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As viscosity is increased, a liquid capillary jet accelerated by gravity stretches over
increasingly large distances before eventually breaking up. This Newtonian behavior
is profoundly altered for particulate suspensions. Adding solid particles to a liquid,
which increases the effective viscosity, can paradoxically shorten the jet considerably
[as first reported by Furbank and Morris, Phys. Fluids 16, 1777 (2004)]. This apparent
contradiction is rationalized by considering finite-size effects occurring at the scale of a
few particles. A model is presented which captures the breakup length of suspension jets
observed experimentally for a broad range of liquid viscosities, particle sizes, and extrusion
velocities of the jet and recovers the Newtonian case for vanishing particle sizes. These
results can be readily extended to any stretched jet configuration and potentially to other
fluid media having a granularity.

DOI: 10.1103/PhysRevFluids.4.012001

The fragmentation, or atomization, of a liquid involves the formation of transient, stretched,
liquid jets, which eventually break up and resolve in drops [1,2]. For homogeneous viscous jets,
the rate of pinching is inversely proportional to the liquid viscosity [3] and pinchoff proceeds
continuously down to atomic scales [4–6]. Highly viscous jets can therefore reach considerable
lengths before breaking up, which explains the seemingly never-breaking threads one can form with
honey [7–11] or the notorious difficulty of atomizing extension-thickening polymer solutions [12].
However, if the case of most homogeneous liquids is understood [13,14], that of polyphasic media,
such as particulate suspensions, has received much less attention although they are ubiquitous media
demanding increasingly smaller processing scales (of, e.g., encapsulation, of printing or molding,
and in food, cosmetic, paper, coating, or building industries), for which specific atomization
behaviors can be expected. Indeed, as breakup proceeds, their intrinsic granularity is necessarily
probed at some point by the vanishing dimension of the jets, and finite-size effects eventually matter.
Recent observations on pending drops [15,16] and liquid bridges [17] have reported different facets
of adding macroscopic particles to a viscous liquid thread, such as (i) an increase in the thread
effective viscosity delaying the breakup and (ii) finite-size effects specific to particulate suspensions
hastening the breakup, but the balance between these antagonist effects at the scale of a whole jet
is unknown. Therefore, even the basic length scales produced by the fragmentation of a suspension
jet, namely, the breakup length and drop sizes, have remained undetermined.

We tackle this fundamental question on the simplest, albeit generic, configuration of a stretched
jet: a straight, gravity-stretched jet with a constant flow rate. We consider non-Brownian and rigid
particules suspended in a highly viscous Newtonian liquid at a large solid volume fraction (50%),
at which a suspension can flow steadily (without jamming) and shows a pseudo-Newtonian bulk
rheology involving contacts between particles [18]. By varying the liquid viscosity, flow rate, and
particle size, this experimental system allows us to vary the stretching and onset of finite-size effects,
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FIG. 1. (a) A particulate suspension jet stretched by gravity (d = 550 μm, u0 = 16.8 cm/s). (b) From left
to right: Newtonian liquid jet and suspension jets with a particle volume fraction of 50% and increasing
particle diameter (d = 40, 135, and 550 μm) having the same effective shear viscosity (∼5 Pa s) and flow
rate (u0 = 4.2 cm/s). The liquid jet is five times longer than shown. (c) Breakup length vs extrusion velocity
for suspensions (• PEGPG, � 45 wt% PEGPG, � 30.5 wt% Ucon oil), and pure liquids (◦ PEGPG, � 30.5 wt%
Ucon oil).

which is crucial to explore the different breakup regimes and decipher the mechanisms selecting the
jet length.

The experiment consists in observing the breakup of a suspension jet stretched by gravity. The jet
is formed by extruding the suspension vertically from a large syringe through a small nozzle with
inner diameter h0 = 2.90 mm (a cylindrical stainless steel tube with length 10 mm and thickness
0.35 mm). A constant flow rate, with mean velocity at the nozzle of 2 mm/s � u0 � 1 m/s, is
imposed with a rigid piston and a precision linear motor (M414.2PD, PI). The suspension consists
of spherical, polystyrene particles (Dynoseed TS, Microbeads), with density ρ = 1050 kg/m3,
immersed in an isodensity, Newtonian liquid. All the suspensions are prepared at the same particle
volume fraction φ = 50 %, which is conserved within 1% during the extrusion (as verified by
weighing 30 mL of extruded suspension and its dry content). The particle diameter d is varied
between 10 and 550 μm (for each suspension the relative standard deviation of d is below 8%). The
liquid is either (i) pure PEGPG [3.9 kg/mol poly(ethylene glycol-ran-propylene glycol)-monobutyl-
ether by Sigma-Aldrich, with surface tension σ = 36 mN/m and viscosity η0 = 2.4 Pa.s], (ii) a
45 wt% aqueous solution of PEGPG (σ = 38.5 mN/m, η0 = 0.13 Pa.s), or (iii) a 30.5 wt% aqueous
solution of Ucon oil (polyalkylene glycol-composed lubricant Ucon 75-H 90 000 by Dow, σ =
50.5 mN/m, η0 = 0.13 Pa.s). The jet is backlit and imaged with one or two side cameras (with a
resolution down to 60 μm). The jet thickness profile and breakup location are obtained by image
thresholding. All experiments and rheological measurements are performed at 22 ± 1 ◦C.

The profound influence of the particles on the jet breakup is illustrated in Fig. 1(b) (see also
the movie in the Supplemental Material [19]). Suspension jets with a particle size increasing from
40 to 550 μm are compared to a pure liquid jet having the same flow rate (u0 = 4.2 cm/s) and
typical effective viscosity (∼5 Pa s). Clearly, the suspension jets are more corrugated and fragment
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FIG. 2. (a) Localized pinching hastening the breakup of a suspension jet (d = 135 μm, η0 = 0.13 Pa s,
u0 = 4.2 cm/s, h0 = 2.90 mm, times to breakup are indicated at the bottom). See movies in the Supplemental
Material [19]. [(b), (c)] Jet thickness and velocity profiles from breakup to breakup for the sequence shown
in panel (a) (the profiles are sampled every 5.6 ms; later profiles are darker). (d) Time evolution of the local
minimal diameter until pinchoff for 17 uncorrelated breakup events [same conditions as in panels (a)–(c)].
(e) Steady velocity profile upstream of the breakup for two different particles sizes and a large nozzle, h0 =
11.6 mm (η0 = 0.13 Pa s). The solid line is the Newtonian profile (1). z0 embeds the extrusion velocity u0. The
envelop indicates the standard deviation. Inset: Same data in logarithmic scales.

much faster than the liquid jet (the latter is actually five times longer than shown), and, among
suspensions, jets with large particles fragment more quickly than those with small particles. To
quantify this shortening, we measure the jet length, L, which we define as the distance between
the nozzle and the most upstream breakup location, while varying systematically u0, η0, and d.
The length L fluctuates from breakup to breakup (within ≈30% for a given set of parameters and
without strong dependence to the latter) as a consequence of the intrinsically disordered state of the
suspensions. In the following, we focus on the mean value obtained by averaging over typically 102

breakups.
The raw measurements of L are presented in Fig. 1(c). For a given particle size, the jet length

is found to follow the same trends as for a viscous Newtonian liquid. L increases with increasing
extrusion velocity, u0, and increasing viscosity of the suspending liquid, η0. However, for fixed
u0 and η0, the jet systematically and monotonically shortens with increasing particle size. The
shortening is significant, reaching a factor ∼102 relative to the liquid case for the largest particles
(d = 550 μm), and holds all over the large range of u0 and η0 explored. This has the somehow
counterintuitive consequence (observed, e.g., for d � 135 μm and η0 = 0.13 Pa s) that adding
particles to a jet at a large volume fraction can shorten the jet in spite of increasing its viscosity,
which should delay breakup and lengthen the jet.

The reason for this apparent paradox lies in the dynamics of jet fragmentation. Figure 2(a)
presents a typical suspension jet over the few instants preceding its breakup (see also the movie
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in the Supplemental Material [19]). It shows that, as reported for pending drops and capillary
bridges [15–17,20–22], the breakup results from a localized necking of the jet, which seems to
fail catastrophically. This is confirmed by following, in Figs. 2(b) and 2(c), the evolution of the
thickness and velocity profiles along the jet back to the previous pinchoff (u is measured from
the jet surface corrugations displacement by a correlation method (PIV) with a relative precision
∼10−2; see Ref. [23]). Over the period between two successive breakups, the deformation of the jet
changes qualitatively. Initially, the jet diameter, h, and stretching rate, ∂zu, are uniform over long
distances. Later, however, a neck develops where the pinching localizes and accelerates, as attested
by increasingly large and localized stretching rates. In agreement with previous experiments with
systematically varied particle sizes and volume fractions [22], this catastrophic acceleration of the
pinching is found to occur for h = nd ≈ 10d, i.e., when the jet diameter has thinned down to a
few particles sizes. The d scaling is a signature of the finite-size effects involved in the pinching
acceleration, whereas n is a nontrivial function of φ, which has also been measured on capillary
bridges to be close to 10 for φ = 50 % [22].

The observations above suggest that at least two facets of the deformation of a suspension jet need
to be considered to rationalize its shortness: (i) the stretching base state of a smooth unmodulated
jet and (ii) deviations from this base state leading to a finite-time pinchoff. Clearly, both facets are
impacted by the presence of the particles, since the latter increases the effective viscosity of the
jet [18] and triggers the necking, hastening the breakup. Nevertheless, they also share similarities
with the Newtonian case, as attested by the convergence of the behaviors when the particle size
is decreased. We thus consider, first, the steady base state of a Newtonian jet with viscosity η and
density ρ (neglecting, for now, the Plateau-Rayleigh capillary destabilization). For sufficiently long
jets (L � h0), this base state is well captured by a unidimensional, slender-slope approximation of
the momentum and mass equations,

uuz = g + 3η

ρ

(h2uz)z
h2

, h2 = h2
0u0

u
, (1)

which naturally introduces the viscogravity length and velocity scales, Z = (9η2/ρ2g)1/3 and
U = (3ηg/ρ)1/3, respectively [24–26]. At short distance from the nozzle (u � U ), the stretching
is limited by viscosity and u/U � (z/Z)2/2. Conversely, at long distance (u � U ), the jet is free
falling and u/U � √

2z/Z.
Using these stretching laws for a suspension jet requires that a Newtonian extensional effective

viscosity can be defined and measured. We validate this point (already adopted in previous
works [15–17]) by performing velocity measurements with a larger nozzle (h0 = 11.6 mm and
η0 = 0.13 Pa s) in cases when the rheological signature on the stretching base state and deviations
from this base state are decoupled, i.e., when L � Z. The velocity u is measured from the thickness
profile assuming a steady jet, i.e., u = u0h

2
0/h2. Surface PIV measurements (see Ref. [23]) yield

the same values within 5%, which confirms the steadiness. As seen from Fig. 2(e), the experimental
velocity profiles obtained for two different particle sizes follow closely the Newtonian profile (1)
upstream from the breakup. This collapse validates the Newtonian effective viscosity approach. It
also yields a measurement of the effective extensional viscosity, ρ

√
gZ3/3, from the fitting length

Z. In agreement with recent experiments and simulations [22,27,28], the extensional measurements
(η/η0 � 54 and 52 ± 2 for d = 80 and 10 μm, respectively) closely agree with the relative shear
effective viscosity (η/η0 � 52 and 42 ± 8, respectively), which is measured, independently, in a
dedicated shear cell (see Ref. [29]) and is itself consistent with shear viscosity values reported in
the literature for φ = 50% [18].

On the grounds of the validity of the Newtonian base state for a “thick” jet and of the heuristic
onset for the finite-size catastrophic breakup, we now propose a model for the jet length. Assuming
that the Newtonian approach is valid until finite-size effects come into play and that the subsequent
pinch-off duration is negligible, one obtains

h(z = L) = nd, (2)
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FIG. 3. (a) Dimensionless breakup length vs extrusion velocity for the suspensions [same data as in
Fig. 1(c)]. The dashed and dotted lines are, respectively, the predictions (3) and (4) for the viscous and inertial
stretching regimes, with n = 10. The solid line is the numerical solution (obtained with a relative precision
smaller than 10−3 using a standard integration routine of MATHEMATICA) of Eqs. (1) and (2) connecting both
asymptotes. The gray domain encloses the cases developing a capillary modulation (see text). (b) Jet with
small particles (d = 10 μm) developing a Plateau-Rayleigh modulation prior to breaking up (at the arrow).
(c) Breakup length in the presence of a capillary modulation of the jet vs d̃ = (2U 2L0/u

2
0 )1/4nd/h0. The data

are those inside the gray domain in panel (a). The solid line is Eq. (6) with n = 10. The value of α (=30) is
calibrated with a pure liquid (η0 = 2.4 Pa s).

with h(z) defined by Eq. (1). For short jets, this condition yields

L

Z
=

√
2u0

U

h0

nd
, (3)

whereas for long jets it gives

L

Z
= 1

2

(
u0

U

)2(
h0

nd

)4

. (4)

These predictions for the viscous and the free-fall stretching regimes are expected to apply for√
2u0h0/

√
Und � 1 and

√
2u0h0/

√
Und � 1, respectively. Consistently with the neglect of the

Plateau-Rayleigh instability and of the terminal capillary pinchoff, they do not involve surface
tension. They are compared in Fig. 3(a) to the experimental data, without adjustable parameter.
In spite of their simplifications, they capture both the magnitude and the dependence of L on√

2u0h0/
√

Und for all of the measurements (spanning ranges of η0, d, and u0 of respectively 18,
55, and 500), except for the longest jets (L/Z � 1) with the smallest particles (d = 10 and 40 μm),
which are highlighted in gray. The latter data precisely concern the case when the Plateau-Rayleigh
capillary instability of the jet cannot be neglected any more, as direct observation confirms. Indeed,
as illustrated in Fig. 3(b) for d = 10 μm, and by contrast with the case of larger particles [see
Fig. 2(a)], the jet develops periodic diameter modulations of a capillary origin (as confirmed by
the value of the selected wavelength experimentally observed; see Ref. [30]), prior to breaking up
precisely at one modulation neck.

To rationalize the experimental breakup length for these “small” particles, we consider that the
condition for the catastrophic breakup of the jet does not apply to the unmodulated base state (1),
but rather at the neck of a capillary modulation developing on this base state, where the diameter is
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locally minimal. In this framework, the breakup length verifies
∫ L

0
u−1dz = αη[h(L) − nd]/σ, (5)

expressing that the travel time down to L equals the time to develop a diameter modulation of order
h(L) − nd at the typical viscosity-limited growth rate of the Plateau-Rayleigh instability, σ/ηh(L)
[31], which is relevant here since η/

√
ρσh(L) � 1. α is a prefactor of order 10, embedding both the

instantaneous growth rate prefactors and those due to the amplitude gain history along the stretched
jet [8,10,11], which we calibrate with a pure liquid (see below). For small particles, the breakup
occurs in the free-fall regime (L � Z). We therefore use Eq. (5) with the free-fall limit of Eq. (1)
and obtain the following implicit equation for L:

L/L0 = [1 − d̃ (L/L0)1/4]4/3, (6)

where

L0 = 1

2

(
αη

√
Uu0

σ

h0

Z

)4/3

Z (7)

is the length for a vanishing particle diameter, i.e., that expected for a pure liquid having the same
effective viscosity, and

d̃ =
(

2U 2L0

u2
0Z

)1/4
nd

h0
(8)

is the dimensionless particle size controlling the shortening of the jet relative to L0. Note that we
recover for L0 the expression derived in Ref. [10] for a Newtonian liquid when the jet base state
stretching is independent of surface tension. Equation (6) is compared, without adjustable parameter,
to those measurements of long jets with small particles that develop capillary modulations in
Fig. 3(b) (the prefactor α = 30 is calibrated independently from experiments with a pure liquid
of similar viscosity, η0 = 2.4 Pa s, for which L0 = L). It is found to capture both the magnitude
and the trend of the breakup length with the dimensionless particle diameter d̃ . Note that Eq. (6)
actually contains the limit without capillarity discussed previously. Indeed, for large particles it
becomes asymptotically L/L0 = d̃−4, which is exactly Eq. (4). Therefore, d̃ ∼ 1 represents the
boundary between the regime when the jet length is determined by the sole particle size (d̃ � 1)
and the regime when both finite-size effects and capillarity matter (d̃ � 1).

To conclude, the fragmentation of a thick suspension jet eventually probes the suspension
granularity and thus naturally involves both the bulk rheology controlling the initial stretching and
destabilization, and finite-size effects triggering a localized acceleration of the pinching akin to a
catastrophic failure. For a concentrated suspension, these two stages are essentially decoupled and
have separated timescales, which permits us to understand the breakup length of a stretched jet in
the different regimes where viscosity, inertia, or capillary destabilization are involved. This also
rationalizes why adding particles to a jet at a large volume fraction can shorten the jet in spite of
increasing its viscosity. This scenario quantitatively explains the experimental jet lengths for the
large solid volume fraction φ (=50%) considered here. It is also expected to apply to other values
of φ, provided the effective Newtonian stretching rate (∝η−1) remains much smaller than that of the
last instants of the pinchoff (∝η−1

0 ) [16,17], i.e., provided the suspension is concentrated enough. In
such case, the model offers a direct prediction for the jet length in terms of φ from the φ dependance
of the effective viscosity, η/η0, and of the onset of the finite-size effects, n [18,22]. Besides, these
results are readily extendable to any stretched jet configuration and should therefore apply to most
atomization processes. They also appeal for further efforts to understand the size of the drops, or
fragments, as well as to be extended to other polyphasic media, such as foams, emulsions, or fiber
suspensions.
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