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INTRODUCTION

Forests are multi-layered and heterogeneous ecosystems in which canopy trees, understory plants and soil organisms interact in complex networks [START_REF] Wardle | Ecological Linkages between aboveground and belowground biota[END_REF]). Phenolics released by woody plant species can play a key role in these interactions by influencing the structure and diversity of plant and soil communities [START_REF] Chou | Roles of allelopathy in plant biodiversity and sustainable agriculture[END_REF]Souto et al. 2000a;[START_REF] Wardle | An ecosystem-level perspective of allelopathy[END_REF][START_REF] Das | Chemical quality impacts of tropical forest tree leaf litters on the growth and fecundity of soil Collembola[END_REF], with important feedback on forest community composition, richness or dynamics [START_REF] Mallik | Allelopathy in forested ecosystems[END_REF]. For instance, autotoxicity of canopy trees on their own seedlings probably plays a role in forest species turnover along succession in Mediterranean forests [START_REF] Fernandez | Regeneration failure of Pinus halepensis Mill.: The role of autotoxicity and some abiotic environmental parameters[END_REF][START_REF] Fernandez | The impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species[END_REF]. However, understory shrub species can also profoundly affect forest ecosystem functioning and dynamics. For example, phenolics released by the understory dwarf shrub Empetrum hermaphroditum was reported to impair the regeneration of the dominant tree Pinus sylvestris in boreal forests [START_REF] Nilsson | Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum-Hermaphroditum Hagerup[END_REF][START_REF] Nilsson | Characterisation of the differential interference effects of two boreal dwarf shrub species[END_REF].

Soil microorganisms can be directly affected by plant phenolics [START_REF] Chomel | Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones[END_REF][START_REF] Santonja | Contrasting responses of bacterial and fungal communities to plant litter diversity in a Mediterranean oak forest[END_REF]) but they may also use these plant chemicals as carbon source and thus modify the plant-plant chemical interactions [START_REF] Fernandez | Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession[END_REF]Souto et al. 2000a). Litter phenolics can inhibit tree fungal symbionts [START_REF] Rose | Allelopathic effects of litter on the growth and colonization of mycorrhizal fungi[END_REF]Souto et al. 2000b) which may have important consequences for tree seedlings development. However, these effects on fungi are species-specific and only few studies tested whether plant phenolics can decrease tree mycorrhization in natural soil (Souto et al. 2000b). Phenolics released by plants may also affect soil arthropods [START_REF] Poinsot-Balaguer | Effects of tannin compounds on two species of Collembola[END_REF][START_REF] Das | Chemical quality impacts of tropical forest tree leaf litters on the growth and fecundity of soil Collembola[END_REF][START_REF] Asplund | Removal of secondary compounds increases invertebrate abundance in lichens[END_REF], which play a key role on soil microbial community structure (Berg et al. 2004;[START_REF] Chahartaghi | Feeding guilds in Collembola based on nitrogen stable isotope ratios[END_REF] and litter decomposition process [START_REF] Seastedt | The role of microarthropods in decomposition and mineralization processes[END_REF][START_REF] Filser | The role of Collembola in carbon and nitrogen cycling in soil[END_REF][START_REF] Santonja | Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest[END_REF]. However, to our knowledge, such plant-soil arthropod chemical interactions were poorly studied.

The Mediterranean basin has an exceptionally high plant diversity and endemism [START_REF] Myers | Biodiversity hotspots for conservation priorities[END_REF] shaped by a high diversity of human and ecological factors such as geology, topography or perturbation regimes [START_REF] Blondel | The "design" of Mediterranean landscapes: A millennial story of humans and ecological systems during the historic period[END_REF]. Many Mediterranean plants synthesize a wide variety of specialized metabolites, which help them withstanding the summer drought and high radiative stress typical of Mediterranean-type ecosystems [START_REF] Chaves | Variation of flavonoid synthesis induced by ecological factors[END_REF], and which can also influence ecosystem structure and functioning [START_REF] Scognamiglio | Plant growth inhibitors: allelopathic role or phytotoxic effects? Focus on Mediterranean biomes[END_REF][START_REF] Vilà | Plant competition in mediterranean-type vegetation[END_REF]. The downy oak (Quercus pubescens Mill.) is a long-lived submediterranean tree that occurs mainly in Southern Europe, from northern Spain to the Caucasus [START_REF] Quézel | Ecologie et biogéographie des forêts du bassin méditerranéen[END_REF]. Downy oak forests cover about 400 000 ha in Mediterranean France [START_REF] Ifn | Résultats d'inventaire forestier. Tome zonage écoforestier Méditerranée[END_REF] and were traditionally managed as coppices, but the abandonment of this practice during the second half of the 20 th century resulted in ageing stands with frequent signs of dieback. With the abandonment of vegetative reproduction through coppices, the future of these stands should depend upon sexual regeneration, but local observations underline a lack of seedlings and saplings [START_REF] Prévosto | Éclaircir est-il suffisant pour favoriser la régénération de taillis de chêne blanc? Retour sur un dispositif expérimental installé il y a 27 ans en forêt domaniale de Lure (Alpes-de-Haute-Provence)[END_REF]. The role of plantplant chemical interactions during the germination or establishment phases have still been poorly investigated. The understory of downy oak forests is frequently dominated by the shrub Cotinus coggygria Scop. (Anacardiaceae), which has a wide distribution from southern Europe, the Mediterranean, Moldova and the Caucasus to central China and the Himalayas [START_REF] Matić | Biological properties of the C. coggygria methanol extract[END_REF]. This species has been traditionally used as a dyestuff since antiquity [START_REF] Valianou | Phytochemical analysis of young fustic (Cotinus coggygria heartwood) and identification of isolated colourants in historical textiles[END_REF]) but also widely used in ornamental horticulture. This shrub produces high diversities and amounts of phenolics and terpenes [START_REF] Novaković | Chemical composition, antibacterial and antifungal activity of the essential oils of C. coggygria from Serbia[END_REF][START_REF] Hashoum | Biotic interactions in a Mediterranean oak forest: role of allelopathy along phenological development of woody species[END_REF]. This species has consequently been studied for a source of bioactive substances such as those from extracts or essential oils that present antibacterial, antifungal and antioxidant properties [START_REF] Marčetić | Antimicrobial, antioxidant and anti-inflammatory activity of young shoots of the smoke tree, Cotinus coggygria Scop[END_REF][START_REF] Novaković | Chemical composition, antibacterial and antifungal activity of the essential oils of C. coggygria from Serbia[END_REF][START_REF] Matić | Biological properties of the C. coggygria methanol extract[END_REF]. Considering these characteristics, this species could play a major role in biotic interactions occurring in Mediterranean downy oak forests.

The aim of the present study was to analyze how phenolics of C. coggygria influence understory herbaceous plant species, downy oak regeneration and soil organisms, including both microorganisms and arthropods. More precisely, our objectives were to (i) quantify phenolics present in C. coggygria leaf leachates; (ii) determine whether phenolics of C. coggygria affect the germination and seedling growth of understory plant species and downy oak; (iii) evaluate the impact of these phenolics on soil microorganisms and arthropods; and finally (iv) assess the role of soil microorganisms for plant-plant chemical interactions.

MATERIAL AND METHODS

Experimental site and material collection

Field experiment and biological material collection (Cotinus coggygria leaves, oak acorns and soils) were performed at the Oak Observatory at the OHP (O3HP) experimental site located in the research center "Observatoire de Haute Provence", 60 km north of Marseille (43°56'115" N, 05°42'642" E; 680 m a.s.l.). The climate is Mediterranean with a mean annual temperature of 11.9 °C and a mean annual precipitation 830 mm . The site is covered by an old-growth oak forest belonging to the site Natura 2000 "FR9302008 Vachères", which was managed for centuries by coppicing. Downy oak (Quercus pubescens: 75% coverage) and Montpellier maple (Acer monspessulanum: 25% coverage) are the two dominant tree species, with understory vegetation dominated by smoke tree (Cotinus coggygria: 30% coverage). The soil is a pierric calcosol (with S horizon between limestone rocks) or calcarisol when limestone appears less than 25 cm deep.

Three types of C. coggygria leaves (according to leaf maturity) were collected to perform chemical analyses and to prepare the aqueous extracts (mimicking C. coggygria leachates) for bioassays: green and senescent leaves were collected directly on the shrub and leaf litter on the forest floor. Oak acorns were collected on the ground in autumn, floated and visually screened to eliminate non-viable acorns. Soil samples used as bioassay substrate were collected in zones without C. coggygria (i.e. at least 10 m from shrubs), sieved at 2 mm, and then stored at room temperature until the start of the experiments.

We selected four herbaceous target species naturally present in downy oak forests to perform the bioassays: Linum narbonense L. (Linaceae), Satureja montana L. (Lamiaceae), Silene nutans L. (Caryophyllaceae) and Verbascum pulverulentum Vill. (Scrophulariaceae).

Seeds were collected from wild populations on the study site, and then stored in a cold chamber at 5 °C until the start of the experiment. We also selected Lactuca sativa L. (Asteraceae) as target plant species because this species is known for its sensitivity to specialized metabolites and frequently used for bioassays as a reference (e.g. [START_REF] Chou | Allelopathic potential of Acacia confusa and related species in Taiwan[END_REF][START_REF] Fernandez | Potential allelopathic effect of Pinus halepensis in the secondary succession: an experimental approach[END_REF].

Seeds of L. sativa were purchased from a commercial company (Vilmorin ®).

Chemical analysis

Total phenolics

Extraction of phenolics was carried out based on the method described by [START_REF] Singleton | Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents[END_REF] and adapted to smaller amounts of plant material. Briefly, a dry mass (DM) of 250 mg of crushed leaf was extracted with 20 mL of deionized water. The mixture was left for 1 h under constant shaking at ambient temperature shielded from light. The extract was then filtered on Whatman GF/C paper filter. A volume of 25 µL of the extract were added to 1650 µL of ultrapure water, 200 µL of saturated Na2CO3 aqueous solution and 100 µL of Folin-Ciocalteu's reagent. After 30 min, the phenolic index was measured at 765 nm on a spectrophotometer (Spectronic Biomate 3 Thermo Electron Scientific Instrument Corporation ®) and expressed as equivalent of mg of gallic acid per g of plant material (DM).

Flavonoids

Among phenolic compounds, we focused on flavonoids which were quantified in terms of proanthocyanidins and flavonoid index (total flavonoid). Extraction and quantification were based on a previous work [START_REF] Kaundun | Geographical variability of Pinus halepensis Mill. as revealed by foliar flavonoids[END_REF]) adapted by our laboratory to smaller amounts of plant material. A mass of 0.5 g DM of crushed leaf was suspended in 15 ml of HCl 2N solution and heated to 90 °C in a water bath with reflux for 50 min with every 10 min of air influxes. The acidic treatment generated anthocyanidins from homologous proanthocyanidins and flavonol aglycones from corresponding flavonol glycosides. The solution was left to cool approximately 30 min and filtered (filter porosity 3). Anthocyanidins were quantified spectrophotometrically at 435 nm (Spectronic Biomate 3 Thermo Electron Scientific Instrument Corporation ®) and expressed as mg per g of plant material (DM). Flavonol aglycones were extracted three times with 9 mL of diethyl ether. The extracts were recombined and evaporated to dryness. The residue was then dissolved and mixed with 1.5 mL of methanol.

An aliquot of 100 µL was added to 5 mL of 1 % AlCl3 / MeOH solution and let 20 min to react.

The flavonoid index was measured at 530 nm and expressed as equivalent of mg of quercetin per g of plant material (DM).

Bioassays

We chose to test the effects of natural leachates using leaf aqueous extracts because watersoluble compounds have been shown to be most involved in allelopathy [START_REF] Fernandez | Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession[END_REF][START_REF] Fernandez | The impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species[END_REF]. These extracts were prepared by soaking entire leaves in deionized water for 24 h at room temperature (20 ± 1°C) in darkness [START_REF] Fernandez | Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession[END_REF][START_REF] Hashoum | Biotic interactions in a Mediterranean oak forest: role of allelopathy along phenological development of woody species[END_REF]). After 24 h, extracts were filtered through #42 Whatman® paper filter and stored at 4 °C until use.

New extracts were prepared to prevent compound degradation once a week (Experiment 1, stock solution at 5% dry weight further diluted at 2.5%) or once a month (Experiment 2, solution at 5% dry weight) with fresh material.

Experiment 1: Response of understory plant species & microorganisms to C. coggygria aqueous extracts

We compared natural and autoclaved soil bioassays to evaluate the impact of soil microbial communities in shaping plant-plant chemical interactions [START_REF] Kaur | Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites[END_REF][START_REF] Fernandez | Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession[END_REF]. Sterilization consisted in autoclaving soil for two cycles of 1 h (24 h apart) at 121 °C to eliminate a fraction of the microbial community [START_REF] Alef | Methods in applied soil microbiology and biochemistry[END_REF][START_REF] Trevors | Sterilization and inhibition of microbial activity in soil[END_REF].

Bioassays were conducted in Petri dishes with 50.0 g (± 0.1 g) of soil, either natural or autoclaved, corresponding to a thickness of 0.5 to 0.6 mm [START_REF] Fernandez | Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession[END_REF]. Each Petri dish was sown with 20 seeds of each target species that were watered every 2 days with 5 mL of deionized water (control) or C. coggygria extracts (2.5% and 5%) from one of the three leaf types (green leaf, senescent leaf and leaf litter). Five replicates were performed for each treatment (target plant species × leaf type × concentration × soil type). Bioassays were conducted under natural photoperiod and controlled temperature (20.5 °C ± 1 °C) for 40 days.

Seed germination was monitored every day and used to compute total germination rate and germination speed using the velocity coefficient [START_REF] Mazliak | Physiologie Végétale: Croissance et Développement[END_REF]): Cv = 100 (ΣNi / ΣNiTi), where Ni is the number of seeds germinated at time i, and Ti is the number of days since the start of the experiment. The higher the velocity coefficient, the faster the germination. A seed was considered as germinated when the protruding radicle achieved the length of 1 mm beyond the seed coat. Lengths of root and shoot were measured for each individual at the same age, i.e. 10 days after germination (accuracy: 1 mm).

A further set of Petri dishes containing either natural or autoclaved soils was used to test the effects of C. coggygria extracts on biomass and basal respiration of soil microbial communities. Microbial biomass (MB) was estimated using substrate-induced respiration (SIR) rates [START_REF] Anderson | A physiological method for the quantitative measurement of microbial biomass in soil[END_REF]. Ten grams (dry weight equivalent) of subsamples were placed in 117 mL glass jars and amended with powdered glucose (1000 μg C.g -1 soil). After incubation (1 h, 22 °C), a volume of 1 mL of air was sampled in the headspace with a syringe and injected onto the gas chromatograph (ChrompackCHROM 3-CP 9001) to analyze CO2 production. SIR rates were converted into MB using equations given by [START_REF] Beare | A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues[END_REF].

Experiment 2: Response of oak seedling (2a) and sapling (2b) to C. coggygria aqueous extracts in greenhouse and (2c) to C. coggygria presence in the field

This experiment was conducted in greenhouse to determine if C. coggygria aqueous extracts could alter (i) oak acorns germination and early development and (ii) oak saplings development and associated mycorrhiza. Finally, a seeding experiment was performed in situ to compare patterns obtained in greenhouse (only chemical interactions) and in the field (all types of interaction).

In the experiment 2a, thirty oak acorns were sown in individual pots filled with natural soil and vermiculite (2:1, for a total of 150 g of substrate per pot). Three treatments were applied on each set of 10 pot replicates: i) control, ii) leachates, watered with C. coggygria aqueous extracts at 2.5% DM of plant material, and iii) litter, where soil substrate was mixed with 10 g of C. coggygria leaf litter. Pots were watered every 3 days with deionized water or aqueous extracts and kept under a 12h-photoperiod for 2 months. At the end of this period, germinated acorns in each treatment were counted. The seedlings were separated into leaves, stem and roots, and weighed after drying them at 60 °C for 48 h.

The experiment 2b was conducted to assess C. coggygria impact on older saplings and their mycorrhizae. A total of 70 forty-month old individuals of Q. pubescens certified mycorrhized by Tuber melanosporum Vittad. were grown in 10 L plastic pots containing a substrate consisting of mold (pH 6), perlite and vermiculite (1/3 of each). Three grams of magnesium carbonate per L of substrate were added to obtain an alkaline pH of 7.6 that favors T. melanosporum development. Half of the saplings were watered monthly with 200 mL of aqueous extracts at 5% DM of plant material whereas control saplings received 200 mL of deionized water. In order to mimic as close as possible the natural conditions, C. coggygria extracts were prepared according to the shrub phenology: with senescent leaves sampled from October to January, litter sampled from February to April or green leaves sampled from May to September. After 4, 12 and 16 months, 10 saplings per treatment were harvested and divided into leaf, stem and root after careful removing of soil. A subsample of 10 secondary root segments (3 cm) per sapling were randomly selected for the analysis of the mycorrhizal colonization [START_REF] Garbaye | La symbiose mycorhizienne: Une association entre les plantes et les champignons[END_REF]. Root segments were kept in 60 % ethanol to stop the mycelial development until analysis. Segments were placed in Petri dishes and all root tips were observed using a binocular scope and classified as mycorrhized or not. We then computed the mycorrhization rate according to the formula number of mycorrhizal root tip / total root tips × 100.

For the field experiment (2c), 50 sowing points were installed on the Q. pubescens forest understory, either in the presence or absence of C. coggygria shrub (100 sowing points in total). Each sowing point consisted of manually dug holes of about 2 cm in which 2 downy oak acorns were laid flat, covered with soil and a wire mesh (10 cm x 10 cm, 0.6 cm mesh size) to prevent predation by rodents. Acorns collection and sowing took place in November 2013. Acorns were collected on several trees to encompass intraspecific variation and non-viable acorns were eliminated by floating and visual screening. Sowing points were distributed in 5 blocks in each treatment (with or without C. coggygria). Plots were fenced to limit predation by wild boar.

Emerged seedlings were counted in June 2014, and seedling number and dimensions (diameter at 2 cm and length) were then recorded yearly in winter until 2017 (4-year-old seedlings).

Experiment 3: response of soil saprophytic fungi and mesofauna to C. coggygria aqueous extracts

For this experiment, intact soil from the upper 10 cm were sampled, transported to the laboratory and placed in aluminum mesocosm (20 × 15 cm). The mesocosms were placed in a culture room with a natural photoperiod, a temperature of about 23 °C and an air humidity of about 40%. Mesocosms were sprayed each 3 days using 50 mL of deionized water (control) or aqueous extracts of C. coggygria senescent leaves at 2.5% and 5% DM of plant material.

After 15 days, soil arthropods were extracted using the Tullgren funnel method, and stored in 95% ethanol to be counted and separated into Collembola and different suborders for Acari (Oribatida, Mesostigmata and Prostigmata) [START_REF] Hopkins | The Biology of Springtails (Insects: Collembolan)[END_REF][START_REF] Santonja | Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest[END_REF]) using a binocular scope. Collembola and Acari Oribatida were regarded as microbi-detritivore mesofauna, whereas Acari Mesostigmata and Prostigmata as predatory mesofauna (Coleman et al. 2004;[START_REF] Santonja | Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest[END_REF].

Fungal biomass was determined by quantifying ergosterol, which is a specific fungal membrane constituent and thus a good indicator of living fungal biomass [START_REF] Gessner | Ergosterol-to-biomass conversion factors for aquatic hyphomycetes[END_REF]. Ergosterol extraction and quantification were performed following the method described in [START_REF] Santonja | Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest[END_REF].

Data analysis

Differences in concentration of phenolics, flavonols and proanthocyanidins according to C. coggygria leaf type (green leaf, senescent leaf and leaf litter) were tested using Kruskal-Wallis tests followed by post hoc Student-Newman-Keuls tests.

For the experiment n°1, differences in plant performance (germination rate and velocity, shoot and root growths) in the control treatments between species and soil types (autoclaved and natural) were first analyzed using a binomial GLM for germination rate and two-way ANOVAs for other response variables, followed by post-hoc Tukey tests. Then, we computed a Relative Allelopathic Effect (RAE) as the relative difference between plant performance in the control (Pc) and leachates (Pt) treatments: RAE (%) = (Pc -Pt) / Pt and calculated a mean and bootstrapped confidence interval at 95% (n=1000) for each combination of species, leaf type (green, senescent and litter), concentration (2.5 or 5%) and soil type (autoclaved or natural). RAE was considered significantly different from zero (i.e. treatment different from the control) when zero was not included in the bootstrapped confidence interval. Differences in microbial biomass according to the C. coggygria leaf type, concentration and soil type were tested using a three-way ANOVA followed by post hoc Tukey tests.

Concerning the experiment n°2, differences in oak seedling root, stem and leaf biomasses according to the treatments (control, leachates or litter) were tested using one-way ANOVAs followed by post hoc Tukey tests. Differences in oak sapling biomass (root, stem and leaf) and mycorrhization rate according to the treatment, sampling date and their interactions were tested using two-way ANOVAs followed by post-hoc Tukey tests. For the field experiment, the effect of C. coggygria presence on seedling emergence and survival was tested using binomial GLMs and using a one-way ANOVA for seedling growth. For all ANOVAs, normality and homoscedasticity of the residuals were assessed by Shapiro-Wilk and Bartlett tests, respectively, and data were log or root-squared-transformed when necessary.

Finally, concerning the experiment n°3, differences in mesofauna abundance and fungal biomass according to C. coggygria leachates were tested by Kruskal-Wallis tests, followed by post-hoc Student-Newman-Keuls tests, due to heteroscedasticity.

All statistical analyses were performed with R software (R Development Core Team 2017).

RESULTS

Chemical analysis

Concentrations of total phenolics, flavonols and proanthocyanidins increased from green to senescent leaves but strongly decreased in leaf litter (Fig. 1).

Bioassays

Soil microorganisms and herbaceous plant responses to C. coggygria aqueous extracts

The sterilization process reduced by two-fold microbial biomass on natural soil (t-test, P<0.01; Fig. 2). On natural soil, this biomass increased regularly from green leaf to leaf litter extracts watering with a weak effect of dose (2.5 vs. 5% DM), except for leaf litter extract that showed a higher dose effect. On autoclaved soil, stimulatory effects of all aqueous extracts were observed on microbial biomass, especially with extracts at 5% DM with 2 to 3-fold increases (Fig. 2).

Target plant species exhibited highly different germination rate and velocity, and growth length values in the control treatments (Table 1). Lactuca sativa had the highest germination rate (79-85 %) and velocity (43)(44). Verbascum pulverulentum presented the lowest germination rate (14-34 %) concomitant to the lowest growth (1.0-1.4 and 1.0-1.2 cm for root and shoot, respectively). Linum narbonense demonstrated the highest growth (6.0-6.1 and 5.4-5.6 cm for root and shoot, respectively) with the slowest germination velocity (8.2-8.3). The effect of soil type on germination rate depended on species (Species × Soil interaction, likelihood ratio 2 = 221.8, P<0.001). Silene nutans and V. pulverulentum presented lower germination rates on autoclaved soil compared to natural soil (47.7 ± 3.0 vs. 55.3 ± 3.9 for S. nutans; 13.7 ± 2.7 vs. 34 ± 3.5 for V. pulverulentum). Higher germination rates were however observed for L. sativa (85.3 ± 1.6 vs. 79.3 ± 1.6) and Satureja montana (82.0 ± 2.8 vs. 74.0 ± 3.2) on autoclaved soil compared to natural soil. Linum narbonense was the only species for which germination rate was not affected by the soil treatment (74.3 ± 2.0 vs. 75.3 ± 7.2 for autoclaved and natural soils, respectively). As a consequence, the presence/absence of microorganisms in soils influenced species ranking for germination rate. In addition to lower germination rate on autoclaved soil, S. nutans was the only species presenting a lower germination velocity on autoclaved soil compared to natural soil (F4,140 = 8.4, P < 0.001 ; 15.8 ± 0.7 vs. 55.3 ± 3.9, respectively), whereas this parameter seemed to be not affected by soil treatment for the four other species. Shoot and root growth of all species were not affected by soil treatment (P > 0.05, Table 1).

Cotinus coggygria aqueous extracts generally affected plant growth more than plant germination, but extract effects depended on target plant species, leaf type, extract concentration and soil type.

The effects of C. coggygria extracts on growth ranged from -57% to no effect, with no positive effect detected (Fig. 3). Generally, we observed higher inhibitory effects on root growth (up to -57%) than shoot growth (up to -29%). Inhibitory effects were higher with extracts prepared with green leaf, followed by those based on senescent leaf. Inhibitory effects were strongly reduced or totally disappeared with litter extracts and were generally stronger on autoclaved soil than on natural soil. Linum narbonense was the most sensitive species, especially on autoclaved soil where growth was reduced by more than 50% for several leaf types and extract concentrations (Fig. 3). Satureja montana and V. pulverulentum were also very sensitive to green leaf extracts on autoclaved soil, with almost 40% of root length reduction, whereas S. nutans reached similar reductions with senescent leaf extracts on autoclaved soil.

On natural soil, plant growths were also reduced by about 20% for L. narbonense, S. nutans and V. pulverulentum in presence of leaf extracts while S. montana maintained a similar plant growth than in control treatment.

Cotinus coggygria extracts effects on germination rate and velocity ranged from -38% to +26% and from -24% to +17%, respectively (Supplementary Fig. S1). Lactuca sativa had more stable germination rate and velocity across all treatments than the other species. Extracts reduced the germination rate and velocity of L. narbonense to about 38%, but this reduction was overall lower on natural soil where 2.5% extracts slightly stimulated germination.

Germination rate of S. montana was reduced on autoclaved soil, while on natural soil its germination velocity was stimulated by senescent leaves. Germination rate of V. pulverulentum was inhibited by green leaf extracts on natural soil. No clear hierarchy of extract effects was evidenced regarding leaf type (Supplementary Fig. S1).

Oak seedling and sapling responses to C. coggygria aqueous extracts

In the greenhouse, leaf extracts did not influence acorn germination rate as all sowed acorns germinated (Exp. 2a). Both C. coggygria extracts and litter presence caused a 39% reduction of seedling root biomass (F2,27 = 6.4, P<0.01) but did not affect stem (F2,27 = 0.2, P = 0.8) or leaf biomass (F2,27 = 0.3, P = 0.8) of the 2 month-old oak seedlings (Exp. 2a, Fig. 4). However, aqueous extracts did not affect the 40-months-old oak sapling leaf, stem and root biomasses, although leaf biomass slightly increased for saplings watered with C. coggygria extracts at the end of the experiment (Exp. 2b, Table 2, Fig. 4). Mycorrhization rates, rather low at 4 months (18.8 ± 2.6%), increased after 12 and 16 months of experiment (68-82%) but were not influenced by C. coggygria extracts whatever the sampling date (Table 2).

In the field, oak seedling emergence was lower under C. coggygria shrubs (LR χ 2 = 8.7, P = 0.003), but C. coggygria presence did not affect seedling survival (LR χ 2 = 4.1, P = 0.5, data not shown), diameter (F1,70 = 0.1, P = 0.7) or length (F1,70 = 0.4, P = 0.5) growth over the following 3 years (Exp. 2c, Fig. 4).

Saprophytic fungi and mesofauna responses to C. coggygria aqueous extracts

Saprophytic fungal biomass as well as Oribatida and predatory Acari abundances were not affected by C. coggygria extracts (KW = 1.3, P = 0.5; KW = 1.5, P = 0.5; KW = 0.4, P = 0.8, for saprophytic fungi, Oribatida and predatory Acari, respectively; Table 3). Collembola abundance was 3.5 times lower in mesocosms watered with C. coggygria extracts at 5% than in mesocosms watered with deionized water (KW = 7.0, P = 0.03; Table 3).

DISCUSSION

C. coggygria contained a particularly high quantity of phenolics in green and senescent leaves. For instance, total phenolic and flavonoid contents were at least 10 times higher than values reported for Pinus halepensis [START_REF] Fernandez | Variations in allelochemical composition of leachates of different organs and maturity stages of Pinus halepensis[END_REF][START_REF] Santonja | Potential shift in plant communities with climate change in a Mediterranean Oak forest: consequence on nutrients and secondary metabolites release during litter decomposition[END_REF]. Phenolic quantities were however strongly reduced in litter. Phenolics are water-soluble compounds that are rapidly leached during the initial phases of decomposition [START_REF] Chomel | Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones[END_REF][START_REF] Santonja | Potential shift in plant communities with climate change in a Mediterranean Oak forest: consequence on nutrients and secondary metabolites release during litter decomposition[END_REF]. For example, [START_REF] Santonja | Potential shift in plant communities with climate change in a Mediterranean Oak forest: consequence on nutrients and secondary metabolites release during litter decomposition[END_REF] reported that C. coggygria lost 73% of initial phenolic content after 100 days of litter decomposition.

Impacts of C. coggygria on herbaceous species and oak regeneration

Bioassays conducted on several target plant species generally highlight species-specific response to allelochemicals. For instance, [START_REF] Fernandez | Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession[END_REF] found that 40% of 15 target plant species tested were inhibited by aqueous extracts of P. halepensis green needles, while 20% were insensitive and 40% were even stimulated. In the present study, although sensitivity to C. coggygria aqueous extracts varied depending on target species, effects were generally negative and only a slight positive effect on germination was detected for one species, highlighting a strong phytotoxic potential of C. coggygria. Contrary to our expectations, the commonly used L. sativa was not the most sensitive target species. The high sensitivity of L. narbonense is concordant with previous studies that also outlined a high sensitivity of Linum strictum, a species from the same genus [START_REF] Bousquet-Mélou | Allelopathic potential of Medicago arborea, a Mediterranean invasive shrub[END_REF][START_REF] Fernandez | Potential allelopathic effect of Pinus halepensis in the secondary succession: an experimental approach[END_REF][START_REF] Fernandez | Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession[END_REF]. Interestingly, this finding is contradictory with the general view that specialized metabolites are less efficient against co-occurring species [START_REF] Callaway | Novel weapons: invasive success and the evolution of increased competitive ability[END_REF].

Litter, which had by far the lowest phenolic content, also presented the lowest effects. However, green leaves showed generally a higher effect than senescent leaves despite a lower phenolic content. Different chemical compositions between these two phenological stages may probably explain the particularly high effect of green leaves [START_REF] Hashoum | Biotic interactions in a Mediterranean oak forest: role of allelopathy along phenological development of woody species[END_REF].

The negative influence of C. coggygria on early oak seedling root development may explain the lower emergence below shrubs recorded on the field. Later sapling development in contrast was poorly affected by extracts, both in the field and greenhouse experiments. Older saplings may be less sensitive to this type of interaction because of a lower quantity of absorbed phenolics relative to seedling biomass (dilution effect). Alternatively, older seedlings may be better protected against phytotoxic compounds thanks to their mycorrhizal associations [START_REF] Mallik | Overcoming allelopathic growth-inhibition by mycorrhizal inoculation[END_REF][START_REF] Zeng | Selected ectomycorrhizal fungi of black spruce (Picea mariana) can detoxify phenolic compounds of Kalmia angustifolia[END_REF].

Phenolics influence on soil organisms

In the present study, C. coggygria extracts generally increased microbial biomass. Hortal et al. (2015) also found that specialized metabolites of the shrub Thymus hyemalis promotes microbial activity and biomass. Microbial stimulation may be due to the use of these compounds as energy source by microorganisms [START_REF] Inderjit | Plant phenolics in allelopathy[END_REF]Blum and Shafer 1998), which could explain the lower inhibition of herbaceous species in natural soils containing microorganisms. An alternative explanation is that aqueous extracts also contain nutrients and sugars that stimulate microorganisms, or that microorganisms may have been present in extracts according to leaf types, adding more microbes to the soil. Increase in microbial biomass was stronger at higher concentration of extracts, probably because of a higher quantity of compounds or microorganisms. This was particularly the case with high increase of microorganisms on autoclaved soils, containing less initial microbial biomass, which may be linked to a higher colonizing capacity of remaining microorganisms and/or extract microorganisms favored by a lower microbial competition.

Saprophytic and symbiotic fungi were not affected by C. coggygria extracts. Ex situ studies found that phenolics may inhibit, have neutral effect or even stimulate fungal development and respiration depending on the source species, on extracts concentration and on fungal target species [START_REF] Rose | Allelopathic effects of litter on the growth and colonization of mycorrhizal fungi[END_REF]Souto et al. 2000a,b). [START_REF] Rose | Allelopathic effects of litter on the growth and colonization of mycorrhizal fungi[END_REF] also showed that root colonization of Douglas fir (Pseudotsuga menziesii Mirb.) seedlings by Rhizopogon sp. was inhibited by the mere application of litter on soil surface. In our study, no effect on total mycorrhization rate was detected but we did not investigate such potential species-specific effects by examining mycorrhizal species present on oak roots. Even if qualitative changes in mycorrhizal communities occurred, this did not seem to affect oak seedling development during the 16 months of our experimentation. In addition, it is worth noting that our experiment was designed to test chemical effects on already mycorrhized saplings, but it would be interesting to further study whether initial root colonization by mycorrhizae could be affected.

Among soil arthropods, Collembola abundance was negatively affected while Acari appeared as insensitive to extracts of C. coggygria senescent leaves. Previous experiments also reported that phenolic compounds, including phenolic acids, flavonoids and tannins, can limit litter colonization, growth and activity of soil Collembola [START_REF] Poinsot-Balaguer | Effects of tannin compounds on two species of Collembola[END_REF][START_REF] Das | Chemical quality impacts of tropical forest tree leaf litters on the growth and fecundity of soil Collembola[END_REF][START_REF] Chomel | Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones[END_REF][START_REF] Asplund | Removal of secondary compounds increases invertebrate abundance in lichens[END_REF]. For example, [START_REF] Asplund | Removal of secondary compounds increases invertebrate abundance in lichens[END_REF] reported a negative effect of lichen phenolics on Collembola abundance and species richness in boreal P. sylvestris forest, while [START_REF] Das | Chemical quality impacts of tropical forest tree leaf litters on the growth and fecundity of soil Collembola[END_REF] showed a decrease in litter colonization by Cyphoderus javanus Börner (Collembola: Hexapoda) according to the increase in phenolic concentration in tropical forest. In the present study, by negatively affecting Collembola, phenolics present in C. coggygria senescent leaves could favor microbial and Acari colonization of leaf litter during the initial stages of litter decomposition. However, in later decomposition stages positive effects of C. coggygria litter on Collembola have been observed [START_REF] Santonja | Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest[END_REF], suggesting that the leaching of phenolics remove the inhibitory effect found here with senescent leaves. In support to this hypothesis, [START_REF] Chomel | Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones[END_REF] also reported than phenolics present in pine needles delayed the litter colonization by Collembola in Mediterranean P. halepensis forest.

Soil organisms modulate plant-plant chemical interactions

Aqueous extracts of C. coggygria leaves exhibited more negative effects on plant target species on autoclaved than on natural soils. Microbial activities can influence the persistence, availability and biological activity of phenolics in soil [START_REF] Inderjit | Soil microorganisms: An important determinant of allelopathic activity[END_REF][START_REF] Kaur | Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites[END_REF][START_REF] Meiners | Developing an ecological context for allelopathy[END_REF]. Here, microbial community present in natural soil released the toxicity of C. coggygria extracts, despite a similar microbial biomass than in autoclaved soil. We can hypothesize that this alleviation of negative effects is due to a qualitative difference in soil microbial community, i.e. sterilization removed a part of soil microbial community able to degrade phytotoxic compounds. This highlights the possible importance of microbial community composition in determining the intensity or direction of plant-plant chemical interactions.

Synthesis: potential impacts of C. coggygria on forest regeneration

Our study shows that C. coggygria leachates can inhibit both herbaceous species and early oak seedling development. Herbaceous species are strong competitor for oak seedling establishment (Rey [START_REF] Benayas | Effects of artificial shading and weed mowing in reforestation of Mediterranean abandoned cropland with contrasting Quercus species[END_REF][START_REF] Gavinet | Do shrubs facilitate oak seedling establishment in Mediterranean pine forest understory? For[END_REF]) because they form a dense superficial network of roots that strongly compete with tree seedlings for water in the upper soil layers [START_REF] Balandier | Designing forest vegetation management strategies based on the mechanisms and dynamics of crop tree competition by neighbouring vegetation[END_REF]. The inhibitory effect of C. coggygria on herbaceous species could mediate indirect interactions favoring oak establishment. Although we did not observe such indirect positive interactions in the field, they may take place in systems with a higher herbaceous cover. In the USA, [START_REF] Petranka | The role of Rhus Copallina in the dynamics of the forest-prairie ecotone in North-Central Oklahoma[END_REF] found that Rhus copallina, a shrub closely related to C. coggygria with high phenolics content, plays a key role in the prairieforest transitions as this shrub allows for tree seedling establishment by inhibiting herbaceous species development. In addition, by stimulating microbial biomass and reducing the abundance of microbivorous mesofauna, C. coggygria may favor microbial community development and associated functions such as nutrient mineralization. However, it is difficult to predict feedback effects on plant species without more knowledge of the type of microbes being stimulated (neutral, mutualistic or pathogens, Hortal et al. 2015) and our in-situ experiment suggests that modifications of soil microbes may not play an important role for oak seedling establishment, as also shown in a pot experiment [START_REF] Gavinet | Do litter-mediated plant-soil feedbacks influence Mediterranean oak regeneration? A two-year pot experiment[END_REF].

Changes in seedling response to neighbor presence with ontogeny have been highlighted in several studies (e.g. Le Roux et al. 2013) and generally attributed to a change in resource requirement or availability [START_REF] Soliveres | Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation[END_REF]. The results of our study suggest that ontogenetic changes in plant-plant interaction outcomes may also result from a change in plantplant chemical interactions. Verbascum pulverulentum (n=7-31) Green Senesc. Litter Green Senesc. Litter 2.5% 5% 2.5% 5% 2.5% 5% 2.5% 5% 2.5% 5% 2.5% 5% 
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 122 Figure 1: Chemical composition of Cotinus coggygria aqueous extracts of green leaves,
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 4 Figure 4: Influence of Cotinus coggygria on downy oak seedlings development. Upper panel:

Table 3 .

 3 Saprophytic fungal biomass (expressed as μg.g -1 soil DM) and abundances of the different mesofauna groups (expressed as nb ind.g -1 soil DM) according to Cotinus coggygria extract concentrations. Values are means ± standard errors; n= 5. Different letters indicate significant differences between leachate treatments with a>b (Kruskal-Wallis test, P<0.05).

	Leachate	Saprophytic	Collembola	Oribatida	Predatory Acari
	concentration	fungal biomass	abundance	abundance	abundance
	0	116.89 ± 8.26 a	0.07 ± 0.01 a	0.22 ± 0.03 a	0.07 ± 0.01 a
	2.5	129.49 ± 7.37 a	0.08 ± 0.04 ab	0.31 ± 0.06 a	0.08 ± 0.01 a
	5	133.46 ± 10.29 a	0.02 ± 0.00 b	0.21 ± 0.04 a	0.08 ± 0.01 a

ACKNOWLEDGEMENTS

This study was funded by ECCOREV Research Federation (FR3098) and the French National Research Agency (ANR) through the SecPriMe 2 project (ANR-12-BSV7-0016-01).

We also gratefully acknowledge the program MISTRALS (Mediterranean Integrated STudies at Regional And Local Scales), particularly the axe BioDivMeX, and the LabEx OT-Med (no ANR-11-LABX-0061) funded by the «Investissements d'Avenir» program of the French National Research Agency through the A*MIDEX project (no ANR-11-IDEX-0001-02). The field experiment and material sampling was carried out at the Oak Observatory at "Observatoire de Haute-Provence" (O3HP) platform with the help of Jean-Philippe Orts. The authors also thank Sylvie Dupouyet for her help with the bioassays.