Djamal Habet
email: djamal.habet@lis-lab.fr

Cyril Terrioux
email: cyril.terrioux@lis-lab.fr

Conflict History Based Search for Constraint Satisfaction Problem *

Keywords: CSP, Branching Heuristic, Conflict Based Search, Search History, Exponential Recency Weighted Average

Branching heuristic is an important module in algorithms dedicated to solve Constraint Satisfaction Problems (CSP). It impacts the efficiency of exploring the search space and exploiting the problem structure. In this paper, we propose Conflict-History Search (CHS), a dynamic and adaptive branching heuristic for CSP solving. It is based on the search failures and considers the temporality of these failures throughout the resolution process.

The exponential recency weighted average is used to estimate the evolution of the hardness of constraints throughout the search. The experimental evaluation on XCSP3 instances shows that integrating CHS to solvers based on MAC obtains competitive results and can improve those obtained by other heuristics of the state of the art, such as dom/wdeg and ABS.

Introduction

The Constraint Satisfaction Problem (CSP) is a powerful framework to model and efficiently solve problems that occur in various fields, both academic and industrial [START_REF] Rossi | Handbook of Constraint Programming[END_REF]. A CSP instance is defined on a set of variables which must be assigned in their respective finite domains by satisfying a set of constraints which express restrictions between different assignments. A solution is an assignment of each variable which satisfies all constraints.

CSP solving, based on search tree algorithms, has made significant progress in recent years thanks to research on several aspects which receive considerable efforts such as global constraints, filtering techniques, learning and restarts. An important component in CSP solvers is the variable branching rule. Indeed, the corresponding heuristics define, statically or dynamically, the order in which the variables will be assigned and thus the way that the search space will be explored and the size of the search tree.

Many heuristics have been proposed (e.g. [START_REF] Bessière | Neighborhood-based variable ordering heuristics for the constraint satisfaction problem[END_REF][START_REF] Bessière | MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems[END_REF][START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF][START_REF] Brélaz | New Methods to Color Vertices of a Graph[END_REF][START_REF] Geelen | Dual viewpoint heuristics for binary constraint satisfaction problems[END_REF][START_REF] Golomb | Backtrack programming[END_REF][START_REF] Michel | Activity-based search for black-box constraint programming solvers[END_REF][START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF][START_REF] Hebrard | Explanation-based weighted degree[END_REF]) and aim to satisfy the famous first-fail principle [START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF] which advises "to succeed, try first where you are likely to fail". Nowadays, the most efficient heuristics are adaptive and dynamic [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF][START_REF] Geelen | Dual viewpoint heuristics for binary constraint satisfaction problems[END_REF][START_REF] Michel | Activity-based search for black-box constraint programming solvers[END_REF][START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF][START_REF] Hebrard | Explanation-based weighted degree[END_REF]. Indeed, the order of branchings is defined according to the collected information since the beginning of the search. For instance, some heuristics consider the effect of filtering when decisions and propagations are applied [START_REF] Michel | Activity-based search for black-box constraint programming solvers[END_REF][START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF]. Defined since 2004, the dom/wdeg heuristic remains one of the simplest, the most popular and efficient one. It is based on the hardness of constraints to reflect how often a constraint fails. It uses a weighting process to focus on the variables appearing in constraints with high weights which are assumed to be hard to satisfy [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF].

In this paper, we propose Conflict-History Search (CHS), a new dynamic and adaptive branching heuristic for CSP solving. It is based on the history of search failures which happen as soon as a domain of a variable is emptied after constraint propagations. The goal is to reward the scores of constraints that have recently been involved in conflicts and therefore to favor the variables appearing in these constraints.

The scores of constraints are estimated on the basis of the exponential recency weighted average technique which comes from reinforcement learning [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. It was also recently used in defining powerful branching heuristics for solving the satisfiability problem (SAT) [START_REF] Hui Liang | Exponential Recency Weighted Average Branching Heuristic for SAT Solvers[END_REF][START_REF] Hui Liang | Learning Rate Based Branching Heuristic for SAT Solvers[END_REF]. We have integrated CHS in solvers based on MAC (Maintaining Arc Consistency) [START_REF] Sabin | Contradicting Conventional Wisdom in Constraint Satisfaction[END_REF] and BTD (Backtracking with Tree Decomposition) [START_REF] Jégou | Hybrid backtracking bounded by tree-decomposition of constraint networks[END_REF]. The empirical evaluation on XCSP3 instances (XCSP3, for XML-CSP version 3, is an XML-based format to represent instances of combinatorial constrained problems) shows that CHS is competitive and brings improvements to the heuristics of the state of the art.

The paper is organized as follows. Section 2 includes some necessary definitions and notations. Section 3 describes related work on branching heuristics for CSP and SAT. Section 4 presents and details our contribution which is evaluated experimentally in Section 5. Finally, we conclude and give future work.

Preliminaries

We give some definitions including CSP and Exponential Recency Weighted Average (ERWA).

Constraint Satisfaction Problem

An instance of a Constraint Satisfaction Problem (CSP) is given by a triple (X, D, C), such that:

• X = {x1, • • • , xn} is a set of n variables,
• D = {D1, ..., Dn} is a set of finite domains, and

• C = {c1, • • • , ce} is a set of e constraints.
Each constraint ci is defined by S(ci) and R(ci), where S(ci

) = {xi 1 , • • • , xi k } ⊆ X defines the scope of ci and R(ci) ⊆ Di 1 × • • • × Di k is its compatibility relation.
The constraint satisfaction problem asks for an assignment of a value from Di to each variable xi of X that satisfies each constraint in C. Checking whether a CSP instance has a solution (i.e. a consistent assignment of X) is NP-complete.

Exponential Recency Weighted Average

Given a time series of m numbers y = (y1, y2, • • • , ym), the simple average of y is m i=1 1 m yi where each yi has the same weight 1 m . However, recent data may be more pertinent than the older ones to characterize the current situation. The Exponential Recency Weighted Average (ERWA) [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] takes into account such considerations by giving to the recent data higher weights than the older ones. In fact, the exponential moving average ȳm is computed by: ȳm = m i=1 α.(1 -α) m-i .yi, where 0 < α < 1 is a step-size parameter which controls the relative weights between recent and past data. The moving average can also be calculated incrementally by the formula: ȳm+1 = (1 -α).ȳm + α.ym+1.

ERWA was used to solve the bandit problem to estimate the expected reward of different actions in non-stationary environments [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. In bandit problems, there is a set of actions and the agent must select the action to play in order to maximize its long term expected reward.

Related Work

We present the most efficient branching heuristics for CSP and SAT. The recalled heuristics share the same behavior. Indeed, the variables and/or constraints are weighted dynamically throughout the search by considering the collected information since the beginning of the search. Also, some heuristics smooth (or decay) these weights as it will be explained further.

Impact-Based Search (IBS)

This heuristic selects the variable which leads to the largest search space reduction [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF]. This impact on the search space size is approximated as the reduction of the product of the variable domain sizes. Formally, the impact of assigning the variable xi to the value vi ∈ Di is defined by : I(xi = vi) = 1 -P af ter P bef ore P af ter and P bef ore are respectively the products of the domain cardinalities after and before branching on xi = vi and applying constraint propagations.

Conflict-Driven Heuristic

A popular branching heuristic for CSP solving is dom/wdeg [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF]. It guides the search towards the variables appearing in the constraints which seem to be hard to satisfy. For each constraint cj, the dom/wdeg heuristic maintains a weight w(cj) (initially set to 1) counting the number of times that cj has led to a failure (i.e. the domain of a variable xi in S(cj) is emptied during propagation from cj). The weighted degree of a variable xi is defined as:

wdeg(xi) = c j ∈C | x i ∈S(c j)∧|U vars(c j)|>1 w(cj)
with U vars(cj) the set of unassigned variables in S(cj). The dom/wdeg heuristic selects the variable xi to branch on with the smallest ratio |Di|/wdeg(xi), such that Di is the current domain of xi (potentially, the size of Di may be reduced by the propagation process in the current step of the search). The constraint weights are not smoothed in dom/wdeg. Variants of dom/wdeg were introduced (for example, see [START_REF] Hebrard | Explanation-based weighted degree[END_REF]).

Activity-Based Heuristic (ABS)

This heuristic is motivated by the prominent role of filtering techniques in CSP solving [START_REF] Michel | Activity-based search for black-box constraint programming solvers[END_REF]. It exploits this filtering information and maintains measures of how often the variable domains are reduced during the search. Indeed, at each node of the search tree, constraint propagation may filter the domains of some variables after the decision has been made. Let X f be the set of such variables. Accordingly, the activities A(xi) (initially set to 0) of the variables xi ∈ X are updated as follows:

• A(xi) = A(xi) + 1 if xi ∈ X f and • A(xi) = γ × A(xi) if xi ∈ X f .
γ is a decay parameter, such that 0 ≤ γ ≤ 1. The ABS heuristic selects the variable xi with the highest ratio A(xi)/|Di|.

Branching Heuristics for SAT

In the context of the satisfiability problem (SAT), modern solvers based on Conflict-Driven Clause Learning (CDCL) [START_REF] Eén | An Extensible SAT-solver[END_REF][START_REF] Marques | Grasp: A search algorithm for propositional satisfiability[END_REF][START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF] employ variable branching heuristics correlated to the ability of the variable to participate in producing learnt clauses when conflicts arise (a conflict is a clause falsification). The Variable State Independent Decaying Sum (VSIDS) heuristic [START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF] maintains an activity value for each Boolean variable. The activities are modified by two operations: the bump (increase the activity of variables appearing in the process of generating a new learnt clause when a conflict is analyzed) and the multiplicative decay of the activities (often applied at each conflict). VSIDS selects the variable with the highest activity to branch on.

Recently, a conflict history based branching heuristic (CHB) [START_REF] Hui Liang | Exponential Recency Weighted Average Branching Heuristic for SAT Solvers[END_REF], based on the exponential recency weighted average, was introduced. It rewards the activities to favor the variables that were recently assigned by decision or propagation. The rewards are higher if a conflict is discovered. The Learning Rate Branching (LRB) heuristic [START_REF] Hui Liang | Learning Rate Based Branching Heuristic for SAT Solvers[END_REF] extends CHB by exploiting locality and introducing the learning rate of the variables. Dedicated to constraint programming, Gecode solver implements CHB since version 5.1.0 released in April 2017 [START_REF] Schulte | Programming branchers[END_REF]. Indeed, in this version of Gecode, the variables are weighted in the same manner as in the SAT context following ERWA [START_REF] Hui Liang | Exponential Recency Weighted Average Branching Heuristic for SAT Solvers[END_REF][START_REF] Hui Liang | Learning Rate Based Branching Heuristic for SAT Solvers[END_REF].

As we will describe it in the next sections, the branching heuristic that we propose (CHS) uses ERWA to weight the constraints and not the variables. The constraint weights are then used in a next phase to calculate the variable scores which are used to select the branching variable.

Conflict-History Search for CSP

Inspired by the CHB heuristic for SAT, we define a new branching heuristic for CSP solving which we call Conflict-History Search (CHS). The central idea is to consider the history of constraint failures and favor the variables that often appear in recent failures.

So, the conflicts are dated and the constraints are weighted on the basis of the exponential recency weighted average. These weights are coupled to the variable domains to calculate the Conflict-History scores of the variables.

CHS Description

Formally, CHS maintains for each constraint cj a score q(cj) which is initialized to 0 at the beginning of the search. If cj leads to a failure during the search because the domain of a variable in S(cj) is emptied by propagation then q(cj) is updated by the formula below derived from ERWA:

q(cj) = (1 -α) × q(cj) + α × r(cj)
The parameter 0 < α < 1 is the step-size and r(cj) is the reward value. It defines the importance given to the old value of q at the expense of the reward r. The value of α decreases over time as it is applied in ERWA [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. Indeed, starting from its initial value α0, α decreases by 10 -6 at each constraint failure to a minimum of 0.06. Decreasing the α value amounts to giving more importance to the last value of q and considering that the values of q are more and more relevant as the search progresses.

The reward value r(cj) is based on how recently cj occurred in conflicts. The goal is to give a higher reward to constraints that fail regularly over short periods of time during the search space exploration. The reward value is calculated according to the formula:

r(cj) = 1 #Conf licts -Conf lict(cj) + 1
Initialized to 0, #Conf licts is the number of conflicts which have occurred since the beginning of the search. Also initialized to 0 for each constraint cj ∈ C, Conf lict(cj) stores the last #Conf licts value where cj led to a failure. Once r(ci) and q(ci) are updated, #Conf licts is incremented by 1.

At this stage, we are able to define the Conflict-History score of the variables xi ∈ X, which will be used in selecting the branching variable as follows:

chv(xi) = c j ∈C | x i ∈S(c j)∧|U vars(c j)|>1 q(cj)
|Di| CHS keeps the variable to branch on with the highest chv value. In this manner, CHS focuses branching on the variables with small size of domain while belonging to constraints which appear recently and repetitively in conflicts.

One can observe that at the beginning of the search, all the variables have the same score equal to 0. To avoid random selection of the branching variable, we reformulate the calculation of chv as given below, where δ is a positive real number close to 0.

chv(xi) = c j ∈C | x i ∈S(c j)∧|U vars(c j)|>1 (q(cj) + δ)
|Di| Thus, at the beginning of the search, the branching will be oriented according to the degree of the variables without having a negative influence on the ERWA-based calculation later in the search.

CHS and Restarts

Nowadays, restart techniques are important for the efficiency of solving algorithms (see for example [START_REF] Lecoutre | Nogood recording from restarts[END_REF]). Restarts may allow to reduce the impact of irrelevant choices done during search according to heuristics such as variable selection.

As it will be detailed in the next section, CHS is integrated into CSP solving algorithms which include restarts. In the corresponding implementations, the Conf lict(cj) value of each constraint cj is not reinitialized when a restart occurs. It is the same for q(cj) (however, a smoothing may be applied and will be explained later). Keeping this information unchanged reinforces learning from the search history.

Concerning the step-size α, which defines the importance given to the old value of q(cj) at the expense of the reward r(cj), CHS reinitializes the step-size value α to α0 at each restart. This may guide the search through different parts of the search space.

CHS and Smoothing

At each conflict and as in the dom/wdeg heuristic, CHS updates the chv score of one constraint at a time: the constraint cj which is used to wipe out the domain of a variable in S(cj). As long as they do not appear in new conflicts, some constraints can have their weights unchanged for several search steps. These constraints may have high scores while their importance does not seem high for the current part of the search. To avoid this situation, we propose to smooth the scores q(cj) of all the constraints cj ∈ C at each restart by the following formula: q(cj) = q(cj) × 0.995 #Conflicts-Conflict(c j)

Hence, the scores of constraints are decayed according to the date of their last appearances in conflicts. Decaying is also used in other heuristics such as ABS [START_REF] Michel | Activity-based search for black-box constraint programming solvers[END_REF] for CSP and VSIDS [START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF] for SAT. However, it is applied to the score of the variables and not that of the constraints (or clauses).

5 Experimental Evaluation

Experimental Protocol

We consider 10,785 instances from the XCSP3 repository1 , including notably structured instances and discarding fully random instances. This latter restriction is quite natural since adaptive heuristics aim to exploit the underlying structure of the instances to solve.

Regarding the solving step, we exploit MAC with restarts [START_REF] Lecoutre | Recording and Minimizing Nogoods from Restarts[END_REF] before assessing the impact of our approach on a structural solving method, namely BTD-MAC+RST+Merge [START_REF] Jégou | Towards a Dynamic Decomposition of CSPs with Separators of Bounded Size[END_REF]. MAC uses a geometric restart strategy based on the number of backtracks with an initial cutoff set to 100 and an increasing factor set to 1.1. In order to make the comparison fair, the lexicographic ordering is used for the choice of the next value to assign.

We have written our own code to implement all the compared branching heuristics in this section (dom/wdeg, ABS, CHS, CHB, ABS and dom/wdeg), as well as the solvers that exploit them (MAC and BTD). All the algorithms are written in C++.

The experiments are performed on Dell PowerEdge M610 blade servers with Intel Xeon E5620 processors under Ubuntu 18.04. Each solving process is allocated a slot of 30 minutes and at most 12 GB of memory per instance. In the following tables, #solv denotes the number of solved instances by a given solver and time is the cumulative runtime.

Impact of CHS Settings

In this part, we assess the sensitivity of CHS with respect to the chosen values for α or δ. First, we fix δ to 10 -4 (to start the search by considering the variable degrees then quickly exploit ERWA-based computation) and vary the value of α0 between 0.1 and 0.9 with a step of 0.1. Figure 1 by MAC depending on the value of α and the corresponding cumulative runtime. We also provide the results of the Virtual Best Solver (VBS) which counts the number of the instances solved (and the cumulative running time) at least one time when varying the value of α.

We observe that the value α0 = 0.4 allows MAC to solve more instances (9,525 solved instances with a cumulative solving time of 493 hours) than the other considered values. The worst case is α0 = 0.7 with 9,515 solved instances in 496 hours. This shows the robustness of CHS w.r.t. the α parameter.

Regarding the Virtual Best Solver (VBS), we note that it can solve 64 additional instances than MAC+CHS when α0 = 0.4. Among these instances, some of them seem to be hard. Indeed, often, only one of the checked values of α allows MAC to solve them and the required runtime generally exceeds several minutes. Therefore, a finer adjustment of the value of α0 or its adaptation to the treated instance would allow MAC+CHS to perform even better. Now, we set α0 to 0.4 and evaluate different values of δ. From Table 1, the observations are similar to those presented previously, showing the robustness of CHS regarding δ.

Also, it is interesting to highlight that MAC+CHS with δ = 0 solves 9,517 instances while it solves 9,525 instances if δ = 10 -4 . This illustrates the relevance of introducing δ in CHS while it allows to solve 8 more Finally, Table 2 gives the results of MAC+CHS (α0 = 0.4, δ = 10 -4) with smoothing (+s) or not (-s) the constraint scores and/or with resetting (+r) or not (-r) the value of α to 0.4 at each new restart. The observed behaviors clearly support the importance of smoothing and restarts for CHS. For example, MAC+CHS+s-r solves 16 less instances than MAC+CHS, while MAC+CHS-s+r solves 47 instances less.

CHS vs. Other Search Heuristics

Now, we compare CHS (the settings are : α0 = 0.4, δ = 10 -4) to other search strategies: dom/wdeg, ABS and CHB as implemented in Gecode. For ABS, we fix the decay parameter γ to 0.999 as in [START_REF] Michel | Activity-based search for black-box constraint programming solvers[END_REF]. For CHB, we use the value parameters as given in [START_REF] Schulte | Programming branchers[END_REF]. We add a variant dom/wdeg+s which is dom/wdeg but the weights of constraints are smoothed exactly as in CHS. 3, it is clear that MAC with CHS performs better than with the other heuristics. Indeed, it solves 24 instances more than MAC+dom/wdeg, 49 instances more than MAC+ABS and 67 instances more than MAC+CHB. Interestingly, whatever the value of α0, MAC with CHS remains better than all its competitors. Indeed, the worst case is when α0 = 0.7 where MAC+CHS solves 9,515 instances. Moreover, the results obtained by MAC+CHB show that the calculation of weights by ERWA on the constraints (as done in CHS) is more relevant than its calculation on the variables (as done in CHB). Furthermore, the smoothing phase introduced in dom/wdeg allows MAC+dom/wdeg+s to reduce slightly the computation time when compared to MAC+dom/wdeg, while solving one less instance. dom/wdeg and ABS are two powerful and popular branching heuristics. In particular, dom/wdeg is widely used in the literature and integrated in many solvers. A careful reading of the results of Table 3 shows that dom/wdeg solves 25 instances more than ABS. This remark is to highlight the improvement brought by our heuristic CHS. Indeed, it allows MAC to solve 24 additional instances compared to dom/wdeg. Finally, Table 4 provides the results of MAC variants on some instance families chosen from a representative panel of the used benchmark in order to show the different trends we observed. First, we note that no heuristic is always better than the others. However, if we sort the heuristics with respect to the number of solved instances per family, CHS is ranked at the first place for 88% of the 141 considered families, by performing better or similarly than the two other heuristics. This percentage exceeds respectively 93% and 99% if we consider the first two places or the first three places. Hence, CHS is clearly competitive. Also, one might think that dom/wdeg performs worse than ABS and CHB. This impression is explained by the fact that, when MAC+dom/wdeg is better on a given family, it solves only few additional instances. In contrast, when it is outperformed, this is done by several additional solved instances. Finally, if we compare the results on the instances labeled real-world in the XCSP3 repository, we observe that MAC with CHS solves more instances and performs faster, between 10% and 30%, than any other combination.

CHS and Tree-Decomposition

We now assess the behavior of CHS when the search is guided by a tree-decomposition. Studying this question is quite natural since CHS aims at exploiting the structure of the instance, but in a way different from what the tree-decomposition does. With this aim in view, we consider BTD-MAC+RST+Merge [START_REF] Jégou | Towards a Dynamic Decomposition of CSPs with Separators of Bounded Size[END_REF]. The parameters of BTD-MAC+RST+Merge are set like in [START_REF] Jégou | BTD and miniBTD[END_REF] except the variable heuristic which can be one of the two best heuristics considered previously, namely dom/wdeg or CHS.

Like for MAC, the solving is more efficient with CHS than with dom/wdeg. Indeed, BTD-MAC+RST+Merge with CHS solves 9,525 instances (in 485 h) against 9,495 instances (in 501 h) for dom/wdeg: 30 additional instances are solved. This observation shows that exploiting both CHS and tree-decomposition may be of interest and that these two strategies can be complementary.

Conclusion

We have proposed CHS, a new branching heuristic for CSP based on the search history and designed following techniques coming from reinforcement learning. The experimental results confirm the relevance of CHS which is competitive with the powerful heuristics dom/wdeg and ABS, when implemented in solvers based on MAC or tree-decomposition exploitation.

The experimental study suggests that the α parameter value could be refined. We will explore the possibility of defining its value depending on the instance to be solved. For example, we will look for probing techniques to fix the appropriate value of α. Furthermore, similarly to the ABS heuristic, we will also consider to include information provided by filtering operations in CHS. Finally, we will extend CHS to deal with constraint optimization problems.

Figure 1 :

 1 Figure 1: Number of instances solved by MAC+CHS depending on the initial value of α and cumulative runtime in hours for all the instances.

Table 1 :

 1 Impact of δ value on MAC+CHS regarding the number of solves instances and the cumulative runtime in

	hours		
	δ	#solv. time (h)
	0	9,517	498.17
	10 -5	9,520	494.07
	10 -4 9,525	493.41
	10 -3	9,524	493.91
	instances with this last setting.		

Table 2 :

 2 Number of instances solved by MAC with CHS with/without smoothing and reset of α and cumulative

	runtime in hours		
	Solver	#solv. time (h)
	MAC+CHS (+s+r) 9,525	493.41
	MAC+CHS+s-r	9,509	498.80
	MAC+CHS-s-r	9,482	514.73
	MAC+CHS-s+r	9,478	518.05

Table 3 :

 3 Number of instances solved by MAC with dom/wdeg, dom/wdeg + s, ABS, CHB and CHS and cumu-

	lative runtime in hours		
	Solver	#solv. time (h)
	MAC+CHS	9,525	493.41
	MAC+dom/wdeg	9,501	507.17
	MAC+dom/wdeg+s	9,500	505.13
	MAC+ABS	9,476	515.17
	MAC+CHB	9,458	525.38

¿From Table

Table 4 :

 4 Number of instances solved by MAC with dom/wdeg, ABS, CHB and CHS and cumulative runtime in seconds for some instance families.

		Family		dom/wdeg		ABS	CHB		CHS
	Origin	Name	#inst.	#solv.	time (s)	#solv.	time (s)	#solv.	time (s)	#solv.	time (s)
		AllInterval-m1-s1	32	25	15,406	32	9	32	9	32	9
		Blackhole-xcsp2-s04	10	10	5.51	10	4.82	10	5.15	10	5.46
		Dubois-m1-s1	30	10	38,249	16	28,639	10	38,111	11	37,234
		GracefulGraph-m1-s1	104	17	160,007	16	160,090	16	160,355	18	155,667
		Kakuro-sumdiff-hard	187	187	285	185	4,216	180	15,044	187	811
	Academic	Nonogram-table-s1	176	167	1,991	168	34.56	168	35.19	168	331.67
		PigeonsPlus-m1-s1	38	37	4,860	29	20,120	37	5,192	37	4,878
		Sat-xcsp2-bmc	24	24	1,816	24	518	20	51	24	4,708
		Subisomorphism-m1-LV	1,176	1,100	151,661	1,108	136,868	1,101	147,664	1,109	134,787
		SuperSolutions-Taillard-os05	30	23	14,102	19	20,036	26	11,125	21	16,386
		TravellingSalesman-xcsp2-s20a4	15	15	64.29	15	60.77	15	311.45	15	116.59
		OpenStacks	76	40	4,663	40	6,342	41	5,757	41	5,007
	Real-world	RenaultMod-m1-s1	50	50	1.70	50	0.61	50	0.99	50	0.52
		SocialGolfers-xcsp2-s1	12	4	14,576	4	16,300	5	14,030	6	11,404

http://www.xcsp.org/series

This work has been funded by the french Agence Nationale de la Recherche, reference ANR-16-C40-0028.