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Abstract

In social interactions, strategic uncertainty arises when the outcome of one’s choice depends on the choices of others.
An important question is whether strategic uncertainty can be resolved by assessing subjective probabilities to the
counterparts’ behavior, as if playing against nature, and thus transforming the strategic interaction into a risky (individual)
situation. By means of functional magnetic resonance imaging with human participants we tested the hypothesis that
choices under strategic uncertainty are supported by the neural circuits mediating choices under individual risk and
deliberation in social settings (i.e. strategic thinking). Participants were confronted with risky lotteries and two types of
coordination games requiring different degrees of strategic thinking of the kind ‘I think that you think that I think etc.’ We
found that the brain network mediating risk during lotteries (anterior insula, dorsomedial prefrontal cortex and parietal
cortex) is also engaged in the processing of strategic uncertainty in games. In social settings, activity in this network is
modulated by the level of strategic thinking that is reflected in the activity of the dorsomedial and dorsolateral prefrontal
cortex. These results suggest that strategic uncertainty is resolved by the interplay between the neural circuits mediating
risk and higher order beliefs (i.e. beliefs about others’ beliefs).
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Introduction

Since the foundation of game theory (von Neumann and
Morgenstern, 1947), there has been a growing quest for common
theoretical and behavioral approaches for two seemingly dis-
tinct situations: playing against nature or against other players.
A main focus has been on modeling uncertainty in such

situations (Knight, 1921; Luce and Raiffa, 1957; Roth, 1977;
Aumann and Dreze, 2009). In social interactions, strategic
uncertainty arises when the outcome of one’s choice depends
on the choices of others. An important question is whether stra-
tegic uncertainty can be represented by subjective probabilities
(Savage, 1954) to the counterparts’ behavior as in games against
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nature, therefore reducing situations of strategic uncertainty to
individual risky choices (Heinemann et al., 2009). In social inter-
action, people might form beliefs about others’ beliefs and
behave according to different levels of strategic thinking, mod-
eled as level-k (Nagel, 1995; Stahl and Wilson, 1995) or cognitive
hierarchies (Camerer et al., 2004). Thus, an additional question
is how deliberation (i.e. degrees of strategic thinking) interacts
with strategic uncertainty.

Behavioral models have tackled the distinction between low
vs high levels of strategic thinking, however, without connect-
ing it with risk (Camerer and Fehr, 2006; Crawford et al., 2013;
Hargreaves Heap et al., 2014). Similarly, neuroeconomics has
separately investigated risk (Knutson et al., 2001; Preuschoff
et al., 2006; Rushworth and Behrens, 2008) and strategic uncer-
tainty (Coricelli and Nagel, 2009; Yoshida et al., 2010). This is the
first neuroeconomics study in which behavioral and neural
processes underlying strategic uncertainty are related to the
processes arising from risky choices.

In our study, we compare the behavior and brain activity
measured with functional magnetic resonance imaging (fMRI)
during choices under risk (i.e. individual lottery decisions) and
strategic uncertainty in social interactive games: stag-hunt and
entry games. Our original paradigm allows us to measure strate-
gic uncertainty by eliciting certainty equivalents (i.e. a measure
of risk attitude) in games analogous to measuring risk attitudes
in lotteries. The two games differ in deliberation demands. In
stag-hunt games, players have incentives to coordinate on the
same choices and require low degrees of strategic reasoning.
Entry games encourage coordination on opposite choices, which
requires higher degrees of (recursive) strategic reasoning of the
kind ‘I think that you think that I think etc.’ Our experimental
design therefore allowed us to compare behavior and brain activ-
ity between risky and strategic uncertainty conditions and to
investigate their modulation with varying levels of deliberation.

At the behavioral level, we confirmed that stag-hunt games
generate behavioral patterns similar to those observed in lot-
teries (Heinemann et al., 2009). At a neural level, we found that
these similarities are associated with a common neural sub-
strate composed by the anterior insula, dorsomedial prefrontal
cortex and parietal cortex, previously associated only with the
processing of individual risk (Knutson et al., 2001; Preuschoff
et al., 2006; Christopoulos et al., 2009; Mohr et al., 2010). In paral-
lel, we found that entry games induce higher levels of uncer-
tainty, as reflected in higher activity in the network mediating
risk, and recruit brain regions (dorsomedial and dorsolateral
prefrontal cortex) mediating high levels of strategic reasoning
(Coricelli and Nagel, 2009; Bhatt et al., 2010; Yoshida et al., 2010).
Our results therefore provide a common neural framework for
previously unrelated decision-making situations such as risk
and coordination problems that induce strategic uncertainty.

Materials and methods
Participants

Twenty healthy right-handed subjects (nine females) were
recruited to take part in a study at the Center for Mind/Brain
Sciences (CIMeC, University of Trento, Italy). Mean age of partic-
ipants was 26 years (66.28, s.d.). These volunteers gave fully
informed consent for the project, approved by the local
(University of Trento) Ethical Committee. Individuals with a his-
tory of psychiatric or neurological problems were not included
in the study. Two participants were excluded from the analysis
due to excessive movement (>3 mm) during the image

acquisition. We considered only 18 participants for the analyses
of behavioral and fMRI data. Subjects knew that they were play-
ing with nine other subjects who were under exactly the same
conditions, but at a different scheduled time. Participants were
told that the experiment aimed at studying decision making in
social context, that they would receive a compensation of e30
show-up fees and that the money gained in three (one for each
condition: lottery, stag-hunt and entry games) randomly
extracted trials would be added to their compensation. Once 10
subjects had been scanned, we sent them an e-mail message
with a table of their own choices and the choices of their co-
players (preserving anonymity). We repeated the same proce-
dure for the second group of 10 participants. For each subject,
we summed up the winning amount of three trials randomly
selected (one trial for each condition). Participants earned on
average e27 (plus the show-up fee). A transfer of the money
they won was sent to their bank account.

Experimental design and task

Before entering the scanner, the task was explained to subjects
and they were allowed a 5 min familiarization with the lottery
and games. Each participant underwent fMRI scanning while
performing 210 trials (see Figure 1 and Supplementary Table
S1). During scanning, subjects viewed a projection of a com-
puter screen and chose one of two options (A or B) in each trial.
We used lotteries and two types of strategic games: stag-hunt
and entry games. Both have been studied extensively in theory
and experimental settings (reviewed by Camerer, 2003). In stra-
tegic games, participants (either in groups of N¼ 10 or N¼ 2) had
to choose between two options A and B, where Option A was
paying a sure payoff X that was varied between situations (X
2{1, 2, 3, 4, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14,
15} Euros). In stag-hunt games, Option B was rewarded with e15,
provided that at least K subjects from the same group decided
for B, and 0 otherwise. In groups of N¼ 10 subjects, K was varied
between 4, 7 and 10; in groups with N¼ 2, K¼ 2. In entry games,
Option B was rewarded with e15, provided that at most K sub-
jects from the same group decided for B, and 0 otherwise. In
groups of N¼ 10 subjects, K was varied between 4 and 7; in groups
with N¼ 2, K¼ 1. In lottery choices, participants chose between
the exact same options A and B, where Option A was paying a
sure payoff X� e15 that was varied between situations as in stra-
tegic games. Option B was paying e15 with a fixed known proba-
bility P 2 1

3 ;
1
2; ;

2
3

n o� �
. The wide range of sure payoffs allowed us to

measure attitudes towards risk and strategic uncertainty by elicit-
ing certainty equivalents for lotteries and analogue measures for
strategic games. Participants were instructed that their choices in
the social conditions (stag-hunt and entry games) would be
matched with the choices of the other nine participants. In games
with group size N¼ 2, the participants were informed that their
choice would be matched with the one of another randomly
selected participant (within the group of 10 participants).

Time course of the experimental task. (see Figure 1) At each trial,
subjects viewed an information screen indicating the payoffs of
the A-choice and the type of condition (lottery, stag hunt and
entry) indicated by the text under the e15 payoff of the B-choice
(e.g. ‘if die is 1, 2, 3, 4’, ‘if at least 4 of 10’ and ‘if at most 4 of 10’,
for the lottery, stag-hunt and entry games, respectively). The
type of condition varied randomly across trials. Participants
could choose (self-paced within 6 s) between pressing the right
or left button of an MRI compatible button box. After each
choice, the next trial was presented after a variable delay
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ranging from 10 to 14 s (randomly drawn from a lognormal dis-
tribution) so to dissociate fMRI responses from different trials.

We did not provide any feedback between trials in order to elim-
inate learning through payoff experience.

Statistical analysis of behavioral data

Regression analyses. Choice behavior was analyzed based on
panel data analysis using the statistical software package Stata
(StataCorp, College Station, TX). We ran panel logit regressions,

which took each participant as the unit, and estimated both
random and conditional fixed effects. We used B-choice for
each condition as dependent variable and the value of the sure
payoff (X) and the probability P (for the lotteries) or the K param-
eter (for the games) as independent variables. We report the
results for the random effects analysis (see Table 1).

Measures of risk and strategic uncertainty

Estimating risk preference by means of certainty equivalents in
lotteries and games. We estimated the probability of the partici-
pant choosing the risky option (B-choice) for each condition (lot-
tery, stag hunt and entry), as a function of the value of the sure
payoff (X), and the probability P (for the lotteries) or a relative
threshold k ¼ ðK� 1Þ=ðN� 1Þ (for strategic games), using logit
regressions. Parameter k is the proportion of other subjects
needed for success (i.e. obtaining the e15 of Choice B) in the
games. We then computed for each participant the estimated
threshold (i.e. certainty equivalent) for a lottery with a winning
probability of P¼ 0.5, and for games with a relative threshold of
k¼ 0.5: X� ¼ ðb0 þ b1 � 0:5Þ=b2; where b0 is the coefficient of the
constant, b1 is the coefficient of P (for the lotteries) or k (for the
games) and b2 is the coefficient of the variable X. Probabilities of
B-choices were estimated as: P Bð Þ ¼ 1� 1

1þ exp b0þb2�Xð Þ. In order to
determine risk averse (RA) and risk loving (RL) types, we ranked
participants in terms of certainty equivalents for the lottery
choices (X*-lottery). Participants with certainty equivalent
higher than the expected value of the risky options were catego-
rized as RLs (n¼ 6); we then considered for comparison purpose
as (highly) RA a group of participants (n¼ 6) with lowest cer-
tainty equivalents. Note that median split of the data generated
similar results. We used median split of the certainty equivalent

Fig. 1. Experimental design. Each trial had the same structure: a subject had to choose between a known sure payoff (say A-choice; with values¼ {1, 2, 3, 4, 5, 5.5, 6, 6.5,

7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15}) and an uncertain payoff (say B-choice). The figure shows three examples of different screens with a typical trial of each

condition and intertrial intervals (i.e. fixation cross). The screen on the top is a lottery situation (i.e. risk). The subject chooses between the sure payoff 9.50 (A-choice)

and a lottery (B-choice) in which he gets e15 with probability of 2/3 (if die is 1, 2, 3 and 4) and zero otherwise. The middle screen shows a stag-hunt game situation

(i.e. strategic uncertainty that requires low level of strategic thinking) with a sure payoff choice of 9.50 (Choice A) and an uncertain game choice (B-choice), in which

player i who chooses B gets 15 if at least 4 out of all 10 players (including i) choose B and otherwise he gets 0. In the lower screen, the entry game situation (i.e. strategic

uncertainty that requires high level of strategic thinking), with a certain payoff choice of 9.50 (A-choice) and an uncertain game choice (B-choice), in which player i who

chooses B receives 15 if at most 4 out of all 10 players (including i) choose B and zero otherwise. Option A was paying a sure payoff that was varied between situations

(as shown on the top).

Table 1. Regression analyses

(1) (2) (3)
Lotteries Stag hunt Entry

X �0.769 �0.567 �0.249
(0.052)*** (0.039)*** (0.029)***

P 2.915
(0.205)***

K �1.944 0.415
(0.151)*** (0.099)***

Constant �0.455 13.694 �2.740
(0.457) (1.053)*** (0.978)**

Notes: Panel logit regressions for choice for the three conditions. The dependent

variable ‘choice B’ is equal to 1 if subject chose B and 0 if subject chose A. X indi-

cates values of sure payoffs, P refers to the winning probabilities (P¼1/3, 1/2, 2/

3) and K to the minimum number of participants that should choose B in order

to win in the stag-hunt games (K¼4, 7, 10), and the maximum number of partic-

ipants that could choose B in the entry game (K¼4, 7). Regression 1: Log like-

lihood¼�331.17384, Wald chi2(3)¼241.08, P> chi2¼0.000. Regression 2: Log

likelihood¼�391.56465, Wald chi2(3)¼242.18, P> chi2¼0.000. Regression 3: Log

likelihood¼�353.13122, Wald chi2(3)¼83.93, P> chi2¼0.000. Numbers indicate

Coeff. (SE), ***P<0.001, **P<0.01.
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for the lottery choices to define RA and RL participants for the
fMRI analysis [general linear model (GLM) 1].

Measures of threshold strategies. Previous experiments have
shown that a vast majority of subjects use perfect threshold
strategies in ordered (for increasing sure payoffs) lottery choices
and stag-hunt games (Holt and Laury, 2002; Heinemann et al.,
2009). We confronted subjects with 21 different X-values for
sure payoffs in an unordered fashion. Ordering their choices for
any given Option B and increasing payoffs for A, a perfect
threshold strategy would be a sequence starting with B and end-
ing with A with only one switching point. A sequence without
switching would also be considered as a perfect threshold strat-
egy, with the threshold being out of range. In order to measure
how close actual behavior was to a perfect threshold strategy,
we count the minimum number of decisions that have to be
turned around to generate a perfect threshold. For example, a
strategy with several switches between options, such as
BBBABABBBBAAAAAAAAAAA requires dropping two A-choices
(underlined) to generate a perfect threshold. We define (almost
perfect) threshold strategies as strategies that require at most
two such drops while any strategy requiring at least three or
more drops is classified as non-threshold strategy.

Threshold strategies and levels of strategic reasoning in games. The
cognitive hierarchy theory defines heterogeneity of players by
their strategic sophistication, measured by levels of reasoning:
level-0 players play randomly, level-1 players best respond to
random play and more sophisticated players (level-2) best
respond to a distribution of lower level players (Camerer et al.,
2004). Depending on the game, the level of strategic sophistica-
tion may lead to threshold or non-threshold strategies. In stag-
hunt games, higher levels of reasoning do not change one’s
decision, nor the number of switching points one should
exhibit. For instance, a level-1 player should best respond to the
chance behavior of level-0 players and should thus exhibit a
perfect threshold at some sure payoff value; a level-2 player
(who best responds to a combination of level-0 and level-1 play-
ers) should then ‘match’ the behavior of the level-1 player; and
so forth, for higher levels of reasoning. Consequently, in our
stag-hunt games, an increased number of switching points (i.e.
non-threshold strategy) is unlikely to be a signature of
increased reasoning, but rather indicate inconsistent decisions.
In entry games, however, the best response to a mixture of dif-
ferent levels may be a non-threshold strategy. Consider, for
example, a level-2 player who believes that 50% of subjects are
Level 0 and 50% are Level 1 so that an arbitrarily chosen subject
will enter with 75% for X<X*¼Bin(K�1, N�1, 0.5)�15. Take
N¼ 10, K¼ 7, then X*¼13.65. Thus, the player should enter for
X<Bin(K�1, N�1, 0.75)�15¼ 5.99 and not enter for larger X until
X*. For X>X*, the player expects that another subject enters
with 25% probability. Thus, the player should enter for
X*<X<Bin(K�1, N�1, 0.25)�15¼ 14.98, and for 14.98<X< 15,
should again not enter. Thus, in entry games, non-threshold
strategies can be taken as a sign of increased reasoning
(Camerer et al., 2004). Since each player profits from thinking
one level further than the others, and because the game has no
symmetric equilibrium in pure strategies, non-threshold strat-
egies in the entry games can be expected to yield higher payoffs
than any threshold strategy. Thus, higher levels of reasoning
(Level 2 or higher) should not affect behavior and performance
in stag-hunt games, but may lead to non-threshold strategies
and higher expected payoffs in entry games.

Computing expected payoffs

We computed the expected payoff for each subject in each trial.
If subjects chose A, the payoff was the sure payoff X [i.e. E Að Þ ¼ X];
if they chose B, the expected payoff was: E Bð Þ ¼ 15ðPÞ,

for the lotteries condition, where P 2 1
3 ;

1
2; ;

2
3

n o
; E Bð Þ ¼ 15

� 1� Bin K� 2; N� 1;
P

B choiceP
B choiceþ

P
A choice

; 1
� �

;

�
for the stag-hunt

games; and E Bð Þ ¼ 15�
�

Bin
�

K� 1; N� 1;
P

B choiceP
B choiceþ

P
A choice

; 1
�
;

for the entry games. The terms in parenthesis indicate the success
probability for an agent playing B, considering the observed rela-
tive frequency of B-choices for the group of participants. The best
response to the observed distribution and the cumulated expected
payoffs for each participant given his choice were computed.

fMRI method

fMRI data acquisition. A 4T Bruker MedSpec Biospin MR scanner
(CIMeC, Trento, Italy) and an eight-channel birdcage head coil
were used to acquire both high-resolution T1-weighted anatom-
ical MRI using a 3D MPRAGE with a resolution of 1 mm3 voxels
and T2*-weighted Echo planar imaging (EPI). The parameters of
the acquisition were the following: 34 slices, acquired in ascend-
ing interleaved order, the in-plane resolution was 3 mm3 voxels,
the repetition time 2 s and the echo time was 33 ms. For the
main experiment, each participant completed three runs, each
composed of 70 trials. An additional scan was performed in
between two different runs in order to determine the point-
spread function that was then used to correct the known distor-
tion in a high-field MR system.

Pre-processing. The pre-processing and statistical analysis of the
fMRI data was performed using SPM8 (Wellcome Trust Centre
for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/). The first five EPI volumes were discarded
from the analyses to allow for stabilization of the MR signal.
The remaining EPI images from all sessions were slice-time cor-
rected and aligned to the first volume of each session to correct
for head movement between scans. A mean image was created
using the realigned volumes. T1-weighted structural images
were first co-registered to the mean EPI image of each partici-
pant. Normalization parameters between the co-registered T1
and the standard MNI T1 template were then calculated and
applied to the anatomy and all EPI volumes. Data were then
smoothed using an 8 mm full-width-at-half-maximum isotropic
Gaussian kernel to accommodate inter-subject differences in
anatomy. Finally, intensity normalization and high-pass filter-
ing (128 s) were applied to the data. We did not include
movement-related regressors at the first level, because head
displacements were negligible. Indeed, we checked that each
subject did not move more than 3 mm in each fMRI run. To con-
trol for potential differences in head movement across condi-
tions and groups, we performed a one-way analysis of variance
on mean displacements of the head during fMRI, by taking as a
factor the group type. We did not find any difference in head
movement neither between RA and RL participants (P¼ 0.2974),
nor between threshold (Th) and non-threshold (nTh) partici-
pants (P¼ 0.5881).

fMRI data analysis. First-level analyses. The statistical analysis of
the pre-processed event-related fMRI signals was performed
using a GLM approach. Each trial consisted of one event aligned
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to the presentation of the two options. To dissociate the fMRI
activity from different trials, regressors were constructed by
convolving the canonical hemodynamic response with boxcar
functions of constant duration (2 s) aligned to the time of option
presentation (similar results are found when using boxcar func-
tions with variable duration, i.e. equal to participant’s reactions
times at each trial). At the single-participant level, the GLM
design matrix was composed of six regressors containing trials
associated to different combinations of three game types (lot-
teries, stag hunt and entry games) and two choices (uncertain
option, B-choice, or sure payoffs, A-choice).

Group-level analyses. The goal of the fMRI analyses was 2-fold. In
the first analysis (GLM 1), we investigated brain regions involved
in making risky decisions (i.e. B-choices) during lotteries and
games as a function of risk preference. In accordance with
behavioral data, we also investigated brain regions whose
neural activity during B-choices was similar for lotteries and
stag-hunt games, and whether these brain regions displayed
selectivity for subjective risk preference. In the second analysis
(GLM 2), we studied how deliberation (i.e. the degree of strategic
thinking) interacts with strategic uncertainty in stag-hunt and
entry games as a function of threshold strategies. As mentioned
in the previous section, the level of participants’ strategic
sophistication is reflected in threshold or non-threshold strat-
egies. Thus, we searched for brain regions displaying selectivity
for strategy type in the two games.

GLM 1. In the first model we searched for brain regions with
higher responses to B-choices in the entry games with respect
to lotteries and stag hunt, and displaying differences for sub-
jects being classified as RA vs RL (i.e. selectivity for risk prefer-
ence) in the lotteries and stag-hunt games only. To investigate
neural responses when participants chose the uncertain option
(B) in the three conditions or the sure payoffs (A) as a function
of risk preference (RA and RL participants, respectively), we cre-
ated a design matrix containing 12 regressors:

BOLD ¼ b0 þ b1 lottery �A� RA þ b2 lottery� A� RL
þ b3 lottery� B� RA þ b4 lottery � B� RL
þ b5 stag hunt� A� RA þ b6 stag hunt� A� RL
þ b7 stag hunt� B� RA þ b8 stag hunt� B� RL
þ b9 entry�A� RA þ b10 entry� A� RL þ b11 entry
� B� RA þ b12 entry� B� RL þ �

First, we searched for brain regions displaying an increase in
BOLD response during B-choices in the entry games with
respect to lotteries and stag-hunt games, we tested a specific
effect using a contrast vector kB-choice¼ [0, 0, �1, �1, 0, 0, �1, �1,
0, 0, 2, 2]. The constants in k are the coefficients of a function
that ‘contrasts’ the parameter estimates bi. The vector k is
referred to as the contrast vector. Then, to search for brain
regions selective for risk preference within the previously iden-
tified network, we masked (inclusively) the previous contrast
with a contrast vector testing for a significant increase in BOLD
activity for RA with respect to RL participants during B-choices
in lotteries and stag-hunt games: krisk-pref¼ [0, 0, 1, �1, 0, 0, 1, �1,
0, 0, 0, 0]. The resulting network displayed higher neural activity
for B-choices in the entry games, irrespective of risk preferen-
ces, and higher activity for RA types compared to RL types for B-
choices in lotteries and stag-hunt games. To control for similar
effects for A-choices, we ran an additional analysis with a con-
trast vector testing for a significant increase in BOLD activity for

RA with respect to RL participants during A-choices in the three
conditions (kA-choice-risk pref¼ [1, �1, 0, 0, 1, �1, 0, 0, 1, �1, 0, 0]).

GLM 2. In a second linear model, we studied how deliberation
interacts with strategic uncertainty in stag-hunt and entry
games. To do so, we investigated neural responses when partic-
ipants chose the uncertain option (B) or the sure payoffs (A)
in the three conditions as a function of threshold strategies
(see Measures of risk and strategic uncertainty: Measures of threshold
strategies). We thus created a design matrix containing 12 regressors:

BOLD ¼ b0 þ b1 lottery� A� Th þ b2 lottery �A� nTh
þ b3 lottery � B� Th þ b4 lottery� B� nTh
þ b5 stag hunt� A� Th þ b6 stag hunt�A� nTh
þ b7 stag hunt� B� Th þ b8 stag hunt� B� nTh
þ b9 entry�A� Th þ b10 entry�A� nTh þ b11 entry
� B� Th þ b12 entry� B� nTh þ �

where Th and nTh refer to participants using a threshold or a
non-threshold strategy, respectively. The goal of this second
model was to study differences among threshold and non-
threshold strategies in entry games in brain areas displaying a
significant increase for social vs individual context. We thus
created a contrast searching for a significant increase for games
with respect to lotteries kgames¼ [�2, �2, �2, �2, 1, 1, 1, 1, 1, 1, 1,
1] and we performed an inclusive mask with a contrast testing
for a significant increase for non-threshold vs threshold partici-
pants in the entry game kstrategy_entry¼ [0, 0, 0, 0, 0, 0, 0, 0, �1, 1,
�1, 1].

All fMRI statistics and P values arise from group random-
effects analyses. We considered as activated (after height
thresholding at Punc.< 0.001, whole brain analysis) all clusters
surviving PFWE-corr< 0.05 corrected for multiple comparisons
(family-wise error, FWE). Plots representing parameter esti-
mates (beta values) were realized by extracting BOLD data for
areas of interest. Areas of interest were functionally defined.
Parameter estimates from the fitted model were extracted and
averaged across all voxels in the cluster for each subject. These
analyses were performed with the MarsBaR 0.41 SPM toolbox
(http://marsbar.sourceforge.net/). Reported coordinates con-
form to the Montreal Neurological Institute (MNI) space.

Results
Behavioral results

Choice times differed between the three experimental condi-
tions, between entry games and the lottery (Wilcoxon signed-
rank test, z¼ 3.06, P¼ 0.002), between entry and stag-hunt
games (z¼ 2.67, P¼ 0.008) and between lottery and stag hunt
(z¼�2.35, P¼ 0.02). Reaction times (RT) in all three types of sit-
uations were shorter for safe (Option A) than uncertain (Option
B) choices. Over all conditions, A-choices had a mean RT of
2.57 s (standard error, SE¼ 0.17) whereas B-choices had a mean
RT of 3 s (SE¼ 0.16) (z¼�3.059, P¼ 0.002). There were no differ-
ences in RT for A-choices in the three conditions (Kruskal–
Wallis, chi-square with 2 d.f.¼ 0.0839, P¼ 0.66); while, RT for
B-choices significantly differed among conditions (Kruskal–
Wallis, chi-square with 2 d.f.¼ 6.61, P¼ 0.037); with longer RT for
B-choices in the entry games compared to lotteries and stag-
hunt games (Wilcoxon signed-rank test, B-choices lottery vs
stag hunt: z¼�1.96, P¼ 0.05; B-choices lottery vs entry:
z¼�3.59, P¼ 0.002; B-choices stag hunt vs entry: z¼�2.98,
P¼ 0.0029).
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Figure 2 shows the relative frequencies of B-choices sepa-
rately for lotteries, stag-hunt and entry games conditional on
the (21 different) sure payoffs. The frequency of B-choices
decreased with increasing sure payoffs keeping other parame-
ters constant [see Figure 2: all logit functions are decreasing;
regression analysis in Table 1 shows that the coefficient of the
values of the sure payoffs (X) is negative, P< 0.001] (see Materials
and methods: Regression analyses). Similar pattern of behavior is
found for N¼ 2 conditions (see Supplementary Material and
Supplementary Figure S1). Furthermore, in lottery conditions,
the frequencies of B-choices increased with increasing probabil-
ity (P) of winning e15 (the frequency curves or logit functions
shift to the right with higher P). Similarly, in stag-hunt games, a
rising threshold for the number of B-players required for suc-
cess (K¼ 4 vs 7 vs 10) reduced the number of B-choices (the
curves shift to the left). While in entry games, as expected, the
curves shifted to the right when more players were allowed to
enter (K¼ 4 vs 7) (Table 1).

Thus, in all conditions, a higher sure payoff reduced the pro-
portion of B-choices, and the easier it seemed to obtain the high
payoff (keeping the sure payoff constant), the more likely B was
chosen.

The parametric modulation of sure payoffs for Option A for
any given Option B allows the estimation of certainty equiva-
lents for the respective uncertain payoff associated with choos-
ing B, and therefore the quantification of risk preferences. The
level of strategic reasoning was also assessed through the anal-
ysis of threshold vs non-threshold strategies (see Materials and
methods).

Risk preferences

In order to characterize risk preferences, we estimated a cer-
tainty equivalent X* for each subject for a lottery with a winning
probability of 0.5. Similar certainty equivalents were estimated
for the stag-hunt and the entry games (see Materials and meth-
ods: Estimating risk preference by means of certainty equivalents in

lotteries and games). Higher certainty equivalents for lotteries are
associated with higher degrees of risk aversion. Notably, in
stag-hunt games RA subjects were more likely to choose the
sure payoff (Option A) in comparison to RL subjects (Kruskal–
Wallis, chi-square with 1 d.f.¼ 13.095, P¼ 0.0003). We found a
high correlation between certainty equivalents for the lottery
and the stag-hunt games (X*-lottery and X*-stag hunt: Pearson
correlation r¼ 0.69, P¼ 0.0019, Bonferroni-adjusted significance
level). This did not hold for entry games, where certainty equiv-
alents had no significant correlation to certainty equivalents of
either the lottery (X*-lottery and X*-entry: r¼ 0.27, P¼ 0.33) or the
stag-hunt games (X*-stag hunt and X*-entry: r¼ 0.22, P¼ 0.41).
Moreover, we did not find any behavioral differences between RA
and RL subjects in the entry games (i.e. both types of participants
chose the same proportion of A-choices in the entry games,
Kruskal–Wallis, chi-square with 1 d.f.¼ 0.4, P¼ 0.53).

Levels of strategic reasoning

Ideally, when a participant chooses a threshold strategy, he/she
selects B if the payoff for A is low, and A if its payoff is high with
at most one switching point, indicating the certainty equiva-
lence for the uncertain Option B. In lotteries, we found that 50%
of strategies are such perfect threshold strategies (see Materials
and methods: Measures of threshold strategies). In 28% of lottery
choices, there was only one decision deviating from a perfect
threshold, in 15% there were two deviations. We counted the
minimum number of decisions that had to be dropped for get-
ting a perfect threshold strategy within each block of 21 deci-
sions that could be ordered. We called strategies with one or
two of these drops ‘almost perfect threshold strategies’. The
remaining 7% were classified as non-threshold strategies as
they required more than two drops (see Table 2 for the entire
classification).

We used the same definition of threshold strategies for stra-
tegic games. We found no significant difference in the frequen-
cies of threshold strategies between lotteries and stag-hunt

Fig. 2. Behavioral results. Relative frequency of B-choices in lotteries, stag-hunt and entry games, depending on (21 different) sure payoffs (x-axis); probabilities [P¼1/3

(red), 1/2 (green), 2/3 (blue), in lotteries]; number of players (K) 4 (blue), 7 (green), 10 (red), in stag-hunt games that at least have to choose B to win; 4 (red) or 7 (green) in

entry games that at most can choose B to win. The colored solid lines indicate logit estimations. The vertical black lines indicate certainty equivalences.
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games [Pearson chi-square (4 d.f.)¼ 6.09, Fisher exact P¼ 0.21],
while there were less threshold strategies in the entry games
than both in lotteries [Pearson chi-square (4 d.f.)¼ 24.14, Fisher
exact P< 0.001; see Table 2] and stag-hunt games [Pearson chi-
square (4 d.f.)¼ 13.97, Fisher exact P¼ 0.007]. As described in
Materials and methods section, higher levels of strategic reason-
ing in entry games can lead to non-threshold strategies.
Moreover, non-threshold strategy participants (n¼ 8, partici-
pants with more than two drops) in the entry games showed
higher expected payoffs compared to threshold strategy players
[n¼10 participants with at most two drops; two-sample
Wilcoxon rank-sum (Mann–Whitney) test, z¼ 2.71, P¼ 0.0067].
Thus, the observed high proportion of non-threshold strategies
in the entry games is consistent with higher levels of strategic
thinking. Notably, we did not find any significant correlation
across subjects between certainty equivalents for the lotteries
(i.e. risk preferences) and frequencies of threshold strategies
(i.e. level of strategic sophistication) in the entry games
(Pearson correlation r¼�0.21, P¼ 0.39; see also additional anal-
ysis in the Supplementary Material).

To conclude the behavioral section, we found similar behav-
ioral patterns in lotteries and stag-hunt games, suggesting that
the strategic situation is translated into a problem of risk by a
majority of players measured through correlated certainty
equivalences and (almost) perfect threshold strategies. In entry
games, behavior was characterized by lower frequencies of B-
choices and non-threshold strategies, thus reflecting higher
strategic uncertainty and higher levels of strategic reasoning.

fMRI results

Common neural circuit involved in making risky decisions in lotteries
and games. Behavioral results showed a general reduction of B-
choices in entry games and a lack of correlation with lottery
choices. Thus, we searched for brain regions displaying more
activity during B-choices (i.e. reflecting higher riskiness in
choice), independent of risk preferences, in entry games com-
pared to lotteries and stag hunt. The behavioral data suggested
also that strategic uncertainty in stag-hunt games can be
reduced to situations of individual risky choices. To test this
hypothesis at the neural level, we searched for brain regions
displaying similar activity for B-choices during lotteries and
stag-hunt games, and a stronger activation for RA than RL par-
ticipants (with risk preferences measured through lottery
choices; see fMRI method: GLM 1).

The statistical analyses revealed a brain network involving
the bilateral anterior insula (aINS; peak MNI coordinates: right
anterior insula: x¼ 36, y¼ 21, z¼�15, Z-value¼ 4.37; and left
anterior insula: x¼�30, y¼ 18, z¼�9, Z-value¼ 4.17; Figure 3),
the dorsomedial prefrontal cortex (dmPFC; peak MNI coordi-
nates x¼ 3, y¼ 24, z¼ 42, Z-value¼ 4.66; Figure 3) and the parietal
cortex (angular gyrus; peak MNI coordinates x¼ 54, y¼ -54,
z¼ 33, Z-value¼ 4.54). Consistent with behavioral responses,
brain regions of this network showed: (i) higher activity during
B-choices in the entry games compared to lotteries and stag-
hunt games; (ii) same level of activity for RA and RL in the entry
games and (iii) identical pattern of activity in the stag hunt and
lotteries, with higher activity for RA compared to RL (i.e. selec-
tivity for risk preferences) during B-choices for these two condi-
tions (see Figure 3). Notably, we did not find any differential
activity (with the exception of the occipital cortex, peak MNI
coordinates x¼ 24, y¼�78, z¼ 21, Z-value¼ 4.44) between RA
and RL participants for A-choices in the three conditions
(results from an additional analysis using GLM 1 with a contrast
vector testing for a significant increase in BOLD activity for RA
with respect to RL participants during A-choices; see fMRI
method).

Neural circuit associated with degrees of strategic thinking in games.
In the second analysis (see fMRI method: GLM 2), we studied how
the degree of strategic thinking, reflected in threshold (Th) or
non-threshold (nTh) strategies, interacts with strategic uncer-
tainty in stag-hunt and entry games. We searched for brain
regions displaying selectivity for strategy type (nTh vs Th)

Table 2. Proportion of threshold strategies for each condition

No. of drops Lottery Stag hunt Entry

0 0.5 0.319 0.148
1 0.278 0.278 0.296
2 0.148 0.236 0.167
3 0.056 0.097 0.093
>4 0.019 0.069 0.296

Notes: The ‘drops’ represent the minimum number of decisions that had to be

changed for getting a perfect threshold strategy within each block of 21 deci-

sions that could be ordered for increasing sure payoffs. There is a significant dif-

ference in the frequencies of almost threshold strategies (i.e. at most two drops,

highlighted in grey) among conditions [Pearson chi-square (8 d.f.)¼32.39,

P<0.001].

Fig. 3. Neural circuit involved in making risky decisions in lotteries and games. (A) Activity in the anterior insula (aINS; MNI: 36, 21, �15 and �30, 18, �9) and dorsome-

dial prefrontal cortex (dmPFC; MNI: 3, 24, 42) correlates with riskiness of choice in lotteries and games (GLM 1). The bar graphs (B and C) indicate the brain activity (beta

values 6SEM) related with B-choices (in each condition) of RA vs RL participants. The graph B plots the average activity of the left and right anterior insulae.
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during choices in entry games. Interestingly, the dorsolateral
prefrontal cortex (dlPFC; peak MNI coordinates x¼ 39, y¼ 18,
z¼ 39, Z-value¼ 6.25) and the dorsomedial prefrontal cortex
(dmPFC; peak MNI coordinates x¼�6, y¼ 30, z¼ 42, Z-val-
ue¼ 5.22), in addition to the parietal cortex (angular gyrus; peak
MNI coordinates x¼�42, y¼�69, z¼ 45, Z-value¼ 5.19) showed
an increase for games with respect to lotteries and a selectivity
for the strategy type in the entry game (Figure 4). Notably the
region of interest (ROI) in the dmPFC shown in Figure 3 has a
peak activity at MNI coordinates (x¼ 3, y¼ 24, z¼ 42) and con-
tains 377 voxels, whereas the ROI in the dmPFC in Figure 4 has
peak activity at MNI coordinates (x¼�6, y¼ 30, z¼ 42) and con-
tains 112 voxels. The distance between peaks is approximately
11 mm. The two ROIs overlap by 88 voxels. This represents
approximately 23% of the first ROI and 79% for the second.
Thus, the second ROI is largely included into the first one even
though more than 20% of the voxels are separated. Therefore,
the two ROIs do not completely overlap, but share a large por-
tion of cortical surface (see Supplementary Figure S2). We thus
found (i) enhanced activity of the dlPFC and the dmPFC for non-
threshold compared to threshold strategy players in the entry
game; (ii) lower level of activity in those regions for non-thresh-
old strategy players in the stag-hunt games compared to the
entry games (i.e. reflecting lower level of strategic reasoning in
the stag hunt) and (iii) no differential activity for threshold play-
ers between the entry and stag-hunt games.

Discussion

We measured strategic uncertainty by eliciting certainty equiv-
alents in two different games, the stag-hunt game and the entry
game, analogue to measuring risk attitudes in lotteries, and we
related observed behavior to neural activity measured through
fMRI. We used lottery choices to estimate individual degrees of
risk aversion and we used the frequency of threshold strategies
as a measure distinguishing low from higher levels of reasoning
in games.

A neural and behavioral measure of strategic
uncertainty

We found similar behavioral patterns emerging from choices
during lotteries and the stag-hunt games, while choices in the

entry games reflected no correlation with risk attitudes.
Similarly, the fMRI results demonstrated that a common brain
network composed of the anterior insula, dorsomedial prefron-
tal cortex and parietal cortex (commonly associated with indi-
vidual risk processing, see Knutson et al., 2001; Preuschoff et al.,
2006, 2008; Christopoulos et al., 2009; Mohr et al., 2010) is acti-
vated when choosing the uncertain option in individual and
social contexts. Within this network, the role of the anterior
insula is consistent with the integration of the representation/
resolution of uncertainty and individual preferences towards
risk (see Singer et al., 2009). Our results suggest an extension of
the role of the anterior insula in computing the riskiness of the
choice option (risk prediction) to the social domain, when
individuals try to reduce the complexity underlying social
interaction to individual risky choices (as we observed in
the stag-hunt game). The anterior insula thus reflects risk
preferences and guides choice selection both in individual and
social settings.

A common neural network for the resolution of social and
environmental uncertainty was also found in the work of
Behrens et al. (2008). In their study, they found two adjacent
areas of the anterior cingulate cortex for action–outcome asso-
ciative learning from personal experience (anterior cingulate
sulcus) and social information (vicarious learning, reflected in
the activity of the anterior cingulate gyrus).

In our study, the activity in this network was similar for
B-choices in lotteries and stag-hunt games, while it was higher
for B-choices in entry games, thus evidencing a neural correlate
of the riskiness of payoffs and indicating higher strategic uncer-
tainty. In addition, participants who were more reluctant to
engage in risky choices (i.e. RA subjects) displayed stronger
activity in the dorsomedial prefrontal cortex, and anterior
insula with respect to RL players when choosing B in lotteries
and stag-hunt games.

In entry games, we did not find dissociations at a neural
level related to risk types. Overall, neural evidence suggests that
strategic uncertainty in stag-hunt games reduces to risk and
leads to behavioral patterns consistent with assigning subjec-
tive probabilities to the behavior of other players. In entry
games, however, RA and RL participants had the same level of
activity in this network when selecting the B-choice. This
matches the lack of correlation between risk types and entry

Fig. 4. Neural circuit associated with degrees of strategic thinking in games. (A) Activity in the dorsolateral prefrontal cortex (dlPFC; MNI: 39, 18, 39) and dorsomedial

prefrontal cortex (dmPFC; MNI: �6, 30, 42) from GLM 2 for the contrast non-threshold (nTh; i.e. high-level strategic thinking) vs threshold strategy players (Th; i.e. low-

level strategic thinking) in the entry games. The bar graphs (B and C) indicate the brain activity (beta values 6SEM) related with choices (average activity of A-choice

and B-choice in each condition) of non-threshold (nTh) vs threshold strategy (Th) participants. The categorization of threshold and non-threshold players was based

on choice data from the entry games.
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behavior. Thus, our results suggest that strategic uncertainty in
entry games cannot be resolved by the neural machinery proc-
essing risk, and requires additional neural computations, most
probably based on (strategic) deliberation.

Interplay between degrees of strategic thinking and
strategic uncertainty

Whereas risk is typically studied using lotteries, strategic uncer-
tainty is present in games with multiple equilibria, when even
common knowledge of rationality and deductive reasoning do
not provide a unique equilibrium (Van Huyck et al., 1990). The
coordination games, used in our study, are paradigmatic exam-
ples of games with multiple equilibria and strategic uncertainty
(Ochs, 1995; Camerer 2003; Heinemann et al., 2009). The two
games differ in their strategic nature. Stag-hunt games are
games of strategic complements, also called games with posi-
tive feedback (Woodford, 2003); for example an investment
pays off if and only if a sufficient number of agents invest in
the same industry, such that there are two Nash equilibria: ‘all
invest’ (payoff-dominant equilibrium) and ‘nobody invests’
(risk-dominant equilibrium). Entry games are games of strate-
gic substitutes, also called games with negative feedback; for
example if too many agents invest in a new market, all get
nothing, which leads to a mixed, or population, equilibrium
where a certain number of players invest and the others
stay out.

The two games differ in deliberation (i.e. degrees of strategic
thinking) demands. In the stag-hunt game, a single and intui-
tive guess has to be made: ‘how many agents will choose to
invest (i.e. B-choice)’? A typical line of reasoning in stag-hunt
games is: ‘If I think that everybody invests then I should invest,
and if I think that everybody thinks like me then I should still
invest’; thus, in this game low level of strategic reasoning who
have a high (low)-coordination belief and choose to invest (not
to invest) and all higher-level players do the same choice. So
low and high levels of reasoning correspond; put differently,
further deliberation does not produce a different choice. This is
an ideal condition where beliefs on others’ behavior can be
based on subjective probabilities assessment.

In entry games, however, players may alternate between
enter (i.e. B-choice) and no-enter (i.e. A-choice), etc.: ‘If I think
that everybody enters then I should not enter, but if I think that
everybody thinks the same then I should enter, etc.’ Thus, more
deliberation in terms of iterated reasoning may affect behavior
and generate, as observed in our study, higher expected payoffs
in entry games. This suggests that the stag-hunt games require
low degrees of strategic reasoning, while the entry games
encourage higher degrees of (recursive) strategic reasoning
(Camerer, 2003).

We found neural evidence supporting these hypotheses
showing stronger activity during choices in entry games with
respect to lotteries and stag-hunt games, for non-threshold (i.e.
high level of strategic reasoning) compared to threshold (i.e. low
level of reasoning) strategy players in the dorsolateral prefrontal
cortex and the dorsomedial prefrontal cortex—areas associated
with high level of strategic reasoning (Coricelli and Nagel, 2009;
Bhatt et al., 2010; Yoshida et al., 2010). Overall behavioral pat-
terns and brain activity in the entry games are associated with
higher uncertainty and higher reasoning about beliefs of
others’ beliefs and behavior, as reflected in dlPFC and dmPFC
activity. This pattern of brain activity reflects the interaction
between strategic thinking and uncertainty, thus more deliber-
ation correlates with higher strategic uncertainty and with

more sophisticated behavior in games. These findings suggest
how the interplay between the neural substrates associated
with risk and strategic thinking modulates choices in social
settings.

More general, these results are consistent with the proposed
key role of the dorsomedial and dorsolateral prefrontal cortex in
performance monitoring and cognitive control in complex cog-
nitive processes (Koechlin and Summerfield, 2007; Shenhav
et al., 2013). As described by Rushworth et al. (2011) a reward-
related activity is found in the anterior cingulate sulcus (which
corresponds to the more dorsal portion of our dorsomedial pre-
frontal cortex) in choice under uncertainty. A recent study
(Kolling et al., 2014) shows the role of the dorsal anterior cingu-
late cortex (MNI coordinates, x¼�2, y¼ 28, z¼ 36) in tracking
the value of alternative course of actions in a foraging task
involving risk. Activity of this area is associated with the rela-
tive value of riskier and non-default choices. Consistent with
the findings of Kolling et al. (2014) we found activity in the
dorsomedial prefrontal cortex associated with the riskier choice
(B-choice made by RA participants) both in lotteries and stag-
hunt game (MNI coordinates x¼ 3, y¼ 24, z¼ 42, see Figure 3),
and with increasing strategic uncertainty (reflected in non-
threshold strategies) in the entry game (MNI coordinates x¼�6,
y¼ 30, z¼ 42, see Figure 4).

Thus, the comparison between entry games and stag-hunt
games was crucial in our study to investigate the relationship
between higher levels of reasoning and strategic uncertainty.
This important feature was not present in a recent study by
Ekins et al. (2013), where they compared only stag-hunt games
and lottery choices and therefore could not identify brain
regions related to strategic reasoning.

Notably, we found both areas commonly associated with
‘intuition’ (Kuo et al., 2009), such as the insula, and areas associ-
ated with ‘deliberation’ (MacDonald et al., 2000), such as the dor-
solateral prefrontal cortex, in situations that require more
deliberation and strategic uncertainty (i.e. the entry games). Our
findings thus provide evidence in favor of an integrative view vs
a dual system theory of decision making.

As a final remark, the B-choices in the stag-hunt game could
be interpreted as altruistic behavior, because a B-choice raises
expected payoffs for others, and participants might do so, even
if the action is very risky. Similarly, subjects might abstain from
entering in the entry game to give others a higher chance of
winning. Thus, other-regarding preferences (Ruff and Fehr,
2014) can justify a higher number of B-choices in stag hunt and
a lower number of B-choices in the entry game. Contrary to this
hypothesis, we found no correlation between behavior (propor-
tion of B-choices) in stag-hunt and entry games (Pearson corre-
lation r¼ 0.0771, P¼ 0.76). Therefore, we have no behavioral
support for a brain analysis on the role of other-regarding
preferences.

Conclusions

Our study provides evidence about the notion that the brain
network mediating risk during lotteries is also engaged in proc-
essing strategic uncertainty. Moreover, we showed how risk
attitudes modulate the activity in relevant parts of this network
both in lotteries (as previously shown by Rudorf et al., 2012) and
in the stag-hunt games. We thus showed for the first time how
individual risk attitudes are reflected in the neural correlates of
social/strategic uncertainty, and consequently how they affect
behavior in social interaction. We conclude that games of stra-
tegic substitutes (entry games) create more strategic
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uncertainty as predicted by the nature of the theoretical equili-
brium, which also involves higher order beliefs (i.e. beliefs about
beliefs); whereas the strategic uncertainty of games of strate-
gic complements (stag hunt) can be ‘reduced’ to standard risk.
Our study thus supports a cognitive hierarchy theory of brain
and behavior, according to which different levels of strategic
thinking modulate the uncertainty underlying social
interactions.
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