; q̂Þ LS Quantile(h¼ 0.50) b̂1 0.07 0.10 0.11
ĉ 0.10 0.15 0.16

2SQRðh; q̂Þ LS Quantile (h¼ 0.75) b̂1 0.07 0.11 0.16
ĉ 0.10 0.16 0.23

2SQRðh; q̂Þ LS Quantile (h¼ 0.95) b̂1 0.07 0.13 0.18
ĉ 0.10 0.19 0.25

Table 4(a). Simulated Standard Deviations of 2SQR1 (h,q̂) and Cramer-Rao Bounds with T ¼ 50.
Estimator First Stage Second Stage N(0,1) t (3) LN(0,1)

CR bounds b̂1 0.19 0.20 0.04
ĉ 0.26 0.28 0.06

2SLS LS LS b̂1 0.21 0.41 0.42
ĉ 0.30 0.78 0.70

2SQRðh; q̂Þ LS Quantile(h¼ 0.05) b̂1 0.22 0.56 0.22
ĉ 0.33 2.74 0.37

2SQRðh; q̂Þ LS Quantile(h¼ 0.25) b̂1 0.19 0.30 0.25
ĉ 0.26 0.58 0.41

2SQRðh; q̂Þ LS Quantile(h¼ 0.50) b̂1 0.19 0.31 0.34
ĉ 0.26 0.59 0.66

2SQRðh; q̂Þ LS Quantile(h¼ 0.75) b̂1 0.19 0.31 0.40
ĉ 0.27 0.52 1.01

2SQRðh; q̂Þ LS Quantile(h¼ 0.95) b̂1 0.22 0.52 0.75
ĉ 0.32 1.19 2.06



the 2SQR1(h; q) as compared to the case q ¼ 1. The optimal values q	 are close to zero, 
which can be viewed as related to a kind of inverse least-squares extraction of the struc-
tural parameters from the reduced-form parameters. Indeed, this is what pushing q̂ to 
zero does, as can be seen in (5). The efficiency gain is larger for the extreme quantiles
(h ¼ 0:05 and 0.95) than for the middle quantiles (h ¼ 0:25; 0:5 and 0.75). Even with
T ¼ 50, using q̂ can substantially improve efficiency as compared to q ¼ 1. The estima-
tion accuracy of q̂ and the efficiency gain improve as the sample size increases. With
T ¼ 300, using q̂ or q	 is almost indifferent for estimating a, even though the estimated 
values of q̂ are not always very close to q	.

Table 2 shows the results for the Student-t distribution case. As expected, with fat
tails t(3) errors, the standard deviations of the sampling distributions of the 2SQR1(h; q) 
are much larger than with normal errors. As before, the variance reductions from using
q	 are small for middle quantiles, while substantial reductions can be achieved for 
extreme quantiles. The standard deviations are the largest for the lognormal case, where
using q	 always yields outstanding efficiency gains. For right-skewed distributions, 
quantile regressions are typically inaccurate for large quantiles. In this case, our method
generates large efficiency gains. For example, considering the case with T ¼ 300; the
standard error for ĉ with q ¼ 1 is 0.91, while it is reduced to 0.25 with q ¼ q̂. However, 
there is virtually no efficiency gain with small values of h, say less than 0.5.

Table 6. Summary Statistics: 2012 Egypt.
mean Std.

Food share 0.2074 0.0971
Total Expenditure (EL per year) 25,813 16,013
Earnings (EL per year) 29,963 21,051
Dummy for Kids 0.614 0.487

Table 5(b). Simulated Standard Deviations of 2SQR2 (h, q) with T ¼ 300.
Estimator First Stage Second Stage N(0,l) t (3) LN(0,l)

TrimðlÞ -2SQR ðh; 1Þ Trim(0.25) Quantile (h¼ 0.05) b̂1 0.14 0.28 0.05
ĉ 0.20 0.42 0.07

TrimðlÞ -2SQR ðh; 1Þ Trim(0.25) Quantile h¼ 0.25) b̂1 0.09 0.11 0.06
ĉ 0.13 0.16 0.08

TrimðlÞ -2SQR ðh; 1Þ Trim(0.25) Quantile (h¼ 0.50) b̂1 0.09 0.09 0.09
ĉ 0.12 0.13 0.12

TrimðlÞ -2SQR ðh; 1Þ Trim(0.25) Quantile (h¼ 0.75) b̂1 0.09 0.11 0.17
ĉ 0.13 0.16 0.24

TrimðlÞ -2SQR ðh; 1Þ Trim(0.25) Quantile (h¼ 0.95) b̂1 0.13 0.30 0.62
ĉ 0.19 0.41 0.89

TrimðlÞ -2SQR ðh; q̂Þ Trim(0.25) Quantile (h¼ 0.05) b̂1 0.08 0.10 0.05
ĉ 0.11 0.14 0.07

TrimðlÞ -2SQR ðh; q̂Þ Trim(0.25) Quantile (h¼ 0.25) b̂1 0.08 0.09 0.06
ĉ 0.11 0.13 0.08

TrimðlÞ -2SQR ðh; q̂Þ Trim(0.25) Quantile (h¼ 0.50) b̂1 0.08 0.09 0.09
ĉ 0.11 0.13 0.12

TrimðlÞ-2SQR ðh; q̂Þ Trim(0.25) Quantile (h¼ 0.75) b̂1 0.08 0.09 0.12
ĉ 0.11 0.13 0.17

TrimðlÞ -2SQR ðh; q̂Þ Trim(0.25) Quantile (h¼ 0.95) b̂1 0.08 0.10 0.10
ĉ 0.11 0.14 0.14



Table 7. Mean Regression of Food Share.
Structural Equation

Intercept Dummy for Kids Log Total Expenditure

OLS 1.326 (0.0231) 0.0158 (0.0008) �0.0938 (0.0023)
2SLS 1.2659 (0.0256) 0.0155 (0.0008) �0.0878 (0.0026)

Predictive Equation

Intercept Dummy for Kids Log Earnings

OLS 1.4532 (0.0472) 0.0270 (0.0018) 0.8405 (0.0046)
TLS 1.0571 (0.0958) 0.0203 (0.0037) 0.8830 (0.0094)

Reduced-Form Equation

Intercept Dummy for Kids Log Earnings

OLS 1.1384 (0.0226) 0.0131 (0.0009) �0.0738 (0.0022)
TLS 1.1622 (0.0451) 0.0133 (0.0017) �0.764 (0.0044)

Standard errors are in parentheses. 7483 observations

Table 8. Quantile Regression of Food Share.
Estimation Results

Quantiles q_hat Intercept Dummy for Kids Log Total Expenditure

h¼ 0.05 2SQR1(h,q ¼1) 1.1001 0.0218 �0.0881
(0.0501) (0.0017) (0.0050)

0.0498 2SQR1(h,q¼ 0q̂) 1.2576 0.0158 �0.0878
(0.0255) (0.0008) (0.0026)

Trim ðlÞ-2SQR (h,q ¼1) 1.0608 0.0211 �0.0838
(0.0477) (0.0017) (0.0048)

0.0509 Trim ðlÞ-2SQR (h,q ¼q̂) 1.2439 0.0154 �0.0864
(0.0244) (0.0008) (0.0024)

h¼ 0.125 2SQR1 (h,q¼ 1) 1.2188 0.0184 �0.0905
(0.0336) (0.0011) (0.0034)

0.0908 2SQR1(h, q ¼q̂) 1.2616 0.0157 �0.0880
(0.0255) (0.0008) (0.0026)

Trim (1u)-2SQR (h,q ¼1) 1.1783 0.0177 �0.0861
– (0.0321) (0.0011) (0.0032)

0.0910 Trim ðlÞ-2SQR (h,q¼q̂) 1.2468 0.0153 �0.0865
(0.0244) (0.0008) (0.0024)

H¼ 0.50 2SQR1(h,q¼ 1) 1.3000 0.0156 �0.0916
(0.0331) (0.0011) (0.0033)

-0.0287 2SQR1(h,q ¼ q̂) 1.2649 0.0155 �0.0877
(0.0256) (0.0008) (0.0026)

Trim ðlÞ 2SQR1(h,q ¼1) 1.2591 0.0149 �0.0872
(0.0316) (0.0011) (0.0032)

�0.290 Trim ðlÞ 2SQR1(h,q ¼q̂) 1.2535 0.0150 �0.0865
(0.0245 (0.0008 (0.0024)

H¼ 0.75 2SQR1(h,q¼ 1) 1.3541 0.0133 �0.0897
(0.0381) (0.0013) (0.0038)

�0.1059 2SQR1(h,q ¼q̂) 1.2709 0.0151 �0.0875
(0.0255) (0.0008) (0.0025)

Trim ðlÞ 2SQR1(h,q ¼1) 1.3139 0.0126 �0.0854
(0.0364) (0.00013) (0.0036)

�0.1065 Trim ðlÞ 2SQR1(h,q ¼q̂) 1.2617 0.0418 �0.0866
(0.0243) (0.0008) (0.0024)

H¼ 0.95 2SQR1(h,q ¼1) 1.3636 0.0073 �0.792
(0.0553) (0.0018) (0.0055)

H¼ 0.95 2SQR1(h,q ¼q̂) 1.2681 0.0154 �0.0878
(0.0256) (0.0009) (0.0026)

Trim ðlÞ 2SQR1(h,q ¼1) 1.3282 0.0067 �0754
(0.0529) (0.0018) (0.0053)

�0.0142 Trim ðlÞ 2SQR1(h,q ¼q̂) 1.2564 0.0150 �0.0866
(0.0245) (0.0008) (0.0024)



Given the substantial efficiency gains, it is natural to ask how close the reduced vari-
ance is to the Cramer-Rao (CR) lower bound. We have calculated the CR bound
numerically for each distribution in Table 4(a) for T ¼ 50 and Table 5(a) T ¼ 300. Table 
4(a) shows the simulated asymptotic standard deviations for 2SLS and 2SQR1(h; ̂q) with
h ¼ 0:25; 0:50; 0:95, along with the simulated CR bounds with T ¼ 50. Since the inter-
cept coefficient estimate is inconsistent, we only discuss the slope coefficients.

For a small sample size such as T ¼ 50, the 2SLS efficiency loss is not negligible even 
for the normal distribution case, while it becomes large for both t(3) and LN(0,1). On
the other hand, 2SQR1(h; ̂q) attains the CR bounds at the middle quantiles (h ¼ 0:25; 0:5 
and 0.75) for the normal distribution case. Moving to the Student-t distribution case,
2SQR1(h; ̂q) is much more efficient than the 2SLS again at the same middle quantiles, with 
almost a gain of a quarter of efficiency at the median. Finally, under lognormality, 2SLS per-
forms badly relative to the CR bounds, while 2SQR1(h; q̂) stays closer than 2SLS to the CR 
bounds for small and middle quantiles.

The results are almost the same when the sample size is increased to T ¼ 300, as 
shown in Table 5(a). For the normal errors, both 2SLS and 2SQR1(h; ̂q ) attain the CR
bounds. However, the previous remarks still hold for the other two error distributions
t(3) and LN(0,1). That is: (i) 2SQR1(h; q̂) is more efficient than 2SLS at the middle
quantiles for t (3), and (ii) 2SQR1(h; q̂) is more efficient than 2SLS at the low and mid-
dle quantiles for LN(0,1).

Let us now turn to 2SQR2, based on the TLS at the first stage.9 According to our

simulations, using a trimming threshold of l ¼ 0:25 yields more accurate results than
lower thresholds, such as 0.05 or 0.10.10 For a large sample size such as T ¼ 300, trim-

ming at 0:05; 0:10 or 0.25 is almost indifferent. Hence, we focus on the case l ¼ 0:25.
The results for 2SQR2 are reported in Tables 4(b) and 5(b), respectively for T ¼ 50 and 
T ¼ 300; where the two cases, q ¼ 1 and q ¼ q̂, can be compared. Clearly, our proposed 
variance reduction method works again very well with the 2SQR2 estimator.

The 2SQR2(h; q̂) performs uniformly better than the 2SQR2(h; q ¼ 1), except for
T ¼ 50 at the median for t(3) and at a few low quantiles for LN(0,1) – probably due to 
sampling variations since this irregularity vanishes when T ¼ 300. The improvement
brought by moving from q ¼ 1 to  q ¼ q̂ is sizeable at quantile 0.95 for symmetric 
errors (up to 60% reduction in standard deviation) and at large quantiles for 
asymmetric
errors (up to 80% reduction). The 2SQR2(h; q̂) clearly improves on the 2SQR1(h; q̂) for 
both t(3) and LN(0,1), while the reverse is true for normal errors.

Let us finally compare the two most accurate estimators; i.e. 2SQR1(h; q̂) and
2SQR2(h; ̂q) in  Tables 4 and 5. Under normal errors, the 2SQR1(h; ̂q) and 
the

2SQR2(h; ̂q ) both almost reach the CR bound, whatever the considered quantile. Here, 
reformulating the dependent variable is fruitful, especially for upper quantiles for which
it allows massive efficiency gains. The 2SQR2(h; q ¼ 1) is slightly outperformed by the 
2SQR1(h; ̂q), perhaps because trimming here only discards useful information. With
Student errors, the 2SQR2(h; ̂q ) is often the more accurate estimator, yielding results
9We have also tried LAD in the first-stage, as in Chen and Portnoy (1996). Since the results are almost identical to that
of the 2SQR2, we do not show them. They are available upon request. Thus, what seems to matter here is the 
robustness of the first stage estimator.
10One exception is the normal distribution case with T ¼ 50, in which case trimming at 0.25 is only slightly inferior than 
when trimming at 0.1.



fairly close to the CR bound. Under lognormality, none of the studied estimators 
approaches the CR bound. However, using the 2SQR2(h; q̂) generally produces the best 
accuracy. For upper quantiles, reformulating the dependent variables even delivers huge 
efficiency gains.
It is interesting to reflect on the proximity of the results of the 2SQR1(h; q̂) and the 

2SQR2(h; 1 ) in the light of the non-robustness of the OLS and the robustness of the 
TLS. Redefining the dependent variable may improve the robustness of the two-stage 
estimator through the reduction of the influence of outliers for the errors vt, even when 
the first-stage estimator is non-robust. This effect, apparent in the formula of the 
asymptotic representation, is confirmed in the small sample simulations. Thus, specific 
estimators of q could also be chosen to enhance robustness.

5. An application to Engel curve estimation

In this section, we apply our proposed method to estimate a model of food demand 
Engel curves in Egypt. That is the explanation of household food budget shares by the 
total expenditure levels. The dataset is drawn from the 2012 Egypt HIECS survey for a 
sample of 7483 households. The model is similar to the one in Blundell, Chen, and 
Kristensen (2007). Linearizing these authors’ specifications, we consider the following 
quantile Engel curve equation:

yi ¼ b0h þ b1hx1i þ chYi þ ui; (8)

where yi is the food budget share of household i in 1995, x1i is a dummy variable for
children (i.e., x1i ¼ 0 if household i has no children and 1 if household i has at least 
one child), and Yi is the log of total expenditure on both nondurable goods and services
of household i in 1995. Variable ui is an error term subject to a conditional quantile 
restriction. Typically, Yi may be endogenous, for example because of measurement 
errors in the expenditure data. Following Blundell, Chen, and Kristensen (2007) and 
Chen and Pouzo (2009), the male log-earnings of household i in 1995 is used as an 
instrument for Yi. Table 6 shows descriptive statistics for the variables of the model.
In Table 7, we first present conditional mean estimates of the model, obtained by 

using OLS and 2SLS. The estimated coefficients of total expenditure are significantly 
negative, which indicates that, on average, food share decreases as total expenditure 
increases, as expected from the Engel law according to which the importance of food 
within consumption diminishes as household living standard increases. The presence of 
children positively affects the budget share devoted to food, probably partly as a conse-
quence of lower living standards in larger families with identical incomes, and perhaps 
also because of different household preferences when children are present. Although the 
estimated coefficients of the dummy for children are similar for OLS and 2SLS, those of 
the total expenditure variables differ more, hinting at the presence of some endogeneity. 
The p-value of the usual Hausman test of exogeneity is almost zero, with a correspond-
ing t-statistics of 29.55, which confirms the presence of endogeneity. The OLS and TLS 
estimates of the prediction equation that is used to generate the fitted-value, and the 
OLS and TLS estimates of the reduced form are also shown in Table 7.
The estimation results of our proposed methods are reported in Table 8 for a range

of selected quantile indices (h ¼ 0:05; 0:25; 0:5; 0:75; 0:95Þ . For each selected quantile



index h, we estimate the quantile Engel curve in (8) using (i) two-stage quantile regres-
sion without the composite dependent variable, 2SQR1ðh; 1Þ, (ii) two-stage quantile
regression with the composite dependent variable based on the optimally estimated
combination weight, 2SQR1ðh; q̂Þ , (iii) two-stage quantile regression with TLS in the
first stage and no reformulation of the dependent variable, 2SQR2ðh; 1Þ , (iv) two-stage
quantile regression with TLS in the first stage and optimally reformulated dependent
variable, 2SQR2ðh; �qÞ. Since we are dealing with cases with approximately constant
effect, the obtained estimated coefficients of log total expenditure and of the dummy for
kids are close for all the estimation methods and across quantiles, and we concentrate
our comments on variance reduction results. We do not discuss the standard errors for
the estimates of the intercept coefficient, since they are deliberately inconsistent as a
tradeoff in our variance reduction method.
As expected, with the 2SQR1ðh; 1Þ standard errors are larger than with 2SLS. This is due

to the well known accuracy loss in most cases when using quantile regression instead of
LS. In contrast, when redefining optimally the dependent variable with 2SQR1ðh; q̂Þ , the
standard errors across the different quantile indices are significantly reduced to a level
comparable to the benchmark case of 2SLS. The estimates based on TLS, 2SQR2ðh; 1Þ ,
share the loss of accuracy of 2SQR1ðh; 1Þ when the original dependent variable is used.
However, a further gain in accuracy is obtained when redefining the dependent variable,
i.e. with 2SQR2ðh; �qÞ . In that case, slightly lower standard errors than with 2SLS can be
achieved. The estimated standard errors of c are: 0.0026 for 2SLS against 0.0024 for
2SQR2ðh; �qÞ for all tried h. The gain in accuracy achieved with 2SQR2ðh; q�Þ yields a 12 per-
cent reduction in standard errors for c. For b10, the efficiency gain is negligible.
Interestingly, for all quantiles, the estimated weights q̂ and �q are relatively small,

ranging from �0.029 with TLS and h ¼ 0:5 up to 0.091 with TLS and h ¼ 0:025. This 
implies that the role of the fitted-value of yt in the redefined dependent variable is pre-
dominant with these data at all quantile indices. Positive weights are found for quantiles 
0.05 and 0.25, and negative ones for quantile indices 0.5, 0.75 and 0.9.

6. Conclusion

In this paper, we develop a new method of variance reduction for constant-effect two-
stage quantile regression allowing for random regressors as well as for non-iid 
error terms.
Following an original idea in Amemiya (1982), we reformulate the dependent variable 

as a weighted mean of the original dependent variable and its fitted value. This combin-
ation introduces a tradeoff between an inconsistency on the intercept of the equation of 
interest on the one hand, and the variance reduction of the slope estimator on the other 
hand. Using the tradeoff, we can improve the efficiency of the slope estimator at the 
expense of making the intercept estimator inconsistent.
We derive the asymptotic normality and the asymptotic variance-covariance matrix 

of this two-stage quantile regression estimator. Then, we apply our variance reduction 
method by choosing optimally the combination weight in the redefined dependent vari-
able. Our Monte Carlo simulation results show massive efficiency gains in most cases. 
In particular, our new method alleviates the well-known poor efficiency of quantile



regressions at extreme quantiles. Two important arguments to use quantile regression
jointly with variance-reduction are first that it may yield more accurate or equivalent
estimates than OLS, and second that it does not require the knowledge of the distribu-
tion shape, which is a shortcoming of maximum likelihood estimators.
Let us emphasize two practical principles in our approach. First, the first-stage esti-

mators should be carefully selected so as to preserve efficiency, robustness or other
desired properties. Our simulation results suggest that OLS should perform well under
normality, while trimmed least-square should be more accurate and more robust for
heavy tails or asymmetric error distributions. Second, the dependent variable should be
reformulated as proposed, in such a way that a selected variance criterion is minimized.
The choice of the variance criterion may be left to the researcher, while minimizing the
MSE may be natural.
Let us recap the computation steps for the ‘trimmed least-squares plus quantile

regression’ procedure: (1) trimmed least-squares for the reduced-form equation and the
ancillary equations, (2) calculus of the fitted values for the endogenous regressors in the
structural equation, (3) preliminary quantile regression of the structural equation in
which the endogenous regressors are substituted with their fitted values, (4) estimation
of the density of the reduced-form error at the quantile of interest, (5) estimation of the
optimal weight for the reformulation, using residuals and density estimates from the
previous stages, (6) reformulation of the dependent variable using the estimated weight,
(7) final quantile regression of the structural equation.
It is worth mentioning that the proposed method for variance reduction may not be

necessarily limited to two-stage quantile regression methods. In fact, our approach
might be generalizable to other two-stage regression methods in which the use of a
composite dependent variable does not disturb the consistency of the final slope estima-
tor. However, finding these methods seems to be a challenge in itself. It seems that the
empirical contexts and estimation frameworks one can think of for variance reduction
via asymmetric bias transmission mostly fit situations where quantile regressions
are used.
One may however examine the different steps of the calculus and the proofs to find out

what the general principles behind the method are. First, any (regular) first-stage estima-
tion method can be considered, as it is clear from our Assumption 1 and Theorem 1.
Therefore, what matters for the generalization is the choice of the second-stage estimation
method. Second, the bias transmission property, described in our Theorem 2, extends to
any estimator defined by regular FOCs that can be inverted to obtain the asymptotic repre-
sentation, as long as an intercept is present in the linear model. Third, a necessary ingredi-
ent is that the influence function of the considered second-stage estimator should preserve
the corresponding semi-parametric restriction when the dependent variable is reformu-
lated. When limiting the attention to reformulations involving affine transformations,
conditional on exogenous variables, it seems that only two obvious functions satisfy this
requirement: that of quantile regression and that of OLS. We conjecture that they are the
only solutions under our hypotheses, although perhaps other influence functions may
work for non-continuous supports or by restricting the family of admissible distributions.
Finally, when these conditions are satisfied, the resulting asymptotic variance must depend
on the weight parameter q, so that variance can be reduced through optimization with



respect to q. In the case of LS, the variance does not depend on q. It is therefore impossible 
to extend our variance reduction method to LS. As a consequence, at least in general set-
tings, it seems that only quantile regressions can, so far, be employed for this method of 
variance reduction. Further progress may therefore involve additional hypotheses on the 
estimation problem to relax this limitation.
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Appendix A: Mathematical proofs

PT
Proof

0 
of Lemma 1: Let M	

TiðfÞ ¼ T�1=2 
t¼1 mi

	ðwt
th
; fÞ , where f is a K � 1 vector, wt ¼

ðvt; x0tÞ ; mi
	ðwt; fÞ ¼ xtiwhðqvt�x0tfÞ and xti is the i element in xt. We define V	

TiðfÞ ¼ 
M	

TiðfÞ�EðM	
TiðfÞÞ: Let us consider the case of a-mixing covariates and error terms in 

Assumption 2. We shall show that {V	
TiðfÞ : T � 1g is stochastically equicontinuous. To do so, 

we use Theorem II.8 in Andrews (1990) for which the following two conditions must be verified;
(a) mi

	ðwt; f
K
Þ is a type IV class function with index p � 2; that is, for all bounded f in a bounded

subset of R and for all L1>0 in a neighborhood of zero,

sup
t�T;T>1

E sup
f1 :kf1�fk<L1

jm	
i wt; f1ð Þ �m	

i wt; fð Þjp
� �� �1=p � CLw1 ; (9)

for some positive constants C and w and (b) {wt} is a� mixing of size � ð2KþwÞðKþ2wÞ
w2 .

We first verify (a) for p¼ 2. Consider a constant L1 close to zero and a finite value of f in RK.
Note that

jm	
i wt; f1ð Þ �m	

i wt; fð Þj ¼ jxtijj1 qvt�x0tf�0½ ��1 qvt�x0tf1�0½ �j
� jxtijj1 A�0½ ��1 B�0½ �j � jxtijj1 jAj�jA�Bj½ �j � jxtijj1 jqvt�x0tfj�jjxt jj�jjf1�fjj½ �j;

where A ¼ qvt�x0tf and B ¼ qvt�x0tf1: Hence, we have



sup
f1:kf1�fk<L1

jm	
i wt; f1ð Þ �m	

i wt; fð Þj2

� x2ti sup
f1:kf1�fk<L1

1 jqvt�x0tfj�jjxt jj�jjf1�fjj½ � � x2ti1 jqvt�x0tfj�jjxt jjL1½ �;

which implies

E supf1:kf1�fk<L1 jm	
i wt; f1ð Þ �m	

i wt; fð Þj2
� 	
� E x2tiPxt jqvt � x0tfj � jjxtjjL1


 �� � ¼ E x2ti
ÐU0

L0
ft kjxtð Þdk

� 	
∵q>0ð Þ

� E x2ti
Ð U0

L0
f0dk

� 	
∵ Assumption 3 iið Þ� �

¼ 2f0
q
E x2tijjxtjj
� �

L1;

where Pxt is the conditional probability function given xt, U0 ¼ q�1ðx0tfþ jjxtjjL1Þ and L0 �
q�1ðx0tf�jjxtjjL1Þ. Hence,

sup
t�T;T>1

E sup
f1:kf1�fk<L1

jm	
i wt; f1ð Þ �m	

i wt; fð Þj2
� �� �1=2 � CL1=21

for some constant C because of Assumption 3(v). Hence, condition (a) is satisfied with w ¼ 1=2.
Next, we turn to condition (b). Since w ¼ 1=2,

� 2K þ wð Þ K þ 2wð Þ
w2 ¼ � 2K þ 1

2

� �
K þ 1ð Þ

1
4

¼ �2 4K þ 1ð Þ K þ 1ð Þ:
Hence, condition (b) is a consequence of Assumption 1. Therefore, by Theorem II.8 in Andrews

(1990), {V	
TiðfÞ : T � 1g is stochastically equicontinuous, which implies that VT

	 ðfÞ is also stochas-
tically equicontinuous. Then, for any constant sequence L	T that converges to zero, we have

sup
jjf1�f2jj�L	T

jjV	
T f1ð Þ�V	

T f2ð Þjj ¼ op 1ð Þ: (10)

We now introduce a factor T�1=2 that weighs the contribution of the first-stage estimator in
the kernel of the empirical process. For this, we choose L	T ¼ T1=2L for a fixed positive number
L. Let VTðDÞ ¼ MTðDÞ�EðMTðDÞÞ; where MTðDÞ ¼ T�1=2 PT

t¼1 mðwt;DÞ;mðwt;DÞ ¼
xtwhðqvt�T�1=2x0tDÞ, and D is a K � 1 vector. Since V	

TðfÞ ¼ VTðT1=2fÞ; by defining D1 ¼ T1=2f1
and D2 ¼ T1=2f2, the result in (10) becomes

sup
jjD1�D2jj�L

jjVT D1ð Þ�VT D2ð Þjj ¼ op 1ð Þ: (11)

Setting D1 ¼ D and D2 ¼ 0 in (11), yields

sup
kDk<L

kMT Dð Þ �MT 0ð Þ � EMT Dð Þ � EMT 0ð Þ� 

k ¼ op 1ð Þ: (12)

Next, we show that EðMTðDÞÞ�EðMTð0ÞÞ ! �q�1Q0D as follows. First, we note that

E MT Dð Þ� �
¼ E T�1=2

XT
t¼1

xth� xt

ðq�1x0tT
�1=2D

�1
ft vjxtð Þdv

" #8<:
9=;:

Therefore, we have

E MT Dð Þ� �
�E MT 0ð Þð Þ ¼ �E T�1=2

XT
t¼1

xt

ðq�1x0tT
�1=2D

0
ft vjxtð Þdv

" #8<:
9=;

¼ �E q�1T�1
XT
t¼1

xtx
0
tD

Ft q�1x0tT
�1=2Djxt

� ��Ft 0jxtð Þ
q�1x0tT�1=2D

( )
;



where Ftð�jxtÞ is the conditional cdf of vt. Let GðkÞ ¼ q�1T�1 PT
t¼1 FtðkjxtÞxtx0tD . Then, by the

Mean-Value Theorem and the continuity in Assumption 3(ii), there exists nT;t between 0 and
q�1x0tT

�1=2D such that EðMTðDÞÞ�EðMTð0ÞÞ¼�EfG0ðnT;tÞg¼�q�1EfT�1PT
t¼1 ftðnT;tjxtÞxtx0tgD .

We now examine the convergence of this term.
Let QT ¼ E½T�1 PT

t¼1 ftðnT;tjxtÞxtx0t�; Q0T ¼ E½T�1 PT
t¼1 ftð0jxtÞxtx0t� and consider the ði; jÞth

element of jQT�Q0T j, which is given by

jT�1
XT
t¼1

E ft nT;tjxt
� �� ft 0jxtð Þ� 


xtixtj
� �j

� T�1
XT
t¼1

E jft nT;tjxt
� �� ft 0jxtð Þj jxtij jxtjj

� �
� L0T�1

XT
t¼1

E jnT;tj jxtij jxtjj
� �

for some constant L0; where the first result is due to Minkowski’s inequality and Jensen’s
inequality and the second result is obtained by the Lipschitz continuity in Assumption 3(ii).
Next, we note that

T�1
XT
t¼1

E jnT;tj jxtij jxtjj
� � � q�1T�3=2

XT
t¼1

E jx0tDj jxtij jxtjj
� � � q�1kDkT�3=2

XT
t¼1

E kxtk3
� �

� q�1kDkT�1=2C ! 0

for a constant C, where the last inequality is obtained by Assumption 3(v). Since Q0 ¼ 
limT!1 Q0T , we have EðMT ðDÞÞ�EðMT ð0ÞÞ ! �q�1Q0D . The case of m -dependent covariates 
and error terms can be dealt with similarly by using theorems 1-3 in Andrews (1994) as in his
example on page 2273, instead of Theorem II.8 in Andrews (1990). QED.

Proof of Theorem 1: We define D̂ 
0 ¼ �ð1�qÞT1=2ðp̂�p�BpÞ þ T1=2ðP̂�P�BPÞc . We have

D̂0 ¼ Opð1Þ because of Assumption 2. Then, Lemma 1 implies that

MT D̂0

� �
¼ MT 0ð Þ�q�1Q0D̂0 þ op 1ð Þ; (13)

where MT is defined Lemma 1. The term q�1Q0D̂0 is bounded in probability because D̂0 ¼
Opð1Þ: Also, MTð0Þ ¼ T�1=2 PT

t¼1 xtwhðqvtÞ ¼ T�1=2 PT
t¼1 xtwhðvtÞ because q> 0.11 Therefore,

under Assumptions 1, 3(iv)-(v) and 4(i), T�1=2 PT
t 1 xtwhðvtÞ converges in distribution to a nor-

mal random variable by the CLT in Theorem 5.20 
¼
of White (2001). Therefore, we have

MT D̂0

� �
¼ Op 1ð Þ: (14)

Next, we define D̂1ðdÞ ¼ HðP̂Þdþ D̂0 ¼ HðP̂Þd�ð1�qÞT1=2ðp̂�p�BpÞ þ T1=2ðP̂�P�BPÞc
for jjdjj � L, where d 2 RGþK1 for some L> 0. Using Assumption 2 and Lemma 1, it is straight-
forward to show that

sup
jjdjj�L

jjMT D̂1 dð Þ
� �

�MT 0ð Þ þ q�1Q0D̂1 dð Þjj ¼ op 1ð Þ: (15)

Before we reach the main part of the proof, we need one more result of stochastic equiconti-
nuity. For this, we define eMTðdÞ ¼ HðP̂Þ0MTðD̂1ðdÞÞ and jjHðP̂Þjj2 ¼ trðHðP̂ÞHðP̂Þ0Þ; which is
Opð1Þ since P̂ converges to Pþ BP that is finite.

11

except
For q <

for
0,
LAD
we have

estimators
whðqvt

(h
Þ ¼  

1
�
=
w
2
1 
)
�hð
or
vt Þ .
symmetric
Therefore, Eðwh

distributions.
ðvt ÞjxtÞ ¼

This
0 does
might

not
be one

imply Eð
reason

whðqvt
why
ÞjxtÞ ¼

authors
0 in 

imposed
general,

¼ symmetry of error terms, as in Chen (1988) and Chen and Portnoy (1996).



We now use the argument between (A.7) and (A.8) in Powell (1983) to show that (14) and
(15) imply that for some finite L2>0:

sup
jjdjj�L2

jj eMT dð Þ�H P	ð Þ0MT D̂0

� �
þ q�1Q	

zzdjj ¼ op 1ð Þ; (16)

where Q	
zz ¼ HðP	Þ0Q0HðP	Þ . The essence of the Powell’s argument is the following. Since

jjHðP̂Þjj2 ¼ Opð1Þ and jjHðP̂Þ�HðP	Þjj ¼ opð1Þ, we have

jj eMT dð Þ�H P	ð Þ0MT D̂0

� �
þ Q	

zzdjj � jjH P̂ð Þjj jjMT D̂1 dð Þ
� �

�MT 0ð Þ þ q�1Q0D̂1 dð Þjj
þ jjH P̂ð Þ�H P	ð Þjj jjMT 0ð Þ�q�1Q0D̂0jj
þ jjH P̂ð Þ�H P	ð Þjj jjH P̂ð Þjj þ jjH P	ð Þjj

n o
jjq�1Q0jjjjdjj þ jjH P	ð Þjj;

which delivers the result by applying the sup-operator to both sides of the inequality above.
Next, we define D̂ ¼ T1=2ðâ�a�BaÞ, where the expression for Ba is given in the Theorem. We

wish to show that eMT D̂ð Þ ¼ op 1ð Þ: (17)

Note that

eMT D̂ð Þ ¼ H P̂ð Þ0MT D̂1 D̂ð Þ� �
¼ T�1=2

XT
t¼1

H P̂ð Þ0xtwh qvt�T�1=2x0tD̂1 D̂ð Þ
� 	

¼ T�1=2
XT
t¼1

H P̂ð Þ0xtwh qyt þ 1�qð Þŷt�x0tH P̂ð Þâ þ Ât þ B̂t

� 	
;

where

Ât ¼ x0tH P̂ð Þa�x0tH Pð Þaþ x0tPc�x0tP̂c

and B̂t ¼ x0t H P̂ð ÞBa� 1�qð ÞBp þ BPc
h i

:

First, we have that Ât ¼ 0 because x0tHðP̂Þa ¼ x01tbþ x0tP̂c and x0tHðPÞa ¼ x01tbþ x0tPc:
Moreover, B̂t ¼ 0 because of the definition of Ba . Since Ât ¼ 0 and B̂t ¼ 0, it can be shown that

T1=2 eMTðD̂Þ ¼ @ST
@a ja¼â

h i
�
, which is the vector of left-hand-side partial derivatives of the objective

function in (5) evaluated at the solution â . Therefore, we obtain the desired result in (17); i.e.,eMTðD̂Þ ¼ opð1Þ.
Next, let us s D

D

D

how that ^ ¼ T1=2ðâ�a�BaÞ ¼  Opð1Þ. This will prove that Ba is the asymptotic
bias of â . We can obtain ^ ¼ Opð1Þ by using the argument in Lemma A.4 in Koenker and Zhao 
(1996). Similar arguments are in Jureckova (1977) and Hjort and Pollard (1999). To use Lemma

A.4 in Koenker and Zhao (1996) and to obtain ^ ¼ Opð1Þ; we need to check the follow-
ing conditions:

(i) �d0 eMTðkdÞ � �d0 eMTðdÞ for k � 1 and jjdjj � L3 for some L3>0;
(ii) jjHðP	Þ0MTðD̂Þjj ¼ Opð1Þ;
(iii) eMTðD̂Þ ¼ opð1Þ,
(iv) Q	

zz is positive definite.

Condition (i) is obtained by noticing that function hðkÞ ¼ PT
t¼1 qhðqvt�T�1=2

H P̂ dk T�1=2x0D̂ is convex in k, and therefore that its gradient, d0 eM k s non-decreasing

x0t ð Þ � t Þ � T ð dÞ i in k. Condition 
(ii) comes from (14). Condition (iii) results from the first-order condition of the
second stage, as we discussed above. Finally, condition (iv) is ensured by Assumptions 3(i) and 
3(iii).
Hence, by Lemma A.4 in Koenker and Zhao (1996), we have



D̂ ¼ T1=2 â�a�Bað Þ ¼ Op 1ð Þ: (18)

Therefore, we can plug D̂ into (16) in place of d to obtain the following result:eMT D̂ð Þ�H P	ð Þ0MT D̂ð Þ þ q�1Q	
zzD̂ ¼ op 1ð Þ: (19)

Note that the first term in (19) is opð1Þ because of (17). Hence, we have

q�1Q	
zzD̂ ¼ H P	ð Þ0MT D̂ð Þ þ op 1ð Þ (20)

¼ H P	ð Þ0MT 0ð Þ�H P	ð Þ0q�1QD̂ þ op 1ð Þ; (21)

where the second equality comes from (13). Since we are now facing a generalized Taylor expan-
sion of the FOCs for our estimator, it is easy to see that the analog of the usual identification
condition corresponds here to stating that the factor q�1Q	

zz of D̂ in this expansion can be
inverted. This is equivalent to imposing that first HðP	Þ is full rank, and second that Q0 is finite
and positive definite. These conditions are satisfied respectively from Assumptions A3(i) and
A3(iii). By plugging the definition of D̂ into (21) and inverting q�1Q	

zz, we obtain

T1=2 â�a�Bað Þ ¼ Q	�1
zz H P	ð Þ0 T�1=2

XT
t¼1

xtqwh vtð Þ
(

þ 1�qð ÞQ0T
1=2 p̂�p�Bpð Þ�Q0T

1=2 P̂�P�BP

� �
c

)
þ op 1ð Þ;

K � ðK�1Þ matrix. On the other hand, HðP	Þ ¼ IK1

0K2�K1

P	

which completes the proof. QED.

Proof of Theorem 2: On the one hand, Q0 ¼ ½Q1 Q2 � where hQ1 is a K � 1 imatrix and Q2 is a

and R ¼

½HðP	Þ0Q0HðP	Þ��1HðP	Þ0 . We want to prove RQ1 ¼
h 1
0ðK1þG�1Þ�1

i
. Let A ¼ RQ0; a ðGþ K1Þ �

K matrix. Since RQ1 is the first column of A, which we denote a0 , we just need to show that a0 is
composed of a one at the first line and zeros elsewhere. We have AHðP	Þ ¼ RQ0HðP	Þ ¼ IðGþK1Þ
by definition of R. It follows that the first column of AHðP	Þ is a0 owing to the arrangement of ele-

ments in HðP	Þ in Theorem 2, while the first column of IðGþK1Þ is ð1; 0; :::; 0Þ0 . Hence, RQ1 ¼h 1
0ðK1þG�1Þ�1

i
. QED.

¼ ½ ð Þ hð tÞ � t � ¼ ½ð ð Þ hð tÞ � t Þut � ¼ ð
a
Proof

E f 
of
0 �1w
Lemma

v 
2:
v	 2; b

With 
E
OLS

f 0 �1
first-stage

w v v	
estimators,

	 and
we

c
have

E u
r
	
2
0
2
ðqÞ ¼  aq2 þ 2bq þ c , where

t Þ , which corresponds to a
convex parabolic curve that attains its minimum at

q	 ¼ � b
a
¼ E v	t u

	
tð Þ�f 0ð Þ�1E wh vtð Þu	t

� �
f 0ð Þ�2h 1� hð Þ þ E v	2t

� �� 2f 0ð Þ�1E wh vtð Þv	t
� � ;

ev
which completes the proof. QED.

Proofof the TLS case: Since it is generated by censorship at two symmetric quantiles, the error 

F�
term

1 
in the first step of the calculus of the TLS estimator can be written as t ¼

v ðlÞI½vt<F�1
v ðlÞ� þ F�1

v ð1�lÞI½vt<F�1
v ð1�lÞ� þ vtI½F�1

v ðlÞ<vt<F�1
v ð1�lÞ� . This transformation of the initial

error term vt corresponds to the trimming that is performed by using quantile regressions before
applying the least square estimator.



The terms with a negative sign in Assumption 300 is what remains from the condition
Eðevt jxðjÞt; j ¼ 2; :::Þ ¼ 0 that has not been canceled, i.e. EðevtÞ . For the OLS estimator, this is
ðEvt; 0; :::; 0Þ . For the TLS, this yields ðEðt vtÞ þ lðF�1

v ðlÞ þ F�1
v ð1�lÞÞ; 0; :::; 0Þ , where t vt ¼

vtI½F�1
v ðlÞ<vt<F�1

v ð1�lÞ� is the truncated error term. Indeed, using the above formula for evt , we have

Eevt ¼ F�1
v lð ÞP vt<F�1

v lð Þ
h i

þ F�1
v 1�lð ÞP vt<F�1

v 1�lð Þ

 �þ ðF�1

v 1�lð Þ

F�1
v lð Þ

vfv vð Þdv

¼ F�1
v ðlÞF½F�1

v ðlÞ� þ F�1
v ð1�lÞf1�F½vt<F�1

v ð1�lÞ�g þ Eðt vtÞ, which gives the result:
½F�1

v ðlÞ þ F�1
v ð1� lÞ�lþ Eðt vtÞ. Using these results, the proof of Lemma 3 is similar to that

of Lemma 2. QED.

Appendix B: Technical details

Empirical Process: To derive the asymptotic representation of the 2SQR(h; q ) estimator, we 
define the following empirical process.

MT Dð Þ ¼ T�1=2
XT
t¼1

xtwh qvt�T�1=2x0tD
� 	

;

where D is a K � 1 vector. Applying Theorem II.8 in Andrews (1990) or Theorems 1-3 in 
Andrews (1994) yields the following lemma.

Lemma 1. Suppose that Assumptions 1-3 and 3(v0 ) hold, or that Assumptions 1, 20 and 3 hold. 
Then, for any L > 0, we have the following result:

sup
jjDjj�L

jjMT Dð Þ�MT 0ð Þ þ q�1Q0Djj ¼ op 1ð Þ:

Asymptotic representation for ea : The asymptotic representations of eP and ep are obtained
and plugged into the formula in Theorem 1 to obtain:

T1=2 ea�a�Bað Þ ¼ RT�1=2
XT
t¼1

xtqwh vtð Þ�RQ0Q
�1T�1=2

XT
t¼1

xt qv	t�u	t
� �þ op 1ð Þ:

Lemma 2. Suppose that Assumptions 1,3, 30 and 4 hold. In addition, we assume that
fðx0t; ut; vtÞg is iid and ftð0jxtÞ ¼  f ð0Þ; for any t. Then, the optimal weight minimizing the asymp-

totic variance of ae is given by:

q	 ¼ E v	t u
	
tð Þ�f 0ð Þ�1E wh vtð Þu	t

� �
f 0ð Þ�2h 1� hð Þ þ E v	2t

� �� 2f 0ð Þ�1E wh vtð Þv	t
� � : (22)

A consistent estimator for q	 is obtained by substituting a consistent kernel-estimator f̂ ð0Þ for
f(0), and residuals for error terms:

q̂ ¼
PT
t¼1

v̂	t û
	
t�f̂ 0ð Þ�1 PT

t¼1
wh v̂tð Þû	

t

Tf̂ 0ð Þ�2h 1� hð Þ þ PT
t¼1

v̂	2t � 2f̂ 0ð Þ�1 PT
t¼1

wh v̂tð Þv̂	t
; (23)

where û	
t ¼ v̂	t�V̂

	0
t ĉ; v̂

	
t ¼ yt�x0tep; V̂ 	0

t ¼ Y 0
t�x0t eP; v̂t ¼ yt�x0tp̂h and p̂h ¼

argminp
PT

t¼1 qhðyt�x0tpÞ . The omitted proof for the consistency of q̂ is straightforward.



Asymptotic representation for �a:

T1=2 a��a�eBa

� �
¼ RT�1=2

XT
t¼1

xtqwh vtð Þ�RQ0Q
�1T�1=2

XT
t¼1

xt qev	t�eu	
t

� �þ op 1ð Þ; (24)

where the asymptotic bias vector eBa is such that the first element only is non-zero.

Lemma 3. If fðx0t; ut; vtÞg is iid and ftð0jxtÞ ¼ f ð0Þ for any t, then the asymptotic matrix of a� iser2
0ðqÞeQ�1

zz , where er2
0ðqÞ ¼ Eðef2t Þ;eft ¼ qf ð0Þ�1whðvtÞ þ eu	

t�qev	t and eQzz ¼ HðeP	Þ0Q0HðeP	Þ , andeP	 ¼ Pþ eBP. In this case, the optimal value of q minimizing er2
0ðqÞ is given by:

q	 ¼ E ev	t eu	
t

� ��f 0ð Þ�1E wh vtð Þeu	
t

� �
f 0ð Þ�2h 1� hð Þ þ E ev	2t� 	

� 2f 0ð Þ�1E wh vtð Þev	t� � : (25)

A consistent estimator for q	 is:

q̂ ¼
PT
t¼1

v�t 	 u�t 	�f̂ 0ð Þ�1 PT
t¼1

wh v̂tð Þ u�t 	

Tf̂ 0ð Þ�2h 1� hð Þ þPT
t¼1

v�t 	2� 2f̂ 0ð Þ�1 PT
t¼1

wh v̂tð Þ v�t 	
; (26)

where u�t 	 ¼ v�t 	�V�t 	0 c�; v�t 	 ¼ yt�x0tp̂TLS;V�t 	0 ¼ Y 0
t�x0tP̂TLS; v̂t ¼ yt�x0tp̂h and p̂h ¼

argminp
PT

t¼1 qhðyt�x0tpÞ.

Appendix C: Simulation set-up

The structural simultaneous equation system can be written B
h yt
Yt

i
þ Cxt ¼ Ut; where

h yt
Yt

i
is a

2� 1 vector of endogenous variables, xt is a 4� 1 vector of exogenous variables with the first
element equal to one. The error term Ut is a 2� 1 vector of error terms. We specify the struc-

tural parameters as follows: B ¼
�

1 �0:5
�0:7 1

�
and C ¼

��1 �0:2 0 0
�1 0 �0:4 0:2

�
: The system

is over-identified by the exclusion restrictions C13 ¼ C14 ¼ C22 ¼ 0 . Moreover, ½ v V � ¼
UðB0Þ�1. Hence, c ¼ 0:5 and b0 ¼ ðb0; b1Þ ¼ ð1; 0:2Þ.

The choice of the parameter values is led by the following considerations. Only moderate cross
effects of the two endogenous variables are specified so that the endogeneity problem be interest-
ing but not extreme. Identification restrictions and the degree of over-identification drive the
occurrence of exogenous variables in the equations. Moderate, while non-negligible and compar-
able effects are allowed for these variables.

The error v in the reduced-form equations is generated so as to satisfy Assumption 3(iv): v ¼
ve�F�1

ve ðhÞ where ve ¼ rðx5tÞwt , wt is generated by using alternatively the distributions N(0, 1),
t(3) and LN(0,1) with autocorrelation coefficient –0.1 and x5t is generated from a distribution
N(0, 1) independently of other random variables and errors. Because we assume that x5t is inde-
pendent of wt and wt is iid, F�1

ve ðhÞ ¼ rðx5tÞF�1
w ðhÞ; where F�1

w ðhÞ is the inverse cumulative func-
tion of wt evaluated at h.12 The scale factor is rðx5tÞ ¼ 1þ dx5t . We choose d ¼ 0:05 under
heteroskedasticity and d¼ 0 under iid. The errors Vj are generated in the same way, albeit with-
out heteroskedasticity. Then, we draw the second to fourth columns in X from the normal

12Since we are looking at models with constant slopes not depending on the chosen quantile it is tantamount to
regenerate the errors to satisfy the condition for each quantile, or to generate them for a given quantile and
estimating the different condtional quantiles with the same data. The centering of the error tem in each quantile h is
merely a normalization of the intercept in this case.



0:1 and
distribution

cov x
with
; x 

mean
0:2
ð
,
0:5;
where

1; �
x
0:
,
1Þ
x

0 , 
and
variances

x are
normalized
respectively

to
the
1, cov
second,

ðx2; x3
third
Þ ¼  0:

and
3; covð

fourth
x2; x4

com-
Þ ¼

ð 3 4Þ ¼  2 3 4 
ponents of xt. The correlations between the exogenous variables are neither extreme nor negli-
gible. Given X; ½ v V � and ½ p P � ¼  �C0ðB0Þ�1 , we generate the endogenous variables ½ y Y � 
by using the reduced-form equation: ½ y Y � ¼  X½ p P � þ  ½ v V �.
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