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Adaptive behaviors are built on the arbitrary linkage of sensory inputs to actions and goals. Although the sensorimotor and associative
frontostriatal circuits are known to mediate arbitrary visuomotor mappings, the underlying corticocortico dynamics remain elusive.
Here, we take a novel approach exploiting gamma-band neural activity to study the human cortical networks and corticocortical func-
tional connectivity mediating arbitrary visuomotor mapping. Single-trial gamma-power time courses were estimated for all Brodmann
areas by combing magnetoencephalographic and MRI data with spectral analysis and beam-forming techniques. Linear correlation and
Granger causality analyses were performed to investigate functional connectivity between cortical regions. The performance of visuo-
motor associations was characterized by an increase in gamma-power and functional connectivity over the sensorimotor and frontopa-
rietal network, in addition to medial prefrontal areas. The superior parietal area played a driving role in the network, exerting Granger
causality on the dorsal premotor area. Premotor areas acted as relay from parietal to medial prefrontal cortices, which played a receiving
role in the network. Link community analysis further revealed that visuomotor mappings reflect the coordination of multiple subnet-
works with strong overlap over motor and frontoparietal areas. We put forward an associative account of the underlying cognitive
processes and corticocortical functional connectivity. Overall, our approach and results provide novel perspectives toward a better
understanding of how distributed brain activity coordinates adaptive behaviors.

Key words: corticocortical coupling; functional connectivity; gamma-band neural activity; Granger causality; magnetoencephaplogra-
phy; visuomotor behaviors

Introduction
Most cognitive functions arise from the dynamic coordination of
neural activity distributed over large-scale brain networks (Bressler

and Menon, 2010). Adaptive behaviors and the ability to flexibly
choose appropriate actions depending on visual cues and internal
goals are no exceptions. A key form of visuomotor guidance is the
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Significance Statement

In everyday life, most of our behaviors are based on the arbitrary linkage of sensory information to actions and goals, such as
stopping at a red traffic light. Despite their automaticity, such behaviors rely on the activity of a large brain network and elusive
interareal functional connectivity. We take a novel approach exploiting noninvasive recordings of human brain activity to reveal
the cortical networks and corticocortical functional connectivity mediating visuomotor mappings. Parietal areas were found to
play a driving role in the network, whereas premotor areas acted as relays from parietal to medial prefrontal cortices, which played
a receiving role. Overall, our approach and results provide novel perspectives toward a better understanding of how distributed
brain activity coordinates adaptive behaviors.
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ability to learn arbitrary and causal relations linking visual inputs to
actions and outcomes, named arbitrary visuomotor learning (Wise
and Murray, 2000). Performance of arbitrary visuomotor mappings
relies on the neural activity of the associative and sensorimotor fron-
tostriatal circuits (Wise et al., 1996; Murray et al., 2000; Passingham
et al., 2000; Wise and Murray, 2000; Hadj-Bouziane et al., 2003;
Petrides, 2005). However, the interplay between these brain regions
is still unclear.

A potential key player for uncovering functional cortical net-
works is the gamma-band (30 –150 Hz) neural activity. Animal
studies have observed narrow-band low-gamma oscillations in
the 30 – 80 Hz range during sensory stimulation (Ray and Maun-
sell, 2010) and cognitive processes, such as attention (Fries et al.,
2001; Bichot et al., 2005; Buschman and Miller, 2007; Gregoriou
et al., 2009; Bosman et al., 2012) and working memory (Pesaran
et al., 2002). Human studies have consistently found correlates of
cognitive processes in the high-gamma range (from 60 to 150 Hz)
in invasive (Brovelli et al., 2005; Crone et al., 2006; Jerbi et al.,
2009; Lachaux et al., 2012; Cheyne and Ferrari, 2013; Ko et al.,
2013), noninvasive (Vidal et al., 2006; Ball et al., 2008; Darvas et
al., 2010), and multimodal neurophysiological studies (Dalal et
al., 2009). Correlations with BOLD responses in animals (Logo-
thetis et al., 2001; Niessing et al., 2005; Goense and Logothetis,
2008) and humans (Lachaux et al., 2007; Nir et al., 2007; Scheer-
inga et al., 2011; Hermes et al., 2012; Ojemann et al., 2013) further
suggest gamma-band activity as a proxy for local processing.

At the large-scale level, binding local activations into coordi-
nated spatiotemporal network activity results from a complex
interplay between neuronal dynamics and anatomical connectiv-
ity. To quantify the degree of coordination, functional connec-
tivity (FC) measures include various forms of statistical
dependences between neural signals, such as linear correlation
and Granger causality (Brovelli et al., 2004; Ding et al., 2006;
Bressler and Seth, 2011). Patterns of FC can then be analyzed
through network-based measures using graph theory (Rubinov
and Sporns, 2010). Here, we take a novel approach based on
gamma-band neural activity and FC analysis to reveal the human
cortical networks and FC mediating arbitrary visuomotor map-
ping. Single-trial gamma-power time courses were estimated for
all Brodmann areas (BAs) by combining magnetoencephalo-
graphic (MEG) and structural MRI data with spectral analysis
and beam-forming techniques. Performance of visuomotor asso-
ciations was characterized by an increase in high-gamma activity
(HGA) and FC over the sensorimotor and frontoparietal network
together with medial prefrontal areas. Graph measures and link
community analysis (Ahn et al., 2010) further support that arbi-
trary visuomotor mappings are mediated by overlapping cortical
subnetworks dominated by a core circuit, exchanging Granger
interdependences, centered over the dorsal frontoparietal
network, with a privileged role for the premotor and medial
prefrontal areas.

Materials and Methods
Experimental procedure and data acquisition
Experimental conditions and behavioral tasks. Eleven healthy participants
accepted to take part in our study (all were right handed; the average age
was �23 years; 4 were females and 7 males), gave written informed
consent according to established institutional guidelines and local ethics
committee, and received monetary compensation (€50). We used an
associative visuomotor mapping task, where the relation between visual
stimulus and motor response is arbitrary and deterministic (Wise and
Murray, 2000). The domain of visuomotor control distinguishes two
forms of guidance: standard and nonstandard (or arbitrary) mapping. In
standard mapping, such as reaching toward an object, the spatial prop-

erties of the visual cue (i.e., target location) provide relevant information
for visuomotor transformation. In arbitrary mapping, the visual cue and
the action are not spatially congruent; and other properties of the object,
such as its form or color, are transformed to plan actions (Petrides, 1987;
Wise et al., 1996; Murray et al., 2000; Passingham et al., 2000; Wise and
Murray, 2000). To investigate arbitrary visuomotor mapping, we asked
participants to perform a finger movement associated to a digit number:
digit 1 instructed the execution of the thumb, digit 2 for the index finger,
digit 3 for the middle finger, and so on (Fig. 1). Maximal reaction time
was 1 s. After a fixed delay of 1 s following the disappearance of the digit
number, an outcome image was presented for 1 s and informed the
subject whether the response was correct, incorrect, or too late (if the
reaction time exceeded 1 s). Incorrect and late trials were excluded from
the analysis because they were either absent or very rare (i.e., maximum
2 late trials per session). The next trial started after a variable delay
ranging from 2 to 3 s (randomly drawn from a uniform distribution)
with the presentation of another visual stimulus (Fig. 1b). Each partici-
pant performed two sessions of 60 trials each (total of 120 trials). Each
session included three digits randomly presented in blocks of three trials.

Anatomical, functional, and behavioral data acquisition. Anatomical
MRI images were acquired for each participant using a 3-T whole-body
imager equipped with a circular polarized head coil. High-resolution
structural T1-weighted anatomical image (inversion-recovery sequence,
1 � 0.75 � 1.22 mm) parallel to the anterior commissure-posterior
commissure plane, covering the whole brain, were acquired. MEG re-
cordings were performed using a 248 magnetometers system (4D Neu-
roimaging, magnes 3600). Visual stimuli were projected using a video
projection, and motor responses were acquired using a LUMItouch op-
tical response keypad with five keys. Presentation software was used for
stimulus delivery and experimental control during MEG acquisition.
Reaction times were computed as the time difference between stimulus
onset and motor response. Sampling rate was 2034.5 Hz. Location of the
participant’s head with respect to the MEG sensors was recorded both at
the beginning and end of each session to potentially exclude sessions
and/or participants with large head movements. However, none of the
participants moved �3 mm during all sessions. Thus, all participants
were considered for further analysis.

Single-trial HGA at BAs
Preprocessing and spectral analysis of MEG signals. MEG signals were
down-sampled to 1 kHz, low-pass filtered to 250 Hz, and segmented into
epochs aligned on finger movement (i.e., button press). Epoch segmen-
tation was also performed on stimulus onset and the data from �0.5 and
�0.1 s before stimulus presentation was taken as baseline activity for the

NO1
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Figure 1. Arbitrary visuomotor mapping task. a, The relation between visual stimulus and
motor response is deterministic and highly acquainted. Stimuli were digits from 1 to 5 and
appeared at the center of the screen for 1 s. Participants were required to move the finger
associated to the digit: 1, instructed thumb movement; 2, the index, etc. b, The maximum
reaction time was 1 s (i.e., stimulus duration). After a fixed delay of 1 s, the feedback image
instructed whether the executed motor response was correct, incorrect, or late.
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calculation of the single-trial HGA. Artifact rejection was performed
semiautomatically. For each movement-aligned epoch and channel, the
MEG signal variance and z-value were computed over time and taken as
relevant metrics for the identification of artifact epochs. All trials with a
variance �1.5 � 10 �24 across channels were excluded from further anal-
yses. Additional metrics, such as the z-score, absolute z-score, and range
between the minimum and maximum values, were also inspected to
detect artifact. Two MEG sensors were excluded from the analysis for all
subjects.

Spectral density estimation was performed using a multitaper method
based on discrete prolate spheroidal (slepian) sequences (Percival and
Walden, 1993; Mitra and Pesaran, 1999). To define the frequency band-
width of interest for the estimate of single-trial gamma-band activity, we
performed time-frequency analyses of the MEG time series at the sensor
level. MEG fields were transformed to a planar gradient configuration
(i.e., by computing the gradient tangential to the scalp). Time-frequency
power estimates were then computed for all sensors over the gamma
band from 30 to 150 Hz (in steps of 5 Hz) using 4 orthogonal tapers 0.25 s
in duration and 20 Hz of frequency resolution, each stepped every 0.01 s.
Time-frequency power estimates were log-transformed and then nor-
malized (i.e., z-transformed) with respect to the mean and SD computed
over a baseline period from �0.5 to �0.1 s before stimulus onset. Time-
frequency maps were averaged across virtual gradiometers and partici-
pants. Results showed increases in power with respect to baseline in the
high-gamma range from �60 to 120 Hz (Fig. 2). Based on the spectral
analysis at the sensors level, subsequent analyses focused on the high-
gamma band from 60 to 120 Hz. MEG time series were multiplied by k
orthogonal tapers (k � 8) (0.15 s in duration and 60 Hz of frequency
resolution, each stepped every 0.005 s), centered at 90 Hz, and
Fourier-transformed. Complex-valued estimates of spectral measures
Xsensor

n �t, k�, including cross-spectral density matrices, were computed at
the sensor level for each trial n, time t, and taper k.

Source analysis and calculation of HGA. Source analysis requires a
physical forward model or leadfield, which describes the electromagnetic
relation between sources and MEG sensors. The leadfield combines the
geometric relation of sources (dipoles) and sensors with a model of the
conductive medium (i.e., the headmodel). For each participant, we gen-
erated a headmodel using a single-shell model constructed from the
segmentation of the cortical tissue obtained from individual MRI scans
(Nolte, 2003). Leadfields were not normalized. As source location, a 3D
grid with regular spacing between the dipole locations of 10 mm was
generated for each participant. Individual MRI scans were then warped
to the template MRI in MNI space, and the normalization parameters
were applied to the dipole grid. Such procedure assures that individual
subjects’ grid points are located in equivalent brain areas across all sub-
jects according to MNI space. The headmodel, source locations, and the

information about MEG sensor position were combined to derive single-
participant leadfields.

We used adaptive linear spatial filtering (Veen et al., 1997) to estimate
the power at the source level. We used the Dynamical Imaging of Coher-
ent Sources method, a beam-forming algorithm for the tomographic
mapping in the frequency domain (Gross et al., 2001), which is well
suited for the study of neural oscillatory responses based on single-trial
source estimates of band-limited MEG signals (for review, see Hansen et
al., 2010). At each source location, Dynamical Imaging of Coherent
Sources uses a spatial filter that passes activity from this location with
unit gain while maximally suppressing any other activity. The spatial
filters were computed on all trials for each time point and session and
then applied to single-trial MEG data. Dynamical Imaging of Coherent
Sources allows the estimate of complex-value spectral measures at the
source level, Xsource

n �t, k� � A�t� Xsensor
n �t, k�, where A(t) is the spatial

filter that transforms the data from the sensor to source level (for a
detailed description of a similar approach, see Hipp et al., 2011). The
single-trial high-gamma power at each source location was estimated by
multiplying the complex spectral estimates with their complex conju-
gate, and averaged over tapers k, Psource

n �t� � Xsource
n �t, k� Xsource

n �t, k�k
*.

Single-trial power estimates aligned on movement and stimulus onset
were log-transformed to make the data approximate Gaussian and low-
pass filtered at 50 Hz to reduce noise. Single-trial mean power and SD in
a time window from �0.5 and �0.1 s before stimulus onset was com-
puted for each source and trial, and used to z-transform single-trial
movement-locked power time courses. Similarly, single-trial stimulus-
locked power time courses were log-transformed and z-scored with re-
spect to baseline period, so to produce HGAs for the prestimulus period
from �1.6 to �0.1 s with respect to stimulation for subsequent FC anal-
ysis. Finally, the anatomical position of each source was labeled accord-
ing to BA using the binary representation of the Talairach–Tournoux
atlas (Talairach and Tournoux, 1988) digitized for the Talairach Daemon
(Lancaster et al., 2000). Single-trial HGA at each BA was defined as the
mean z-transformed power values averaged across all sources within the
same BA and cerebral hemisphere (a total of 76 BAs covering both hemi-
spheres). The preprocessing steps, artifact rejection, spectral analyses,
and source analysis were performed using FieldTrip toolbox (Oostenveld
et al., 2011).

Single-trial FC measures between BAs
FC measures characterize statistical dependencies between neural sig-
nals, where these dependencies can be undirected (e.g., linear correla-
tion) or directed (e.g., Granger causality). FC analysis provides
descriptive statistical measures and makes no assumptions about the
underlying structural connectivity. Here, we adopted a comprehensive
approach exploiting both undirected (linear correlation and total inter-
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Figure 2. Spectral analysis of MEG signals in the gamma band (30 –150 Hz). a, Time-frequency power modulations with respect to baseline (z-score). Zero time is finger movement. b, Time
course of gamma power at 70 Hz, which corresponds to the peak of frequency. c, Power spectrum at movement onset.
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dependence) and directed (Granger causality) FC measures for the anal-
ysis of statistical dependences between HGA neural signals. FC measures
provide relevant information about the coupling and the time-lagged
relations only if the temporal relations between signals are preserved
during the preprocessing steps. Averaging across trials can destroy in-
duced temporal relations. This is why FC measures were computed on a
single-trial basis.

Linear correlation. A conventional undirected connectivity measure is
linear correlation. We computed the linear correlation coefficient be-
tween the HGAs of pairs of BAs at the single-trial level over a time
window ranging from �1 to 0.5 s around movement onset, thus includ-
ing 300 time samples (i.e., HGA were computed every 0.005 s). Single-
trial correlation coefficients were also computed among pairs of HGA
that were computed during the prestimulus period, from �1.6 to �0.1 s
before stimulus onset. The statistical analyses then searched for signifi-
cant differences between the movement-related correlations coefficients
and those computed in the prestimulus interval.

Covariance-based Granger causality measures. Granger causality
(Granger, 1980; Brovelli et al., 2004; Ding et al., 2006; Bressler and Seth,
2011; Seth et al., 2015) is a directed FC measure. Granger (1963, 1980)
proposed a statistical criterion to infer causality from process X to pro-
cess Y based on the extra knowledge that can be obtained about the future
of Y given the past of X, in a given context Z. This criterion can be
formalized as the condition of independence as follows:

p�Yi	1 � Vi � Xi� � p�Yi	1 � Vi� (1)

where the superindex i refers to the whole past in a time window of length
T of a process up to and including sample i, V refers to the whole system
{ X, Y, Z}, and Xi indicates the exclusion of the past of X. That is, X is
Granger noncausal to Y given Z if the above equality holds. This condi-
tion of independence constitutes a strong form of Granger noncausality
(Granger, 1980), which can generally be tested within an information
theoretical framework by calculating the Kullback–Leibler divergence
(Cover and Thomas, 2006) of the two probabilities in Equation 1. The
Kullback–Leibler divergence is a conditional mutual information and,
for a bivariate context comprising only X and Y, it is defined as follows:

FX¡Y � I �Yi	1; Xi � Yi� � H�Yi	1 � Yi� � H�Yi	1 � Xi,Yi�

(2)

where the conditional entropies are as follows:

H�Yi	1 � Yi� � � �yi	1,yi p� yi	1,yi� logp� yi	1 � yi�

� H�Yi	1, Yi� � H�Yi� (3)

and

H�Yi	1 � Xi, Yi� � � �yi	1, xi,yi p� yi	1, xi, yi� logp� yi	1 � xi, yi�

� H�Yi	1, Xi, Yi� � H�Xi, Yi� (4)

The conditional entropies in Equations 3 and 4 quantify the uncertainty
of Yi	1 given the knowledge about the pasts Yi only or given the past of
both Xi and Yi, respectively. Accordingly, FX¡Y (Eq. 2) compares the
uncertainty in Yi	1 when using knowledge of only its own past or both Xi

and Yi. Such conditional mutual information has been studied in differ-
ent fields, such as communication theory and econometrics, and it has
been formulated under different assumptions (e.g., stationarity vs non-
stationarity) and terminology (for details, see Chicharro and Ledberg,
2012). In neuroscience, it is best known as the Transfer entropy
(Schreiber, 2000). Although Transfer entropy in its general form (Eq. 2)
does not require a model of the interaction and it is powerful in capturing
any (linear and nonlinear) conditional dependence between Yi	1 and Xi

(Vicente et al., 2011; Wibral et al., 2014), its calculation is not trivial when
high-dimensional probability distributions need to be estimated over
short time windows as often encountered in neurophysiological data (for
a review of the estimation of information theoretic measures to calculate
Transfer entropy, see Hlaváčková-Schindler et al., 2007). To estimate FC
measures on short data segments, such as single trials, we implemented

an approximation of Transfer entropy that exclusively considers the first
term of its expansion (also referred to as the Gram-Charlier expansion as
used in Amari et al., 1995), which quantifies the contribution of second-
order statistics (i.e., covariance matrix). In other words, our approach is
equivalent to implementing a weaker criterion of Granger noncausality,
called noncausality in mean (Granger, 1980). This criterion compares the
errors of the optimal linear predictors of Yi	1, minimizing mean squared
error, which corresponds to the conditional variance of the future given
the past, so that Equation 1 is reduced to the following:

�2�Yi	1 � Yi� � �2�Yi	1 � Xi, Yi� (5)

where � 2(���) denotes the conditional variance. The statistical measure
used to test Equation 5 is commonly referred to as the Granger causality.
In particular, the classical parametric implementation (Granger, 1963)
uses autoregressive models to estimate prediction errors. Given that pre-
diction errors can also be estimated from the covariance matrix (Lütke-
pohl, 2005; Chicharro, 2011), the conditional variances in Equation 5
determine the first term in the expansion of the entropies of Equation 2.
This is because, as previously mentioned, the first term of the expansion
quantifies the contribution of second-order statistics to the entropy. Put
it into practice, given an interval T defining the portion of data Xi and Yi

used to compute covariance measures and a lag determining the number
of time points of the pasts Xi and Yi used, submatrices of the covariance
matrix of the variables comprising the past and the future, {Xi	1,Xi,
Xi-1,…Xi-lag	1, Yi	1,Yi,Yi-1,…Yi-lag	1}, are used to estimate the entropies
(Cover and Thomas, 2006). For example,

H� yi	1, Xi, Yi� �
2lag � 1

2
log�2�e� �

1

2
log��
�Yi	1, Xi, Yi���

(6)

where 
 denotes a covariance matrix and ��� denotes the determinant.
Within this approach, stationarity is assumed for the calculation of co-
variance matrices, whereas Gaussianity and linearity are not, and only
determine how close is the in mean criterion (Eq. 5) to the strong crite-
rion formalized in Equation 1. That is, for Gaussian variables, Equation 6
constitutes an exact expression for the entropy because higher-order
moments are determined by the second-order moments, and Transfer
entropy can be considered equivalent to Granger causality (Barnett et al.,
2009). Whenever such equivalence does not hold (e.g., for non-Gaussian
and nonlinear systems), the covariance-based approximation of the
Transfer entropy is always equivalent to the parametric estimation of
Granger causality. In addition, it has the advantage of not requiring
fitting autoregressive models as an intermediate step. Given this equ-
ivalence, we will refer to our estimator as covariance-based Granger
causality.

The relation between information-theoretic measures of dependence
and Granger causality measures is not restricted to the case of Transfer
entropy and linear Granger causality. Measures of Granger causality ap-
pear as terms in the decomposition of total interdependence between two
time series. It has been formulated in information theoretic (Marko,
1973; Rissanen and Wax, 1987) and linear system (Geweke, 1982, 1984;
Chicharro, 2011) frameworks, and applied to neural signals in the spec-
tral domain (Ding et al., 2006). In the time domain and for finite time
series, this decomposition is expressed as follows:

FX,Y � I�Xi	1, Xi; Yi	1, Yi� � I�Xi, Yi� � FX¡Y � FY¡X � FX·Y

(7)

and it represents the total interdependence between X and Y (Geweke,
1982; Chicharro and Ledberg, 2012). FX,Y quantifies the dynamic in-
crease of the total interdependence between two time-series at a given
point in time, in contrast to the static interdependence quantified by
linear correlation, and for an infinite lag converges to the mutual infor-
mation rate. Such total interdependence is the sum of three Granger
causality measures: two directed measures plus the “instantaneous”
Granger causality term, accounting for unconsidered common influ-
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ences to the processes. The instantaneous Granger causality is defined as
follows:

FX·Y � I�Xi	1; Yi	1 � Xi, Yi� (8)

and can be expressed in terms of conditional entropies,

FX·Y � H�Xi	1 � Xi, Yi� � H�Yi	1 � Xi, Yi� � H�Xi	1, Yi	1 � Xi, Yi�

(9)

The total interdependence is expressed as follows:

FX,Y � H�Xi	1 � Xi� � H�Yi	1 � Yi� � H�Xi	1, Yi	1 � Xi, Yi�

(10)

The four measures in the decomposition of Equation 7 can be estimated
with our covariance-based approach, implying the assumptions and ap-
proximations discussed above. Covariance-based Granger causality mea-
sures (FX¡Y, FY¡X, FX·Y and the total interdependence FX,Y) were
computed between pairs of HGAs on a single-trial basis over a time
window T ranging from �1 to 0.5 s around movement onset and for the
baseline period, from �1.6 to �0.1 s before stimulus onset, similarly to
linear correlation analysis, giving a total of 300 samples in each window.
The lag used for the calculation of the covariance matrices was 30 time
points (i.e., 15% of T ). The MATLAB (The MathWorks) code developed
for the calculation of the covariance-based Granger causality measures
can be downloaded from the website of the corresponding author.

Relation between linear correlation and covariance-based Granger cau-
sality measures. Linear correlation and covariance-based Granger causal-
ity measures share common properties. As previously mentioned, linear
correlation and total interdependence are symmetric measures quantify-
ing static and dynamic dependencies, respectively. Although these mea-
sures are not related by a decomposition analogous to Equation 7, there
is a strong relationship between the existence of both types of dependen-
cies. A lack of total interdependence implies a lack of linear correlation;
and, if we assume that the future of X and Y causally depends on their
own past, respectively, the opposite relation is also true. This occurs
because linear correlation � is related to the covariance-based approxi-
mation of the mutual information I(Xi	1;Yi	1), which is equal to the
logarithm of 1 � � 2, and because conditioning on the past cannot create
new dependencies (Chicharro and Panzeri, 2014). It is also clear from
Equation 7 that the directed and instantaneous Granger measures are
smaller than the total interdependence. Thus, null total interdependence
implies the absence of Granger causality measures because they consti-
tute non-negative contributions to the total interdependence. In other
words, Granger causality is present if, and only if, both linear correlation
and total Granger interdependences are not zero.

Numerical simulations
Covariance-based Granger causality measures are not as routinely used
as linear correlation analysis in functional neuroimaging. In particular,
the relation between the total Granger interdependence with conven-
tional linear correlation analysis and its sensitivity to varying levels of
stationarity and noise in the signal is unknown. We therefore performed
numerical simulations to compare the accuracy in inferring network FC
(i.e., the presence of links between nodes, irrespective of directionality)
using three comparable undirected connectivity measures: (1) linear cor-
relation coefficient, (2) partial correlation coefficient, and (3) total
Granger interdependence FX,Y.

Neural mass model (NMM) networks. Neural signals were simulated
using convolution-based neural mass models of local field potentials.
Convolution-based NMM consider cortical mesocolumns, rather than a
single cell’s electrophysiological properties, and they are particularly
suited for modeling neurophysiological responses, such as those re-
corded using the EEG and MEG (David et al., 2006; Moran et al., 2013).
The model includes three cell subpopulations: spiny stellate cells in gran-
ular layer IV, pyramidal cells, and inhibitory interneurons in extragranu-
lar layers (II and III, V and VI). For each node, 13 measured variables
include currents and membrane potentials of these three cell subpopu-
lations. A connection between columns A and B corresponds to a link
between the pyramidal cell of column A and the spiny stellate cells of
column B. Exogenous input can also be included and modeled as an
excitation of spiny stellate cells. The generated neural population signals
from each node of the network integrate the membrane potentials from
three cell subpopulations. We generated NMM signals with two net-
works depicted in Figure 3a. The first network was composed of 5 nodes
with unidirectional links drawn in green. The second network was com-
posed of all 10 nodes with unidirectional links shown in red and green
(Fig. 3a). The goal was to simulate two functional networks associated to
baseline (the first network) and event-related (the second) activities,
respectively. Using such network functional connectivities, we generated
neural signals that were subsequently cut into 50 epochs (trials), each of
150 time points. The number of time points was set to simulate the
temporal intervals considered for subsequent HGA analyses. Indeed, the
temporal window of interest for FC measures was set 1.5 s (from �1 s to
0.5 s with respect to motor response). HGAs were then expected to con-
tain both ongoing and response-locked modulations, leading to poten-
tial latency shifts between areas. To specifically examine the influence of
nonstationarities in the network across nodes, such as event-related
modulations, we “injected” the networks with an exogenous input via
node 1. The input was a Gaussian waveform centered at the 75th sample
at each trial (the middle of the trial) and variance equal to 10 samples.
The amplitude of the Gaussian input was varied from 0 to 0.04 in steps of
0.005. This injected Gaussian made the data nonstationary. To simulate
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different levels of stochastic background activity (i.e., noise level), we
added Gaussian white noise and varied the amplitude from 0.01 to 0.1 in
steps of 0.005. We generated datasets for each network type by varying
parametrically the amplitude of the exogenous stimulus and noise level.

Statistical inference of FC using linear correlation and Granger causality
measures. For a given dataset with a given input and noise amplitude, we
computed three measures of statistical interdependence on a single-trial
basis. Given the scope of the numerical simulations, we considered un-
directed connectivity measures only: (1) linear correlation coefficient,
(2) partial correlation coefficient, and (3) total Granger interdependence
FX,Y (see previous sections). These connectivity measures were computed
from NMM signals using different window lengths (T ranged from 20 to
110 in steps of 2 samples). For the total Granger interdependence, the lag
was varied from 2 to 0.2 � T. The maximal lag value was set to 0.2 � T to
avoid small sample size problems in the estimation of covariance matri-
ces, required for the calculation of conditional entropies. Total Gran-
ger interdependence was log-transformed to approximate Gaussian
distribution.

The goal here was to recover from the simulated neural data the undi-
rected FC (the presence of a link between two nodes, rather than the
direction of influence) of the graph depicted in red in Figure 3a. This
functional network corresponds to the difference between the second
and first network. To do so, we performed a paired two-sample t test
between the connectivity measures computed on the first and second
network. More formally, we tested the null hypothesis H0: Xij(1) � Xij(2),
where Xij(w) is a given connectivity measure between node i and j of
network w. The absolute value of the log-transformed p value associated
to the t test was tabulated in a sample connectivity matrix of n-by-n,
where n is the number of nodes. The sample connectivity matrix was then
compared with the known connectivity matrix corresponding to the red
network in Figure 3a using a receiver operating characteristic (ROC)
analysis and by computing the area under the ROC curve (AUC). The
AUC was calculated for all three connectivity measures (linear correla-
tion, partial correlations, and total Granger interdependence) with vary-
ing window lengths T (and lag for the total Granger interdependence) on
all datasets generated with varying input amplitude and noise levels. To
analyze the differences between free parameters and their associated vari-
ances, we performed a three-way ANOVA on the AUC computed on the
statistical analyses of linear correlation coefficients. The three factors
were stimulus amplitude, noise amplitude, and window length T, respec-
tively. All factors showed statistically significant modulations (Table 1).
However, the sum of squares of each source (Table 1) shows that the
window length is the factor with the largest variance. This suggests that
input amplitude and noise level have negligible effect on AUC compared
with the effect of window length. We therefore averaged the AUC values
across different input amplitude and noise levels and plotted the mean
value with associated SEs as a function of window length (Fig. 3b, blue).
The graph shows that the mean AUC rapidly increases as window length
increases, and it reaches a plateau at �70 samples. In general, the AUC is
acceptable (�0.95) for T �40 samples. The red curve displays the mean
AUC values for the partial correlation coefficient. Here the curve rises
more slowly with window length, and it never reaches stable value �95%.
These results suggest that linear correlation analysis is more reliable for
estimating FC and less sensitive to window length than partial correla-
tion. Finally, we computed the mean AUC averaged over input ampli-
tude and noise levels for the total Granger interdependence analysis.
Figure 3c shows the mean AUC values for different values of window
length T and lag. Similarly to the previous results, the AUC values in-

crease with longer window lengths. A stable AUC (�0.95) is achieved for
window lengths �40 and lags �4 (i.e., �10% of T ). These results suggest
that the total Granger interdependence can be used reliably for identify-
ing changes in network FC, and it is comparable to linear correlation
analysis. However, in addition to measuring the symmetrical depen-
dences, the total Granger interdependence can be decomposed into the
directed and instantaneous terms, which can provide directional infor-
mation of network FC. Overall, the results of the simulations suggest that
our method is a good candidate for characterizing cortical FC and may
represent an appropriate tool for the analysis of neural data and HGAs.

Statistical analysis
Statistical inference of single-trial HGAs and connectivity measures was
performed using a linear mixed-effect (LME) model approach. LME
models are particularly suited for the analysis of data collected from
multiple subjects, where it is important to take into account the variabil-
ity across participants. The relation between mixed-effect analyses and
the two-stage “summary statistics” procedure (Friston et al., 2005) and
their combination with permutation tests (Mériaux et al., 2006) has been
analyzed in the literature. Briefly, LME models generalize single-subject
findings to a population. To do so, they formalize the relation between a
response variable and independent variables using both fixed and ran-
dom effects. Fixed effects model the response variable in terms of explan-
atory variables as nonrandom quantities. For example, experimental
conditions related to population mean may be considered as fixed effects.
Random effects are associated with individual experimental units drawn
at random from a population, which may correspond to different partic-
ipants in the study. In other words, whereas fixed effects are constant,
random effects are drawn from a prior known distribution. An LME
model is generally expressed in matrix formulation as follows:

y � X 	 � Zb � e (11)

where y is the n-by-1 response vector and n is the number of observa-
tions. X is an n-by-p fixed-effects design matrix and 	 is the fixed-effects
vector of p-by-1, where p is the number of fixed effects. Z is an n-by-q
random-effects design matrix and b is a q-by-1 random-effects vector,
where q is the number of random effects; e is the n-by-1 observation
error. The random-effects vector, b, and the error vector, e, were assumed
to be drawn from independent normal distributions. Parameter estima-
tion was performed using the maximum likelihood method.

To test for significant modulations in single-trial HGA and connectiv-
ity measures around finger movement with respect to the baseline pe-
riod, we used a random-intercept and random-slope LME model, which
is described by the following:

y�t� � 	0�t� � 	1�t� xj � b0j�t� � b1j�t� zj � 
 j�t� (12)

where y�t� � �ybl�1�, ybl�2�, … , ybl�np�, ymv �1, t�, ymv�2, t�, … , ymv

�np, t��. ybl� j� is a vector containing the baseline neural activity for all
trials and sessions (i.e., data from both sessions were concatenated) for
subject j � 1,2, … , np where np is the number of participants, at time
instant t. t does not refer to trials but time within each trial. ymv� j, t� is a
vector including the neural data across all trials and two sessions for
subject j at time t with respect to movement onset. The design matrices
contain two columns. The first column is a vector of ones to model the
intercept; thus, it was eliminated from Equation 12. The second column
contains negative ones for baseline trials and ones for event-related trials,
therefore modeling the change with respect to baseline, or slope, and it is
referred as xj and zj in Equation 12. Thus, the first and third terms in the
right-hand side of Equation 12 model the intercepts, which correspond
to the mean values between baseline and movement-related activity. The
second and fourth terms model the slopes, which are the differences
between baseline and movement-related activity. The 	1 �t� values are
fixed across subjects, whereas the b1j �t� values model the random varia-
tions across subjects. In other words, the parameter 	1 �t� models the
change in neural activity (i.e., HGA power or FC measures) with respect
to baseline at each time point t at the group level; the parameter b1j �t�
models the change in neural activity with respect to baseline for each
participant j and therefore explains the across-subjects variability. The

Table 1. Three-way ANOVA

Source
Sum of
squares df

Mean squared
error F

Probability
� F

Stimulus amplitude 0.0061 6 0.00102 63.03 0
Noise Amplitude 0.0245 18 0.00135 83.73 0
Window length (dt) 15.8451 45 0.35211 21662.58 0
Error 0.0983 6048 0.00002
Total 15.974 6117
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across-subjects variability was considered of no interest for the scope of
the current analyses. We thus analyzed fixed-effects representative of the
entire population. Given the structure of the fixed-effect design matrix,
significant differences in movement-related neural activity with respect
to baseline can thus be inferred by testing whether 	1 coefficients are
significantly greater than zero. More formally, the significance of
movement-related modulations was inferred using a t test by testing the
null hypothesis H0: 	1 � 0. Statistical inference was performed for each
time point t and each BA for the analysis of HGAs. For the analysis of
connectivity measures, statistical inference was performed among pairs
of BAs (i.e., no temporal information). To account for the multiple-
comparisons problem at the single time-point level, we controlled the
false discovery rate (FDR) (Benjamini and Yosef, 1995). The threshold
for significance at each time point level was set to q  0.001. To further
assess the validity of our results, we quantified the minimum number of
consecutive significant time points required to reject a null hypothesis of
absence of a cluster given a chance probability p0 � 0.5 (two possible
outcomes, significant or nonsignificant) and kept only those clusters
whose duration exceeded a significance level of 0.001. Details of the
calculation are given by Smith et al. (2004). The fit of the LME model was
performed using the fitlme.m function in Statistical Toolbox of MATLAB (The
MathWorks).

Characterization of functional cortical networks
Hierarchical approach for the characterization of network’s nodes and FC.
We defined a functional cortical network as a set of BAs whose HGA and
connectivity measures display significant task-related modulations. To
assess statistical significance, we used an LME approach (see Statistical
analysis). We used random-intercept and random-slope in LME models,
where the “intercept” models the average between baseline and
movement-related activity, and the “slope” models the difference be-
tween baseline and movement-related activity. Significant changes in
movement-related HGA and connectivity measures were identified by
testing whether the coefficient of the fixed-effect 	1 was significantly
larger than zero. To account for multiple-comparison problems, signif-
icance level was set to q  0.001, corrected for the FDR.

Network characterization was performed at four levels of analysis using a
hierarchical approach. First, we identified the group of BAs displaying a
significant increase in movement-related HGA with respect to mean baseline
HGA (averaged from �0.5 to �0.1 s before stimulus onset). Second, among
these BAs, we determined which pairs of BAs displayed a significant increase
in linear correlation during the movement-related period with respect to
baseline. Third, among those significant pairs, we characterized the pairs of
BAs exhibiting a significant increase in total Granger interdependence FX,Y.
Fourth, among those latter pairs of BAs, we searched for significant increases
in directed and instantaneous Granger causality. Such a hierarchical ap-
proach has several advantages in terms of exhaustiveness and interpretability
of the results. It considers a functional cortical network as composed of links
between BAs that show significant effects both in static (i.e., linear correla-
tion) and dynamic dependencies (total interdependence and Granger cau-
sality). Such an approach may be especially suited for the interpretation of
directed Granger causality measures. In general, even though Granger cau-
sality can be used to determine which causal structures are compatible with
observed dependencies (e.g., Chicharro and Panzeri, 2014), it does not pro-
vide a measure of “true” causality (Pearl, 2009). Therefore, Granger causality
is often combined with additional measures that can provide complemen-
tary information about the properties of the network under study. If spectral
representations of Granger causality are used, the most relevant measures are
the magnitude squared coherence among nodes and time-frequency power
maps. These can reveal the presence of oscillatory activity (i.e., a peak in the
average power spectrum) and the spatial extent (i.e., a peak in the average
coherence spectrum). This approach has been used, for example, in Brovelli
et al. (2004) where the combined application of power, coherence, and
Granger causality measures provided a valuable tool for in-depth investiga-
tion of the nature of functional coupling of distributed neuronal assemblies.
This approach excludes discriminating potential cases in which significant
Granger causality is present among nodes without a clear oscillatory activity
and/or coherence. Similarly, in the time domain, as in the current study, we
interpret directional Granger causality measures only among nodes previ-

ously identified as part of task-dependent functional large-scale network of
interest, where BAs display an increase in HGA power, linear correlation,
and total Granger interdependence. Furthermore, we checked the robust-
ness of our results and ran all-to-all connectivity analysis. Results showed
that the core of the identified functional network is robust to the approach
used (results not shown).

Detection of functional subnetworks (link communities). A critical step
in the analysis of networks is the detection of communities or groups of
nodes potentially corresponding to functional subunits or modules.
Communities, however, may overlap (i.e., a given node may belong to
more than one group). Large-scale cortical networks may be no excep-
tion. For example, a single BA in associative cortical areas, such as BA7 in
the superior parietal cortex, may contribute to processing visual inputs in
an occipitoparietal network while participating in visuomotor transfor-
mations within a frontoparietal network. Link communities (i.e., groups
of links rather than nodes) provide an appropriate framework capturing
the relationships between overlapping communities while revealing hi-
erarchical organization (Ahn et al., 2010). We adopted such framework
for the analysis of adjacency matrices based on linear correlation and
Granger causality networks (levels 2, 3, and 4) to identify functional
subnetworks. Detection of link communities was based on the calcula-
tion of similarity measures between links from undirected and weighted
networks. Single-linkage hierarchical clustering was used for the creation
of link dendrograms. Link communities were found by cutting the den-
drogram at the maximum partition density D, which measures the qual-
ity of a link partition. The partition density has a single global maximum
along the dendrogram in almost all cases because its value is the average
density at the top of the dendrogram (a single giant community with
every link and node) and it is very small at the bottom of the dendrogram
(most communities consist of a single link). Link community analysis
was performed using a Python implementation downloaded from
https://github.com/bagrow/linkcomm.

Results
Behavioral results
We asked participants to perform an arbitrary visuomotor map-
ping task (Wise and Murray, 2000), where the relation between
visual stimulus and motor response is deterministic and highly
acquainted (Fig. 1). Each participant performed two sessions of
60 trials each (total of 120 trials). Each session included three
digits randomly presented in blocks of three trials. Before MEG
acquisition, participants performed 30 trials to familiarize with
the task and experimental setup. The average reaction time dur-
ing MEG recordings was 0.504 � 0.004 s (mean � SEM). To
quantify potential time-dependent or learning-related modula-
tions of reaction times (RTs) during the execution of the task, we
compared the set of RT among participants for the first 50 trials of
each session. One-way ANOVA of RTs across trials did not reveal
any significant group effect (F(49,500) � 0.9, p � 0.6638). How-
ever, a significant effect was found for session 2 (F(49,500) � 1.61,
p � 0.0071). Pairwise comparison across trials showed that only
the first trial was statistically different (� � 0.01, Bonferroni
correction, multcompare.m function in MATLAB). Therefore, we
removed the first correct trial of the second session, in addition to
all incorrect and late trials, from subsequent MEG analyses.

Single-trial high-gamma MEG activity
Time-frequency spectral analysis at the MEG sensor level over the
gamma band from 30 to 150 Hz revealed increases in power with
respect to baseline in the high-gamma range from �60 to 120 Hz
(Fig. 2). Tomographic mapping was therefore restricted to the
high-gamma band by combining multitaper spectral analysis
(Percival and Walden, 1993) and frequency-domain beam-
forming algorithm (Gross et al., 2001). Anatomical information
about sources was obtained from single-subject MRI and Ta-
lairach atlas (Lancaster et al., 2000). Functional and anatomical
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data were merged to compute single-trial HGA at each BA, de-
fined as the z-transformed log-power values with respect to base-
line activity averaged across sources within the same BA and
cerebral hemisphere, giving a total of 76 BAs covering both hemi-
spheres. Figure 4 shows exemplar single-trial HGA aligned on
finger movement for BA 4, comprising the primary motor cortex
(left panel), and BA 7, including the precuneus and the superior
parietal lobule (right panel), both for the left hemisphere. In this
exemplar subject, HGA modulations �3 SDs (z-score) are visible
on a single-trial basis.

Visuomotor-related BAs
A functional cortical network is here defined as a set of BAs whose
HGA and connectivity measures display significant task-related
modulations. We first identified 35 BAs as the network nodes,
which displayed significant increases in visuomotor-related HGA

with respect to the mean baseline HGA (averaged from �0.5 to
�0.1 s before stimulus onset). To assess statistical significance,
we used an LME approach, a model particularly suited for the
analysis of data collected from multiple subjects. Figure 5 is a
statistical map displaying the time course of t-values for each BA,
grouped in lobes for both hemispheres. The performance of ar-
bitrary visuomotor mappings was associated with a significant
increase in HGA over a distributed cortical network covering
most of the parietal and frontal areas (Table 2). The largest in-
crease in HGA was observed over the left parietal lobe, both the
dorsal (BA 5L and 7L) and lateral areas (BA 39L and 40L), and
over sensorimotor (BA 1-2-3 and 4) and premotor regions (BA
6). In prefrontal cortex, the strongest activation was present over
the left dorsolateral and dorsomedial cortices (BA 9L) and, bilat-
erally, over the ventral and dorsal regions of the anterior cingulate
area (BA 24 and 32, respectively). Occipital areas showed a sig-
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nificant increase, especially in BA 19, but to a lesser extent due to
the alignment of HGA to movement rather than stimulus onset
(results not shown). Exemplar time courses of activation of t and
p values at sensorimotor and premotor areas are depicted in Fig-
ure 6a, b. The earliest significant activations arise �0.45 s before
movement onset (mean reaction time was 0.504 s and SD was
0.118 s, maximal RT was 1 s). If we took the occurrence of the
peak of HGA as an index of maximal involvement of a given BA
(Table 2, column 4), the earliest activation could be seen between
�0.43 and �0.3 s at the border between visual (BA 19L and R, BA
17 and 18R) and temporal areas (BA 37L). Subsequently, parietal
areas and frontal areas activated. However, a clear sequential ac-
tivation is missing. Indeed, the analysis of HGA modulations is
not informative about the temporal dependences between BAs.
To address this issue, we computed undirected and directed FC
measures on a single-trial basis between visuomotor-related BAs.

FC between visuomotor BAs
We restricted our analysis to BAs displaying a significant increase
in HGA with respect to baseline. We first identified the set of pairs

of BAs displaying significant increase in linear correlation with
respect to baseline (q  0.001, FDR-corrected). Figure 7a shows
the adjacency or connectivity matrix associated with linear cor-
relation analysis between BAs within the visuomotor-related cor-
tical network (Fig. 5). A significant increase in linear correlation
is depicted in the connectivity graph shown in Figure 7c. Most of
the links were among BAs of the parietal, sensorimotor, premo-
tor, and prefrontal cortices. Node strength was computed as the
sum of weights of links connected to each BA, where the weight
was the absolute value of the log10-transformed p values. Node
strength is depicted in color (Fig. 7c) and reveals the importance
of a given BA in mediating arbitrary visuomotor behavior. BAs
with the highest node strength were the superior (BAs 5 and 7)
and lateral (BA 40) parietal cortices, the left sensorimotor (BA
1-2-3 and 4), bilateral premotor areas (BA 6), and the bilateral
regions of the dorsal anterior cingulate area (BA 24). Several BAs
displaying a significant increase in HGA appeared disconnected
from the rest of the network (e.g., BA 9L).

Within the set of linearly correlated pairs of BAs, we investi-
gated whether the total Granger interdependence increased with
respect to baseline in addition to linear correlation. The total
Granger interdependence characterizes the dynamic dependen-
cies, and it quantifies the increase in mutual information between
the activity of two BAs at a given point in time with respect to
their past, and it is the sum of directed and instantaneous Granger
causality measures (see Materials and Methods). Figure 7b shows
the connectivity matrix for the total Granger interdependence,
and Figure 7d depicts the links and node strengths. Overall,
changes in total Granger interdependence (i.e., dynamic) are
more specific than the changes in linear correlation (i.e., static
interdependence). Only 15 links between BAs exhibit a signifi-
cant increase, and they are concentrated over the dorsal fronto-
parietal network, including the superior parietal cortices, motor
(left) and premotor (bilateral) areas, and the dorsal anterior cin-
gulate areas (BA 24). A significant increase is also observed be-
tween the left premotor (BA 8L) and anterior cingulate areas (BA
32L). According to node strength, BA 7, 6, and 24 played pivotal
roles.

Finally, among those pairs, we searched for significant (q 
0.001, FDR-corrected) increases in directed and instantaneous
Granger causality (Fig. 7e). A significant increase in Granger cau-
sality was found from superior parietal (BA 7) to premotor areas
(BA 6). In turn, the left premotor areas (BA 6) were found to drive
the activity in the anterior cingulate areas bilaterally (BA 24). As
highlighted by the node strength, the left premotor cortex (BA
6L) plays a key role in the Granger causality network supporting
visuomotor mapping, by acting as a relay node between the pari-
etal and prefrontal areas. No links displayed a significant increase
in instantaneous Granger causality.

As a control analysis, we checked whether the changes in FC
across areas reflected more than just a change in HGA at the
group level. To do so, we analyzed the relationship between
changes with respect to baseline in HGA and linear correlation
across participants. Given that such across-subjects variability is
modeled by the slope-coefficient in the random terms (i.e., b1j(t)
in Eq. 12), we plotted the relationship between the t-values asso-
ciated with b1j(t) arising from the linear correlation analysis and
the mean t-values averaged over time (from �1 s to 0.5 s around
movement onset) for the HGA modulations of the correspond-
ing BAs (Fig. 8a). Each participant is depicted in a different color,
and each dot is a given a pair of BAs displaying significant in-
crease in linear correlation. The plot shows that participants dis-
playing high changes in power also show high modulations in

Table 2. Statistical results of HGA analysis

ROI number
Brodmann
area

Peak
t-value

Peak
time (s) Beginning (s) End (s) Duration (s)

1 40 L 14.91 �0.06 �0.32 0.23 0.55
2 1-2-3 L 11.78 �0.06 �0.31 0.26 0.57
3 5 L 11.59 �0.05 �0.36 0.29 0.65
4 6 R 10.66 0.09 �0.43 0.17 0.6
5 29 R 10.37 �0.16 �0.34 �0.03 0.32
6 5 R 10.3 �0.16 �0.34 0.22 0.56
7 31 R 10.03 �0.16 �0.38 0.13 0.51
8 4 L 9.94 �0.04 �0.36 0.26 0.61
9 6 L 9.92 �0.04 �0.4 0.27 0.67

10 4 R 9.52 �0.19 �0.34 0.18 0.51
11 31 L 9.49 �0.16 �0.41 0.29 0.69
12 40 R 9.46 �0.3 �0.36 �0.11 0.25
13 24 R 9.23 �0.2 �0.36 0.2 0.56
14 24 L 8.65 �0.15 �0.36 0.24 0.6
15 7 L 8.62 0.1 �0.44 0.36 0.8
16 39 R 8.61 �0.27 �0.5 �0.11 0.39
17 7 R 8.36 �0.09 �0.44 0.18 0.61
18 30 R 8.29 �0.16 �0.36 �0.04 0.32
19 8 L 8.11 �0.11 �0.26 0.1 0.36
20 1-2-3 R 8.01 0.11 0.02 0.17 0.15
21 29 L 8 �0.16 �0.27 �0.03 0.25
22 32 L 7.84 �0.07 �0.26 0.16 0.41
23 39 L 7.84 �0.07 �0.39 0.17 0.56
24 1-2-3 R 7.73 �0.19 �0.34 �0.11 0.23
25 32 R 7.32 0.09 �0.23 0.15 0.38
26 9 L 7.15 �0.11 �0.23 �0.01 0.22
27 13 L 6.96 �0.11 �0.23 0.21 0.44
28 19 R 6.55 �0.32 �0.43 �0.11 0.32
29 8 R 6.31 �0.2 �0.23 �0.03 0.2
30 41 L 6.21 �0.11 �0.22 �0.06 0.16
31 37 L 6.19 �0.33 �0.35 �0.25 0.1
32 19 R 6.17 0.48 0.42 0.53 0.12
33 43 L 6.14 �0.16 �0.19 �0.04 0.16
34 30 L 6.08 �0.14 �0.38 0.02 0.4
35 43 L 6.04 0.16 0.11 0.21 0.1
36 30 L 5.75 �0.43 �0.53 �0.39 0.15
37 17 R 5.73 �0.22 �0.36 �0.07 0.29
38 18 R 5.7 �0.32 �0.41 �0.06 0.35
39 29 L 5.6 0.1 �0.02 0.11 0.13
40 19 L 5.22 �0.41 �0.44 �0.18 0.26
41 19 L 5.14 �0.13 �0.16 �0.06 0.11
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linear correlation, and vice-versa. Indeed, the Pearson’s correla-
tion between changes in HGA and the linear correlation was
highly significant across participants (r � 0.4495, p � 9.33e-59).
We then tested whether such relationship was present also at the

group level. To do so, we plotted the same relationship for fixed
effects (Fig. 8b). In this case, the Pearson’s correlation between
changes in HGA and FC was r � 0.1483, and it was not significant
(p � 0.112). These results therefore suggest that a systematic
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Figure 6. The time course of activation of t values (a) and associated p values (b) for different sensorimotor and premotor BAs. c, Time course of the percentage of time points showing exemplar
sensorimotor and premotor areas.

Figure 7. FC between visuomotor-related BAs. a, Connectivity matrix associated with linear correlation analysis between BAs within the visuomotor-related cortical network. b, Connectivity
matrix associated with significant increases in total Granger interdependence between BAs. Graphical representation of linear correlation (c), total Granger interdependence (d), and directed
Granger causality graphs (e). Node color is the strength of BAs, defined as the total correlation of each BA with the rest of the network. For Granger causality, the node strengths consider both
incoming and outcoming values.
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relationship between HGA modulations and FC measures is pres-
ent across participants and needs to be taken into account in the
statistical analyses. Given that we analyzed fixed-effects only, our
results are therefore not contaminated by such confound.

Link communities of visuomotor networks
A critical step in the analysis of networks is the detection of com-
munities, or groups of nodes potentially corresponding to
functional subunits or modules (Girvan and Newman, 2002).
Communities, however, may overlap (i.e., a given node may be-
long to more than one group). Large-scale cortical networks may
be no exception. Link communities (i.e., groups of links rather
that nodes) provide an appropriate framework capturing the re-
lationships between overlapping communities while revealing hi-

erarchical organization (Ahn et al., 2010). We adopted such
framework for the analysis of adjacency matrices based on linear
correlation and Granger causality networks to identify functional
subnetworks. Figure 9a shows the partition density, which mea-
sures the quality of a link partition, as a function of dendrogram
level for both linear correlation and total Granger interdepen-
dence. Link communities were found by cutting the dendrogram
at the maximum partition density D (Ahn et al., 2010). The num-
ber of link communities for the linear correlation and total
Granger interdependence was 17 and 5, respectively. For each
link community, we computed its strength, defined as the sum of
node strengths within each link community with respect to the
total node strength of the entire network. Figure 9b shows the link
community strength and shows that the first link communities
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Figure 8. Relationship between changes in HGA and linear correlation. a, Across-subjects variability in HGA and linear correlation accounted by the random-effect term; each participant is
depicted in a different color, and each dot is the t-value associated with the random-effect coefficients. b, Fixed-effect t-values for significant pairs of BAs.

Figure 9. Link community analysis. a, Partition density as a function of the link dendrogram cut threshold for linear correlation (black curve) and total Granger interdependence (red). The
threshold at which the dendrogram is cut corresponds to the threshold where the maximum partition density was found. b, Community strength for linear correlation (black curve) and total Granger
interdependence (red) as a function of link community number. Most representative link community (functional subnetwork) for (c) linear correlation and (d) total Granger interdependence graph.
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account for 67% and 70% of the total strength, whereas the sec-
ond link communities explain 6% and 12% for linear correlation
and total Granger interdependence, respectively. The first link
community for the correlation graph is shown in Figure 9c and
confirms that the dorsal frontoparietal network plays a key role in
visuomotor mapping. Node strength is largest for parietal, sen-
sorimotor, and premotor areas. In addition, the parietal (BA 7
and 40L) together with motor cortex (BA 4L) participate in 5
other link communities, suggesting that these BAs participate in
different cortical communities (Fig. 10). The first community for
the total Granger interdependence is shown in Figure 9d, high-
lighting strong dependencies between the constituents of the dor-
sal frontoparietal network. The most relevant BAs for such
module are the premotor areas BA 6, and the parietal and the left
motor areas participate. Overall, community detection analysis
suggests that arbitrary visuomotor mapping is mediated by over-
lapping functional subnetworks of cortical areas, with a core net-
work exerting Granger causal influences centered over the dorsal
frontoparietal network, with a privileged role of the premotor
and anterior cingulate cortices.

Discussion
Cortical network nodes involved in arbitrary
visuomotor mapping
The HGA of multiple BAs significantly increased during the execu-
tion of familiar stimulus–response associations covering a cortical
network primarily including frontal and parietal regions (Fig. 5). In
the frontal lobe, the motor (BA 4) and premotor areas (BAs 6 and 8)
were found to activate, confirming the role of the sensorimotor cir-
cuits in the performance of visuomotor mappings necessary for the
instantiation of habitual behaviors (Yin and Knowlton, 2006; Gray-
biel, 2008; Balleine and O’Doherty, 2010). In the parietal lobe, the
somatosensory BA 1-2-3 and parietal areas BA 5, 7, 39, and 40 acti-
vated. The involvement of such frontoparietal network, including

the superior parietal lobe and the dorsal premotor areas, may sup-
port visuomotor computations transforming visual information
into motor plans (Wise et al., 1996; Wise and Murray, 2000; Cor-
betta and Shulman, 2002; Culham and Valyear, 2006). More anteri-
orly, the left dorsal and dorsomedial prefrontal cortex (BA 9L) and
the ventral and dorsal regions of the anterior cingulate area (BA 24
and BA 32, respectively) were also significantly active. Our results
suggest the involvement of dorsomedial prefrontal territories of BAs
24 and 32, such as the rostral cingulate zone within the medial frontal
areas, which has been described as a crucial node of the human
motor system and probably corresponding to the cingulate motor
area described in nonhuman primates (Picard and Strick, 1996;
Amiez and Petrides, 2014). In such case, the increases in HGA ob-
served in BAs 24 and 32 may correspond to the activation of
visuomotor-related neural populations of the rostral cingulate zone.
In rodents, however, neural interventions of the infralimbic prefron-
tal cortex, which may correspond to the ventromedial portions of
BAs 24 and 32 (Wallis, 2012), have been found to suppress or block
habits (Coutureau and Killcross, 2003; Killcross and Coutureau,
2003; Hitchcott et al., 2007; Smith et al., 2012; Barker et al., 2013;
Smith and Graybiel, 2013). Therefore, our results may also be inter-
preted as confirming the involvement of ventromedial prefrontal
regions in familiar stimulus–response behaviors, required for the
consolidation of habits. Overall, our results confirm that portions of
the medial prefrontal cortex are required for arbitrary visuomotor
mappings (Murray et al., 2000).

Cortical network FC of arbitrary visuomotor mapping
To characterize the FC within the visuomotor-related network, we
computed undirected and directed measures between active BAs.
The results suggest that visuomotor associations are mediated by an
increase in FC between areas of the frontoparietal network and the
medial prefrontal cortex. The superior (BAs 5 and 7) and lateral (BA
40) parietal cortices, the left sensorimotor (BA 1-2-3 and 4), bilateral
premotor areas (BA 6), and the bilateral regions of the dorsal ante-
rior cingulate area (BA 24) are central, as evidenced by node
strengths in correlation and Granger causality graphs. In analogy to
the concept of cell assemblies, these BAs (in particular, the parietal
areas BA 7 and 40L, and motor cortex BA 4L) participated in multi-
ple functional subnetworks (i.e., link communities), suggesting an
overlapping and hierarchical organization of visuomotor-related
brain networks. The bilateral superior parietal areas (BA 7) played a
driving role in the network, exerting Granger causality on the dorsal
premotor areas (BA 6). Such directed functional coupling may be
supported by direct corticocortical projections from the superior
parietal lobe to premotor areas (Wise et al., 1997). Premotor areas
acted as relay nodes passing information from parietal to medial
prefrontal cortices (BA 24). BA 24 played a receiving role in the
network.

An associative account of arbitrary visuomotor mapping,
cortical networks, and FC
As most forms of visuomotor guidance, arbitrary visuomotor
mapping relies on internal representations linking visual cues
to motor responses and expected outcomes. Contemporary
associative learning theory postulates that acquisition is me-
diated by goal-directed actions selected according to expected
outcomes as well as current goals and motivational state (Re-
scorla, 1991; Dickinson and Balleine, 1994; Staddon and
Cerutti, 2003). Consolidation is considered as the gradual for-
mation of stimulus-driven habitual responses (Dickinson,
1985; Dickinson and Balleine, 1993). Accordingly, perfor-
mance of arbitrary visuomotor mappings may be viewed as a

Figure 10. Link community analysis of linear correlation graphs. Links involving BA 7R (as an
exemplar BA) are colored according to the link community in which they participate. The stron-
gest graph is depicted in green, and it corresponds to the graph shown in Figure 7c. In total, BA
7R participates in 6 link communities.
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form of acquainted instrumental behavior. Several studies
have opposed arbitrary mapping to instrumental condition-
ing, to emphasize the conditional nature of associations
(Petrides, 1987, 2005; Amiez et al., 2012). However, this ap-
parent contradiction may be resolved if we consider that an
arbitrary visuomotor learning task is a form of concurrent and
multiple schedule in which two or more reinforcement pro-
grams, each signaled by their own discriminative stimuli (i.e.,
the visual cues), are randomly presented one at a time to the
participant who can choose between different operant behav-
iors (i.e., finger movements) (Bouton, 2006). Indeed, several
studies in rodents have shown that conditional T-maze tasks
in which turns are instructed by discriminative acoustic tones
generate habitual behaviors with overtraining (e.g., Yin and
Knowlton, 2006; Graybiel, 2008).

We therefore suggest an associative account of the cogni-
tive processes underlying arbitrary visuomotor mappings, as-
suming that their performance and consolidation form the
basis of highly acquainted instrumental behaviors, such as
habits, and represent a special form of instrumental behavior.
The selection of a motor response (R) under habitual control
is thought to be “triggered” by antecedent stimuli (S), rather
than their outcome (Dickinson, 1985). Outcomes, however,
can control actions through a form of S–R association in
which the stimulus properties of the outcome (O S) can select
an associated response (R) (i.e., through an O S–R association)
(Balleine and O’Doherty, 2010). The associative-cybernetic
model formalizes these notions as the coordination of a habit
memory module encoding S–R associations with an associa-
tive memory module, representing the belief that a given re-
sponse causes a particular outcome (Dickinson and Balleine,
1994; Dickinson, 2012). We suggest that the activation of the
frontoparietal system and Granger causality from the poste-
rior parietal to premotor and motor areas are associated with
S–R visuomotor transformations (i.e., the habit memory
module). The posterior parietal cortex and premotor areas
may then recruit subcortical areas, such as the sensorimotor
territories of the dorsal striatum (Yin and Knowlton, 2006;
Graybiel, 2008; Balleine and O’Doherty, 2010; Smith et al.,
2012; Smith and Graybiel, 2013), such as the putamen, and
finally reach sensorimotor cortical area for implementation of
motor commands. In turn, FC from dorsal premotor to medial
prefrontal cortex may encode O S–R associations (i.e., the as-
sociative memory module) in conjunction with associative
and limbic portion of the striatum, such as the anterior cau-
date nucleus and the ventral striatum, which are known to
encode the value of outcomes. Accordingly, even during sim-
ple stimulus–response transformations, the dorsal-premotor
and medial prefrontal network would monitor correct perfor-
mance. This interpretation is supported by recent findings
suggesting that habits require areas of the associative and lim-
bic frontostriatal loops, in addition to sensorimotor frontos-
triatal circuits (Coutureau and Killcross, 2003; Killcross and
Coutureau, 2003; Smith et al., 2012; Smith and Graybiel,
2013). Having access to O S–R associations, the medial pre-
frontal network would become central for the detection of
motor errors (i.e., unwanted S–R associations), such as in
performance monitoring (Botvinick et al., 2004; Ridderinkhof
et al., 2004; Rushworth et al., 2007; Bonini et al., 2014) and
cognitive control (Miller, 2000; Koechlin et al., 2003; Badre
and D’Esposito, 2009). The interaction between the habit and
associative memory modules may generate the intention to
move (Dickinson, 2012) and may reside in the FC between the

posterior parietal cortex and dorsal premotor areas, also me-
diating the cognitive processes related to motor awareness
(Desmurget and Sirigu, 2009). Such system view of the cogni-
tive processes mediating arbitrary mapping arising from cor-
tical FC is depicted in Figure 11.

FC analysis of HGA
We developed a novel approach to map visuomotor-related
BAs and their functional coupling. Covariance-based Granger
causality measures provide an intuitive measure linking di-
rected and undirected FC measures and can be used on short
neural signals (e.g., single trials) and large networks (e.g., hun-
dreds of nodes). A visuomotor-related cortical network was
then defined as a set of BAs whose HGA and FC measures
display significant modulations. The use of HGA power mod-
ulations as a sole correlate of local neural processing has lim-
itations. A potential limitation in comparing event-related
and baseline-related FC measures rests on the fact that signif-
icant effects could arise from differences in univariate signal-
to-noise ratio, rather than changes in time-lagged interactions
among signals. Such potential confounds have been also
termed “weak asymmetry,” as opposed to “strong asymme-
tries” referring to FC modulations arising from changes in
time-lagged interactions (Haufe et al., 2013). Even though
the simulation and neural results suggest that connectivity
changes cannot be explained completely in terms of power
changes, in general, we cannot completely discard an influence
of the signal-to-noise ratio. Another limitation is the loss of
information about phase relations between MEG sensors and,
consequently, brain sources. This precludes testing current
hypotheses concerning candidate physiological mechanisms
mediating the creation of selective communication links between
brain regions through phase synchrony (e.g., the “communica-
tion-through-coherence” hypothesis) (Fries, 2005). Furthermore,
complementary coding schemes between brain regions based on
cross-frequency coupling (Lisman and Jensen, 2013; Jensen et al.,
2014) cannot be evaluated either. Further work is needed to link
visuomotor-related HGA and phase-synchrony modulations in
lower bands, such as the � (�10 Hz) and 	 (�20 Hz) range, which
are known to play a role in visuomotor behaviors (e.g., Hummel and
Gerloff, 2005; Jerbi et al., 2007; Rilk et al., 2011). Finally, given recent
evidence of FC patterns undergoing temporal dynamics (Bassett et
al., 2011; Zalesky et al., 2014), our study provides novel perspectives
toward the study of FC dynamics in task-related context on time-
scales relevant for behavioral and cognitive processes.
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