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Selective On/Off-Nitroxides as Radical Probes to Investigate Non-
radical Enzymatic Activity by Electron Paramagnetic Resonance

Indranil Duttagupta+,[a] Natacha Jugniot+,[b] G�rard Audran,*[a] Jean-Michel Franconi,[b]

Sylvain R. A. Marque,*[a, c] Philippe Massot,[b] Philippe Mellet,*[b, d] Elodie Parzy,[b]

Eric Thiaudi�re,[b] and Nicolas Vanthuyne[e]

Abstract: A nitroxide carrying a peptide specific to the

binding pocket of the serine proteases chymotrypsin and
cathepsin G is prepared. This peptide is attached as an
enol ester to the nitroxide. Upon enzymatic hydrolysis of
the peptide, the enol ester moiety is transformed into a

ketone moiety. This transformation affords a difference of
5G in phosphorus hyperfine coupling constant between

the electronic paramagnetic resonance (EPR) signals of

each nitroxide. This property is used to monitor the enzy-
matic activity of chymotrypsin and cathepsin G by EPR.

Michaelis constants were determined and match those re-
ported for conventional optical probes.

In normal tissues enzymatic proteolytic activities are tightly

regulated spatially and temporally. However, numerous diseas-
es such as pulmonary inflammatory diseases—asthma, cystic
fibrosis (CF), chronic obstructive pulmonary disorder (COPD;

e.g. , emphysema), acute respiratory distress syndrome and a-
1-antitrypsin deficiency—as well as cancers, arthritis and pan-

creatitis are concomitant to unusually persistent enzymatic ac-

tivities. COPD alone ranks as the fifth leading cause of mortali-

ty worldwide which affects an estimated 175 million people
and accounts for 3.2 million deaths in 2015.[1] Therefore, nonin-

vasive or slightly invasive diagnostic/monitoring techniques

are of the utmost interest for efficient management of pa-
tients. Molecular imaging of the proteolytic activity is a very

appealing approach and has been mainly applied using inter-
nally quenched fluorescent substrates. Despite suitable enzy-

matic constants[2] this method suffers from several drawbacks :
incomplete quenching of substrate fluorescence, limited tissue

penetration of light, difficult skull imaging or imaging in large

animals and three-dimensional images require reconstruction.
Due to superior true 3D coding and the used wavelengths in-

terfering weakly with tissues, magnetic resonance imaging
methods are the most attractive approach to circumvent the

limits of fluorescent techniques. Free radicals such as nitroxides
or trityl radicals are stable enough in physiological conditions
(in vitro and in vivo) to be detected by electronic paramagnet-

ic resonance (EPR).[3] Interestingly, EPR is a sensitive technique
for the detection of free radical, suitable in visible light-opaque

media and which reports only on radical species affording, in
general, a rather simple signal. Unfortunately, due to the very
fast relaxation of free electron, EPR imaging (EPRI) is at the
moment slow and insufficiently resolved.[4] On the other hand,

magnetic resonance imaging (MRI), which is one of the most
powerful methods that delivers exquisite anatomic detail,
cannot be applied due to its low sensitivity which limits its ap-
plicability in molecular imaging of enzymatic activity.[5] Never-
theless, an emerging double resonance experiment, Overhaus-

er-enhanced magnetic resonance imaging (OMRI), which trans-
fers a part of the higher magnetization of a free radical (nitro-

xide in this case) to the protons neighboring water molecules
(through the electron-proton Overhauser effect), affords a
brighter zone on the image and, in turn, the possibility to visu-

alize the site of enzymatic activity.[6] This technique requires
the use of a nitroxide providing an EPR signal sensitive to this

activity. Indeed, free organic radicals are currently used for oxi-
metry,[7, 8] redox status imaging,[9, 10] for pH measurement,[11–14]

and for water content measurement.[15] However, none of

these approaches can be employed to investigate nonradical
enzymatic activity either by EPR or OMRI. Drescher and col-

leagues have shown that the signal of a nitroxide might be
used to report on enzymatic activity using a very tedious ex-
perimental procedure.[16] Preliminary investigations in our
groups[17–19] indicated that nonradical enzymatic activity can be
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investigated both by EPR and OMRI using signal changes
based either on the linewidth broadening effect[17,18] or on the

shift[19] of hyperfine coupling constant of a nitroxide. Regard-
less its lack of selectivity, the approach based on shifting-nitro-

xides 1C/2C (Scheme 1) was very promising and encouraged us

to develop radical probes exhibiting high selectivity for en-
zymes. Here we report the synthesis of a nitroxide probe 3C
(Scheme 1) specific to chymotrypsin and cathepsin G. Its EPR

signal and sensitivity to enzyme catalysis are reported. In brief,
the reported peptide-linked nitroxide is highly selective to

these two enzymes and reports activities in nanomolar concen-
trations of enzymes, best among the array of available conven-

tional nonradical probes.
Since enzymes are known to be substrate specific, the pep-

tide-nitroxide 3C was designed based on a well-documented

substrate for chymotrypsin Suc-Ala-Ala-Pro-Phe.[20] The sub-
strates Suc-Ala-Ala-Pro-Phe-(S)-2C ((S)-3C) and Suc-Ala-Ala-Pro-

Phe-(R)-2C ((R)-3C), which are thought to be selective for the en-
zymatic activity of chymotrypsin and cathepsin G, were pre-

pared (see the Supporting Information). For this purpose, nitro-
xide 1C was prepared in eight steps from commercially avail-

able starting materials 1 (Scheme 2A). The first three steps

were performed as previously reported to afford 2.
Then, Kabachnik–Fields reaction using standard conditions

(NH3, HP(O)(OEt)2) afforded the amino-phosphonate 3 in 37%
yield. Consequently, the reaction was repeated under different

conditions (e.g. , Mg(ClO4)2, 100 8C, ammonium acetate which
also failed to improve the yield of the reaction.[21–25] A two-step

procedure (generation of imine followed by addition of diethyl
phosphite)[25] also failed to afford the amino-phosphonate 3 in
good yield. Finally, 10 mol% of FeCl3 was found to be an effi-

cient catalyst for this reaction providing the amino-phospho-
nate 3 in 87% yield.[26] Then, 3 was converted into 1C in five

steps as previously reported.[19] Enantiomers of 1C were separat-
ed by using a Chiralpak-IE column (1aC, tR=6.21 min, 1bC, tR=
7.64 min in 1:1 heptane/ethanol at 1 mLmin�1 flow rate).

In order to determine the absolute configuration of the
enantiomers of 1C, enantiomer 1aC (tR=6.21 min in 1:1 hep-

tane/ethanol) was converted into alkoxyamine 4a and 4b[27]

for which diastereoisomers were easily purified by silica gel

chromatography (Scheme 2B). The less polar ketone 4a was
reduced in the presence of NaBH4, and then esterified using

(1S,4R)-(�)-camphanic chloride[28] as the reference chiral center
affording 55:45 mixture of diastereoisomers 5a and 5b, re-
spectively (Scheme 2B and the Supporting Information). After
purification, crystals were grown for X-ray crystallography.[29]

The XRD structure displays R configuration for the chiral center
in nitroxide 1aC (Figure 1 and Supporting Information).

Attempts to prepare (R)-3C or (S)-3C using either a step-by-

step growth of the peptidic chain or the coupling between the

enolate of 1C and the beforehand-prepared activated tetrapep-
tide Fmoc-Ala-Ala-Pro-Phe-X failed to yield the aimed com-

pounds. Thus, nitroxide (R)-1C was treated[19] with excess of
LiHMDS at �78 8C and the resulting enolate was trapped with

the activated dipeptide Fmoc-l-Pro-l-Phe-O-Piv 6, prepared by
treating the commercially available dipeptide Fmoc-l-Pro-l-
Phe-OH with pivaloyl chloride,[30,31] to yield peptide (R)-4C
(82%). 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)[32] mediated
Fmoc deprotection of (R)-4C, followed by N,N’-dicyclohexylcar-
bodiimide (DCC) coupling with commercially available dipep-
tide, Fmoc-Ala-Ala-OH afforded the tetrapeptide nitroxide (R)-

5C (13% for two steps). Peptide nitroxide (R)-5C was then treat-
ed with DBU, and then by succinic anhydride in a one-pot pro-

cedure to yield substrate (R)-3C as a DBU salt (Scheme 2Ca).

The same procedure was applied to (S)-1C to afford (S)-3C (Sche-
me 2Cb).

EPR signal of substrates (R)-3C (or (S)-3C) display the expected
6-lines signal (top signal in Figure 2) due to the coupling of

odd electron with the nitrogen (IN=1) and phosphorous (IP=
1=2) atoms (few percent of hydrolyzed nitroxide 1C are also ob-

served). Nitrogen and phosphorus hyperfine coupling con-
stants aN (aN=15.5G) and aP (aP=38.4 G), respectively, are very
close to those reported for 2C[33] as well as the Land�’s factor g

(g=2.0057). Upon addition of chymotrypsin, a new pattern
arose (Figure 2) comprising signals of both (R)-3C and (R)-1C.
After a while, complete hydrolysis of (R)-3C was observed as
only the EPR signal[19] of 1C is recorded (bottom signal in

Figure 2).

The clear difference between substrate 3C and the hydro-
lyzed nitroxide 1C observed by EPR affords an easy quantifica-

tion of each species over time. Thus, the selectivity of (R)-3C
and (S)-3C was investigated with several serine proteases: chy-

motrypsin, trypsin, porcine pancreatic elastase (PPE), cathepsin
G and neutrophil elastase (NE). Initial velocity values show a

Scheme 1. Enzymatic activity on enol acetate 2C releasing 1C.
Figure 1. X-ray structures of 5a[29] and absolute stereochemistry of 1aC.



strong selectivity of the substrate (R)-3C for chymotrypsin and

cathepsin G (Figure 3). The rates of consumption of (R)-3C by
other proteases such as trypsin, PPE and HNE do not differ sig-
nificantly from its spontaneous hydrolysis (SD in Figure 3). In-

terestingly, at concentration as low as 2 nm, protease chymo-
trypsin and neutrophil protease cathepsin G exhibit a high rate

of hydrolysis at V0=24(�2) nm s�1. This selectivity is identical
to the one displayed by para-nitroanilide (pNA) substrates and

stems from the almost exclusive preference of these two en-

zymes for large aromatic amino-acids at the P1 position.
[34] Sim-

ilar selectivity is observed for (S)-3C.
For the determination of the Michaelis constants KM and kcat

with chymotrypsin, substrate to product conversion was moni-

tored using EPR spectroscopy by varying the concentration of
substrates 3C, at constant concentration of chymotrypsin (Fig-

ure 4a and b). Initial velocities V0 were measured for each

curve and plotted against the concentration of nitroxide (Mi-
chaelis–Menten plots Figure 4c). Michaelis constants KM and
catalysis rate constant kcat were estimated by fitting with

[Eq. (1)]:

V0 ¼
kcat � E½ � S½ �0
KM þ S½ �0 ð1Þ

As shown in Table 1, both enantiomers display comparable

values for the Michaelis constant and, hence, a very similar cat-
alytic efficiency kcat/KM of 3.5(�1.0) 106 s�1m�1. It is worth

noting that 3C exhibits a 15- to 18-fold higher values for KM

than reported for the widely used chromogenic substrate Suc-

Ala-Ala-Pro-Phe-pNA along with a 6- to 11-fold higher catalytic

Scheme 2. A) a) 1) DMF, imidazole, tert-butyldimethylsilyl chloride (TBDMSCl), 5 h, 0 8C; 2) OsO4, K3[Fe(CN)6] , K2CO3, tBuOH/H2O (1:1), 0 8C, 4.5 H; 3) NaIO4, THF/
water (1:3, v/v), 3 h, 0 8C. b) FeCl3 (10 mol%), HP(O)(OEt)2, NH3, 4 � MS, 24 h, RT. c) 1) Hg(OAc)2, THF/water (1:3, v/v), 30 min, RT; 2) NaBH4, NaOH (1m) ; 3) meta-
chloroperoxybenzoic acid (mCPBA), CH2Cl2, 2 h, 0 8C; 4) TBAF, THF, 3 h, 0 8C; 5) NMO, TPAP, 4 � MS, CH2Cl2, 0 8C. B) Determination of the configuration of 1aC.
(a) Cu, CuBr2, PMEDTA, benzene, rt, 12 h. (b) NaBH4/MeOH, THF, 0 8C, 2 h; c) (-)-camphanoyl chloride, Et3N, dry CH2Cl2, 0 8C, 1 h. C) Synthesis of chymotrypsin
substrate (R)-3C (a) and (S)-3C (b). Reagents and conditions: a) LiHMDS, 6, THF, �78 to �45 8C; b) DBU, DCM, 0 8C, 3 h; c) Fmoc-l-Ala-l-Ala-OH, DCC, HOBT,
DCM, 0 8C to RT, 18 h; d) succinic anhydride, DCM, 0 8C to RT, 6 h.



efficiency.[2] These significantly better affinity and turnover oc-
curring between chymotrypsin and substrates 3C suggests that
the nitroxide leaving group has a stronger interaction with the
S’ part of the enzyme than the para-nitroanilide group accord-

ing to the Schechter and Berger nomenclature.[35]

In summary, these experiments exemplify that on/off nitro-

xides are suitable to probe nonradical enzymatic activity. More-

over, as EPR is able to probe nontransparent media such as
blood or tissue samples from biopsies or from medical re-

search experiments, and reports only on radical species (and
here only stable free organic radicals) affording a very simple

signal irrespective of the conditions. As the substrates reported
above show negligible hydrolysis at pH 7.4 they are legible for

in vivo and ex vivo experiments. Hence, this method is a con-

venient approach for the detection of enzymatic activity in
samples without any special preparation or denaturation of

the samples.
Recently,[19] we reported on the imaging of enzymatic activi-

ty by OMRI using a nonselective probe. Thus, as the high sensi-

tivity to chymotrypsin activity of this substrate is very promis-
ing for future imaging of pancreatitis, a pancreatic disease re-

sulting in a premature activation of the pancreatic digestive
enzymes inside the pancreas. Imaging of this activation would

allow an early diagnosis of the chronic form of the disease. In
addition, the selectivity for cathepsin G, a neutrophile protease

Figure 3. EPR comparative kinetics of hydrolysis of the substrate isomer (R)-
3C (1 mm) by five serine proteases (2 nm) at 25 8C: chymotrypsin, trypsin, por-
cine pancreatic elastase (PPE), cathepsin G and neutrophil elastase (NE). Sub-
strate spontaneous dissociation in HEPES buffer is given as SD. Error bars for
the two limit values of duplicate experiments.

Figure 4. Selected curves of product generation kinetics from a range of
substrates 3C concentrations (5 to 250 mm) in the presence of chymotrypsin
(2 nm) in HEPES buffer pH 7.4 at 25 8C. a) (R)-3C (red, orange, green, blue,
violet symbols and lines for concentrations of 250, 120, 40, 10, and 5 mm) ;
b) (S)-3C (red, orange, green, blue, violet symbols and lines for concentrations
of 130, 70, 30, 15, and 10 mm). c) Initial velocities (V0) against substrate 3C
concentrations (~ for (S)-3C, and * for (R)-3C) in the presence of chymotrypsin
(2 nm). Empty symbols for spontaneous hydrolysis. In (a) and (b), full lines
are linear fit, and in (c) full lines (green for (R)-3C and blue for (S)-3C) were
fitted with Equation (1).

Table 1. Enzyme–substrate Michaelis constants for (R)-3C and (S)-3C.

(R)-3C (S)-3C

KM [mm] 6�1.6 5�1.2
kcat[s

�1] 15�0.7 22�1.1
kcat/KM [s�1m�1] 2500000 4400000

Figure 2. EPR signals of the proteolysis of 50 mm substrate (R)-3C by chymo-
trypsin (2 nm) to product 1C (conversion from top to down: 4, 25, 50, 75,
100%). Blue lines are for the EPR simulations using hyperfine coupling con-
stants given in the text and in ref. [19] (see the Supporting Information for
details).



which is a reliable inflammation marker, opens the door for a
sensitive imaging method of inflammation.

Importantly, the procedure described for the preparation of
(S)-3C and (R)-3C is robust enough to be applied to any type of

peptides increasing the versatility of our probes provided the
nitroxide is stable in the experimental medium. Thus, this ap-

proach can be extended to many types of enzymes in various
fields of research.
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