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Species in the genus Aspergillus are of broad interest to medical1, 
applied2,3, and basic research4. Members of Aspergillus section 
Nigri (‘black aspergilli’) are prolific producers of native and 

heterologous proteins5,6, organic acids (in particular citric acid2,7,8), 
and secondary metabolites (including biopharmaceuticals and 
mycotoxins like ochratoxin A). Furthermore, the section members 
are generally very efficient producers of extracellular enzymes9,10; 
they are the production organisms for 49 out of 260 industrial 
enzymes11,12. Among the most important of these, in addition to  
A. niger, are A. tubingensis, A. aculeatus, and A. luchuensis (previ-
ously A. acidus, A. kawachii, and A. awamori13–15, respectively).

Members of Aspergillus section Nigri are also known as destruc-
tive degraders of foods and feeds, and some isolates produce the 
potent mycotoxins ochratoxin A16 and fumonisins17–19. In addition, 
some species in this section have been proposed to be pathogenic to 
humans and other animals20. It is thus of interest to further exam-
ine section Nigri for industrial exploitation, as well as prevention 

of food spoilage, toxin production, and pathogenicity caused by  
these fungi.

A combined phylogenetic and phenotypic approach has shown 
that section Nigri contains at least 27 species21–25. Recent results have 
shown that the section contains species with high diversity and may 
consist of two separate clades: the biseriate species and the uniseri-
ate species26, which show differences in sexual states27, sclerotium 
formation28, and secondary metabolite production29. In the sec-
tion, only six species have had their genome sequenced: A. niger2,8,  
A. luchuensis15,30, A. carbonarius31, A. aculeatus31, A. tubingensis31, 
and A. brasiliensis31.

This section, with its combination of species richness and fungal 
species with a diverse impact on humanity, is thus particularly inter-
esting for studying the diversification of fungi into species. In this 
study, we have de novo-sequenced the genomes of 20 species of sec-
tion Nigri, thus completing a genome compendium of 26 described 
species in the section. Further, we have genome-sequenced three 
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additional A. niger isolates (including two previously described as 
species A. lacticoffeatus10 and A. phoenicis32), which in combination 
with the other analyses allows for inter- and intraspecies compari-
son of 32 isolates. The development of algorithms for comparative 
genomics, combined with experimental analysis of the species, 
allows us to track genetic diversity across genomes, from the protein 
level, over the evolution of biosynthetic gene clusters, to the groups 
of genes that define clades or individual species. The high resolution 
in genome sequences allows us to characterize both species diversi-
fication and variation within species.

Results
New genomes show high genetic diversity of section Nigri. We 
present 23 whole-genome draft sequences: 20 genomes of section 
Nigri species previously unsequenced and 3 additional A. niger 
genomes for assessment of intraspecies diversity. All genomes were 
sequenced, assembled, and annotated using the Joint Genome 
Institute (JGI) fungal genome pipeline33,34 (Supplementary Table 1; 
genomes were sequenced by either Illumina or Pacific Biosciences 
sequencing). Figure 1 shows a phylogenetic tree as well as gene rich-
ness, number of scaffolds, and functional annotation (InterPro35,36). 
The tree supports previous proposals10,32 that A. lacticoffeatus and  
A. phoenicis are synonyms of A. niger.

In comparing key statistics of the genomes, we found that some 
traits are quite similar and others surprisingly variable. Many of 

the investigated species have around the average number of genes 
(11,900), but there is considerable variation from the smallest num-
ber of predicted genes (10,066) to the largest (13,687). The smallest 
number of predicted genes in section Nigri is found in A. saccharo-
lyticus, which supports the previous observation37,38 that this species 
is quite atypical in section Nigri.

We further evaluated the annotation of the 23 genome sequences 
we generated. The percentage of complete genes (including a start 
and stop codon) is in the range of 94–98%, and 67% of the pro-
teins could be assigned one or more InterPro domains. The num-
ber of scaffolds (average 166) varies from 47 in A. piperis to 518 in  
A. ellipticus. On average, 70% of the proteins had sequence homo-
logs in Swiss-Prot (91% of proteins have homologs within section 
Nigri; see next section). This means that even though six members 
of section Nigri have already been sequenced, ~30% of the predicted 
gene models in each of the new genomes are not found to encode 
proteins with homologs in Swiss-Prot.

The pan- and core-genome shows genome flexibility. Given the 
genetic diversity in section Nigri, we were interested in examining 
the extent of genome diversification. For this analysis, we focused 
on three conceptual groups of genes:

	(1)	 The pan-genome: all genes present in one or more species.
	(2)	 The core-genome: genes present in all included species, 
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Fig. 1 | Dendrogram and bubble plots illustrating phylogenetic distances between 32 genomes from section Nigri as well as four non-Nigri Aspergillus 
species, a Penicillium genome, and a Neurospora genome (for outgroups). Additional information is available in Supplementary Table 1. a, Phylogenetic 
tree created using RAxML49, MAFFT50, and gBlocks51, based on 2,022 conserved genes. Plate growth pictures are presented for each newly sequenced 
species. b, Colors indicate whether the organism is from this or another sequencing project. c, Five bubble plots of descriptive numbers for each genome. 
The bubble sizes have been scaled to the categories and are not comparable across categories.
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including paralogs. This set is expected to encode cellular 
functions needed for all species.

	(3)	 Species-unique genes: genes found in only one species in our 
analysis, with or without paralogs. Included in these, we would 
expect to find genes involved in environmental adaptation. 
This group can also include annotation errors.

We first identified orthologs and paralogs with a BLASTp-
based pipeline using reciprocal hits according to cut-offs specifi-
cally selected here for the Aspergillus genus (Methods). Groups of 
homologous proteins are referred to as families. Figure 2a–c shows 
the overall genetic diversity between 38 fungal strains (32 species) 
from closely related genera (Fig. 2a), within the Aspergillus genus 
(36 of the 38 strains; Fig. 2b), and from section Nigri (32 of the 38 
strains; Fig. 2c).

The Aspergillus genus pan-genome comprises 433,116 genes 
across the 36 Aspergillus genomes, and from this, 62,996 gene 
families were constructed. Of those families, 6% are found in all 

genomes (3,769 core families), while 9% are genes without ortho-
logs in the other genomes (40,424 unique genes; 39,929 unique 
families) (Fig. 2b). We also found evidence of gene loss, duplication, 
and potential gene transfers between species of this section, as 23% 
of the pan-gene families are not present in groups of species fitting 
the phylogenetic tree (Supplementary Table 2). This is consistent 
with previous work reporting extensive horizontal gene transfer  
in Aspergillus39.

We further performed an analysis defining the number of core-
gene families in section Nigri and in all sub-clades thereof (Fig. 2d). 
The core-genome of section Nigri is 32% larger than that of the 
genus (4,983 families relative to 3,769; Fig. 2b,c). Conversely, 9% are 
unique to a specific species (32,378 unique genes in 32,036 families; 
Fig. 2c). The fraction of genes unique to a species is similar within 
the section and across the genus, meaning that adding a new section 
Nigri genome adds as many new genes as adding a more distantly 
related Aspergillus (within the analyzed group of species). This is 
rather interesting and shows a generally high genetic diversity of 
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genus Aspergillus. However, such a tendency could be also the result 
of overpredicting genes, considering the low rate of InterPro anno-
tation in the unique genes (Fig. 2e).

The section Nigri core genome contains carbohydrate-active 
enzymes and secondary metabolism gene clusters. To associ-
ate biological functions to the pan-, core-, and unique genomes, 
and genes exclusive to only members of the black aspergilli, we 
employed the InterPro database36. An examination of the core-
genome of 38 fungal genomes (Fig. 2a and Supplementary Fig. 1)  
revealed that only 4.5% of the genes lack InterPro domains 
(Supplementary Table 3a), indicating—as would be expected—that 
the core-genes across closely related fungal genera include gener-
ally known and conserved functions. For the pan-genomes of the 
36 Aspergillus species compared with the section Nigri species, the 
percentages of unknown function are similar (32% compared with 
33%; Supplementary Tables 3d and 4a and Supplementary Fig. 2), as 
are the corresponding percentages for the core-genomes (14% com-
pared with 17%, Fig. 2e; Supplementary Tables 3d and 4a). General 
functions like transporters, regulators, organelle-specific proteins, 
primary metabolism, and structural domains were found as core 
features across all 36 aspergilli (Supplementary Table 3f), which 
supports the general validity of the method.

We expected the section Nigri core-genome (gene families found 
in all the species of section Nigri but not in any other aspergilli exam-
ined) to contain Nigri signature genes, and we found this to be the 
case. These 1,214 gene families contain 580 InterPro domains con-
served to a varying degree, including a many genes involved in the 
saprotrophic lifestyle and secondary metabolism (Supplementary 

Table 5). It is hypothesized that these genes are defining for the 
section compared with other aspergilli and will encode functions 
related to the phenotypes of species in this section.

Unique secondary metabolism genes in Aspergillus species. The 
genetic diversity seen in section Nigri led us to investigate whether 
the unique genes for each species show common trends in function. 
While these genes by definition do not have homologs in other spe-
cies investigated in this work, we can predict general functions using 
InterPro domains. Unique genes of species in section Nigri matched 
1,334 different InterPro domains (Supplementary Table 6a–c).  
Within the unique genes, we searched the list of InterPro domains in 
all sets of genes unique to individual section Nigri species (exclud-
ing the six A. niger isolates, to remove intraspecies redundancy). 
Surprisingly, we identified only ten domains that were found in 
nearly all Nigri species (25–26 species). Notably, nine of those are 
related to functions involved in secondary metabolism, gene regula-
tion (transcription factors), or protein regulation (protein kinases) 
(Supplementary Table 7). Finding these functions in nearly all sets 
of species-specific genes suggests that secondary metabolite pro-
duction and regulatory proteins are commonly identified as the 
species-‘unique’ genes and are therefore critical differentiates for 
fungal species at the genetic level.

Intra- and interspecies genetic variations are similar. We were 
interested in comparing the diversity between isolates of the same 
species to the diversity among species in the same clade. We thus 
compared six A. niger isolates to the eight closely related species in 
the A. tubingensis clade (Fig. 2d). The A. niger isolates have a high 
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degree of genetic homogeneity, as 80% of the A. niger pan-genome is 
conserved across the six isolates and only 6% is unique to any of the 
isolates (Supplementary Fig. 3a). The same scale is seen in the A. tub-
ingensis clade (77% shared pan-genome, 7% unique; Supplementary 
Fig. 3b). Moreover, the percentage of genes with predicted func-
tional domains within the two groups is similar to that within sec-
tion Nigri as a whole (Supplementary Fig. 4 and Supplementary 
Tables 4a and 8a,d). The unique genes belonging to each of the 
two groups are largely of unknown function (A. tubingensis  
clade 82%, A. niger complex 86%; Supplementary Tables 8a,d and 
9a,b). The functions of the A. niger core-genome (3,798 domains) 
are, not surprisingly, very similar to those of section Nigri as a  
whole (Supplementary Tables 4c and 8c). In summary, the  
interspecies variation in the A. tubingensis clade is of the same scale 
as the intraspecies variation in the A. niger isolates, showing that 
large genetic variation does not directly translate to the currently 
circumscribed species.

Extra citrate synthase genes confer increased citrate. As spe-
cies of section Nigri are known organic-acid producers, the genes 
involved in central metabolism are of interest, particularly given 
that the cause of citric acid overproduction in several of the sec-
tion members is still not identified40. We thus analyzed the number 
of paralogs in central carbon metabolism in our set of 38 fungal 
genomes using a curated version of an A. niger genome-scale meta-
bolic model41 as a source of pathway annotation (Fig. 3).

The analysis of paralogs in glycolysis shows very little variance 
across the 32 Nigri genomes, similar to the variation in the 6 other 
fungal species genomes (Fig. 3a). For the tricarboxylic acid cycle 
(Fig. 3b), it is evident that certain metabolic steps in the pathway are 
conserved throughout all species, while others vary in paralog num-
bers. The biseriates are particularly homogeneous. These, along 
with four uniseriates, are also the primary citric acid-producing 
species in the section (Fig. 3c).

Of particular interest is the citrate production phenotype, and 
thus citrate synthase. All biseriates have one extra citrate synthase, 
and the four acid-producing uniseriates have two extra. Sequence 
alignment identified three distinct types (Supplementary Fig. 5), 
two of which are mitochondrial and are found in all species. All 
extra citrate synthase paralogs are of the third type, predicted to be 
cytosolic. We identified the extra biseriate citrate synthase (citB42) 
in a conserved 30 kB gene cluster including two transcription fac-
tor genes, a transporter gene, and two putative fatty acid synthase 
genes. We performed heterologous expression of the A. niger citB 
gene cluster in A. nidulans (which has only the two mitochondrial 
citrate synthases) using two constitutive promoters to control the 
transcription factors. This expression increased citrate concentra-
tions by 42–52% (Supplementary Table 10). We hypothesize that 
this gene cluster may have a particular role in citrate production and 
additional undescribed functions involving the fatty acid synthase-
like genes.

Carbon utilization is not correlated with carbohydrate-active 
enzyme content. Aspergilli have a particularly broad ability to 
degrade and convert plant biomass31. It is thus essential to exam-
ine the species diversity of this trait at the genotype and phenotype 
levels. We predicted the carbohydrate-active enzyme (CAZyme) 
gene content of the genomes across section Nigri (17,903 CAZyme 
domains; Fig. 4 and Supplementary Table 11) and performed growth 
profiling on plant biomass-related carbon sources (Supplementary 
Fig. 6). Growth on d-glucose was used to evaluate relative growth, 
showing variation between species.

In a previous study10, enzyme levels were measured in several 
black aspergilli, and significant differences were found. However, 
differences in enzyme levels do not reflect the copy number differ-
ences seen here (Supplementary Table 11). Considering the relative 
uniformity of the CAZyme content (Fig. 4), no correlation between 
genome content and growth on plant biomass-related carbon 
sources (Supplementary Fig. 6) was observed for the black asper-
gilli, suggesting that the differences in capability for plant biomass 
degradation reflect gene expression levels in the individual fungus. 
This confirms a proteome study of less-related aspergilli, in which 
the different response to plant biomass appeared to be mainly 
at the regulatory level43. The data suggest that this is the case for  
section Nigri: species-specific phenotypes are driven not generally 
by CAZyme content in closely related species, but by regulation.

Secondary metabolism in section Nigri contains 455 families. 
Secondary metabolism is thought to be a component of chemical 
defense, virulence, toxicity, mineral uptake, and communication 
in fungi44 and has a wide range of potential medical applications. 
As we had identified it to be commonly unique to individual spe-
cies, we examined the exometabolite diversity of 37 Aspergillus 
and Penicillium species according to predictions of secondary  
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set of genes encoding pectin-active enzymes. Growth on other plant 
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high: nine species showed reduced growth. Moreover, endoinulinase (GH32 
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of inulin-related genes (GH32 INV and INX) are more commonly present 
(Supplementary Table 11). However, the growth phenotypes show no 
correlation with the gene content (Supplementary Fig. 6).
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metabolism gene clusters (SMGCs) as well as chemical profiles of 
the species of section Nigri on multiple substrates.

We identified 2,717 SMGCs in the 37 genomes. This is an even 
higher number of SMGCs per species than a previous study found 
in 24 Penicillium genomes45. We were further interested in quan-
tifying the actual diversity of the SMGCs in section Nigri and in 
analyzing presence patterns of SMGCs across species. We there-
fore defined SMGC ‘families’ as genetically similar SMGCs across 
genomes (Methods). Each SMGC family is expected to produce the 
same or similar compounds. This clustering resulted in the defini-
tion of 455 SMGC families across the 37 genomes (Supplementary 
Fig. 7), indicating the potential production of 455 different chemical 
families. Most families (82%) are found in fewer than 10 organisms, 
and 49% contain only one gene cluster (Supplementary Fig. 8 shows 
examples). On average there are 8.75 unique clusters per species, 
despite the close phylogenetic distance of the section.

Phylogenetic examination shows dynamic content of SMGCs. To 
reveal more about how SMGCs evolve and differentiate between 
species, each of the 455 SMGC families was characterized by the 
type of backbone enzyme and analyzed according to the phylog-
eny (Fig. 5a,b). Only five out of all SMGCs were present in all ana-
lyzed species, including clusters for the non-ribosomal peptide  

synthetase (NRPS)-derived siderophore ferrichrome, the circular 
NRP fungisporin46/nidulanin A47, and pigment (YWA1) synthesis. 
Two shared SMGC families were false predictions, namely two fatty 
acid synthases.

Examining the dynamics of the families, only 32% and 19% of 
SMGCs found in two or three organisms, respectively, follow the 
whole-genome phylogeny and suggest intragenus horizontal gene 
transfer or SMGC loss to be relatively common. As an example, 
an SMGC is found in five distantly related species (Supplementary 
Fig. 8b). The cluster is found in all A. niger isolates as well as  
in A. homomorphus, A. welwitschiae, A. sclerotiicarbonarius,  
and A. brasiliensis.

As seen in Fig. 5a, the presence of unique SMGC families at every 
major branch point in the phylogenetic tree supports that SMGCs 
are a part of what sets the species apart: all biseriates share a pre-
viously undescribed polyketide synthase (PKS) and an NRPS-like 
protein, the A. carbonarius clade a terpene cyclase, and the remain-
ing biseriates share another PKS and another NRPS-like protein. 
Furthermore, the A. niger complex and A. tubingensis clade each 
share unique PKS genes. Uniseriates share four unique previously 
undescribed SMGC families (Fig. 5a). Examinations of individual 
species reveal that every single section Nigri species has a unique 
combination of SMGCs (Fig. 3b). Furthermore, nearly all Nigri 
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species genomes (with the exception of A. tubingensis, A. niger,  
A. brasiliensis, and A. vadensis) encode one or more unique SMGCs. 
These patterns show the existence of high diversity of SMGCs 
between species and of a homogeneous set of SMGCs within  
isolates from the same species.

Correlating secondary metabolisms with SMGC families links 
gene to function. As a further application of the constructed SMGC 
families, we hypothesized that we can correlate SMGC families to 
classes of compounds. We performed extensive exometabolome 
analysis of 27 of the sequenced strains and identified 35 compound 
families (Fig. 5c and Supplementary Table 12).

The most abundant group was naphtha-γ​-pyrones, of which 
aurasperone B29 was identified in 14 of the isolates. We compared 
the presence patterns of SMGC families with the compound class 
(Fig. 5c) and combined it with a knowledge-based filtering of 
InterPro domains leaving one hit (Methods and Supplementary 
Fig. 8d). The candidate SMGC family is a nine-gene cluster found 
in 18 genomes—including the 14 where we detected the com-
pound—and it contains all activities needed to synthesize auras-
perone. In support of this identification, an SMGC for a closely 
related compound, aurofusarin, has been experimentally verified 
in Fusarium graminearum48. The aurasperone cluster shares six 
genes (one of which is a duplication) with the aurofusarin clus-
ter. This finding supports the assignment of this family of SMGCs 
to the production of aurasperone B and conceptually justifies this 
approach for efficient linking of clusters to compounds. We see 
this correlation approach as highly useful for future elucidation of 
fungal metabolites.

Discussion
We have sequenced the genomes of a whole section of filamentous 
fungi, and a diverse set of A. niger isolates, and found that the spe-
cies are highly diverse in some traits, in particular secondary metab-
olism and to a lesser extent regulatory proteins, and homogeneous 
in others, such as glycolytic metabolism and CAZymes. The pre-
sented data furthermore provide an extensive compendium of 24 
new genomes, which adds substantial information on fungal genetic 
diversity. We further combined genome analysis with metabo-
lite profiling and heterologous gene expression to identify the  
genetic basis of several phenotypes within primary and  
secondary metabolism.

Of particular interest was the finding that the species-specific 
genes in all species share functions within gene/protein regulation 
and secondary metabolism, showing that unique sets of these func-
tions exist for all species in the investigated set.

URLs. Carbohydrate-Active enZYmes Database, http://www.cazy.
org; RoerdamAndersenLab GitHub repositories of scripts for  
comparative genomics, https://github.com/RoerdamAndersenLab/; 
HGAP Assembly, http://files.pacb.com/software/smrtanalysis/2.2.0/
doc/smrtportal/help/!SSL!/Webhelp/CS_Prot_RS_HGAP_
Assembly3.htm; JGI fungal genome portal MycoCosm, http://jgi.
doe.gov/fungi; JGI website, http://jgi.doe.gov; Joint BioEnergy 
Institute website, http://www.jbei.org; Technical University of 
Denmark (DTU) Bioinformatics TargetP web server, http://www.
cbs.dtu.dk/services/TargetP/.
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Methods
Fungal strains. Unless otherwise noted, the species examined were taken from 
the IBT Culture Collection of Fungi at DTU. Strains employed in this study are 
denoted in Supplementary Table 1.

Purification of DNA and RNA. For all sequences generated for this study 
(Supplementary Table 1), spores were defrosted from storage at −​80 °C and 
inoculated onto solid CYA medium. Fresh spores were harvested after 7–10 d and 
suspended in a 0.1% Tween solution. Spores were stored in solution at 5 °C for up 
to 3 weeks. Biomass for all fungal strains was obtained from shake flasks containing 
200 ml of complex medium, either CYA, MEAox, or CY20 depending on the strain 
(see Supplementary Table 1) cultivated for 5–10 d at 30 °C. Biomass was isolated 
by filtering through Miracloth (Millipore, 475855-1R), freeze dried, and stored 
at 80 °C. DNA isolation was performed using a modified version of the standard 
phenol extraction (ref. 52 and below) and checked for quality and concentration 
using a NanoDrop (BioNordika). RNA isolation was performed using the Qiagen 
RNeasy Plant Mini Kit according to the manufacturer’s instructions.

A sample of frozen biomass was subsequently used for RNA purification. 
First, hyphae were transferred to a 2 ml microtube together with a 5 mm steel bead 
(Qiagen), placed in liquid nitrogen, then lysed using the Qiagen TissueLyser LT 
at 45 Hz for 50 s. Then the Qiagen RNeasy Mini Plus Kit was used to isolate RNA. 
RLT Plus buffer (with 2-mercaptoethanol) was added to the samples, vortexed, and 
spun down. The lysate was then used in step 4 in the instructions provided by the 
manufacturer, and the protocol was followed from this step. For genomic DNA, a 
protocol based on Fulton et al.53 was used (See Supplementary Note).

DNA and RNA sequencing and assembly. All genomes in this study, except 
for those of A. heteromorphus, A. eucalypticola, and A. sclerotioniger, and all 
transcriptomes were sequenced with Illumina. The genomes of A. heteromorphus, 
A. eucalypticola, and A. sclerotioniger were sequenced with PacBio.

For all genomic Illumina libraries, 100 ng of DNA was sheared to 270 bp 
fragments using the Covaris LE220 (Covaris) and size selected using SPRI beads 
(Beckman Coulter). The fragments were treated with end-repair and A-tailing and 
ligated to Illumina-compatible adapters (IDT) using the KAPA-Illumina library 
creation kit (KAPA Biosystems).

For transcriptomes, stranded complementary DNA libraries were generated 
using the Illumina TruSeq Stranded Total RNA LT Sample Prep Kit. Messenger 
RNA (mRNA) was purified from 1 µ​g of total RNA using magnetic beads 
containing poly(T) oligos. mRNA was fragmented using divalent cations and 
high temperature. The fragmented RNA was reverse transcribed using random 
hexamers and SSII (Invitrogen) followed by second-strand synthesis. The 
fragmented complementary DNA was treated with end-pair, A-tailing, adapter 
ligation, and 10 cycles of PCR.

The prepared libraries were quantified using KAPA Biosystems’ next-
generation sequencing library quantitative PCR kit and run on a Roche LightCycler 
480 real-time PCR instrument. The quantified libraries were then multiplexed 
with other libraries, and library pools were prepared for sequencing on the 
Illumina HiSeq sequencing platform using a TruSeq paired-end cluster kit, v3, 
and Illumina’s cBot instrument to generate clustered flow cells for sequencing. 
Sequencing of the flow cells was performed on the Illumina HiSeq2000 sequencer 
using a TruSeq SBS sequencing kit, v3, following a 2 ×​ 150 indexed run recipe.

After sequencing, the genomic FASTQ files were quality control-filtered 
to remove artifacts/process contamination and assembled using Velvet54. The 
resulting assemblies were used to create in silico long mate-pair libraries with 
inserts of 3,000 ±​ 90 bp, which were then assembled with the target FASTQ using 
AllPathsLG release version R4771055. Illumina transcriptome reads were assembled 
into consensus sequences using Rnnotator v3.3.256.

For the genomes of A. heteromorphus, A. eucalypticola, and A. sclerotioniger, 
amplified libraries were generated using a modified shearing version of the Pacific 
Biosciences standard template preparation protocol. To generate each library, 5 μ​g 
of genomic DNA was used. The DNA was sheared using a Covaris LE220 focused-
ultrasonicator with their Red miniTUBES to generate fragments 5 kb in length. The 
sheared DNA fragments were then prepared according to the Pacific Biosciences 
protocol using their SMRTbell template preparation kit, where the fragments were 
treated with DNA damage repair (ends were repaired so that they were blunt ended 
and 5′​ phosphorylated). Pacific Biosciences hairpin adapters were then ligated 
to the fragments to create the SMRTbell template for sequencing. The SMRTbell 
templates were then purified using exonuclease treatments and size-selected using 
AMPure PB beads.

Sequencing primer was then annealed to the SMRTbell templates, and version 
P4 sequencing polymerase was bound to them. The prepared SMRTbell template 
libraries were sequenced on a Pacific Biosciences RS II sequencer using version 
C2 chemistry and 2 h sequencing movie run times. The three Pacific Biosciences 
genome datasets were assembled using HGAP3 (see URLs).

All genomes were annotated using the JGI annotation pipeline33. Genome 
assembly and annotations are available at the JGI fungal genome portal 
MycoCosm33 (see URLs) and have been deposited in the DNA Data Bank of Japan 
(DDBJ)/European Molecular Biology Laboratory (EMBL)/GenBank under the 
following accession numbers: A. aculeatinus (PSTE00000000), A. brunneoviolaceus 

(PSTC00000000), A. costaricaensis (PSTH00000000), A. ellipticus (PSSY00000000), 
A. eucalypticola (MSFU00000000), A. fijiensis (PSTG00000000), A. heteromorphus 
(MSFL00000000), A. homomorphus (PSTJ00000000), A. ibericus (PSTI00000000), 
A. indologenus (PSTB00000000), A. japonicus (PSTF00000000), A. lacticoffeatus 
(MSFR00000000), A. neoniger (MSFP00000000), A. niger ATCC 13157 (A. 
phoenicis) (QQUR00000000), A. niger ATCC 13496 (QQZP00000000), A. piperis 
(PSTD00000000), A. saccharolyticus (MSFQ00000000), A. sclerotiicarbonarius 
(PSSZ00000000), A. sclerotioniger (MSFK00000000), A. uvarum (MSFT00000000), 
A. vadensis (MSFS00000000), A. violaceofuscus (PSTA00000000), and A. 
welwitschiae (QQZQ00000000).

See also the Nature Research Reporting Summary linked to this article.

Analysis of secondary metabolism. Cultivation for secondary metabolite analysis. 
Fungal strains were cultivated as three-point cultures on CYA, CYAS29, and YES 
media for 7 d in the dark at 25 °C. Three 6 mm inner diameter plugs taken across 
the cultures were then extracted using an (3:2:1) (ethylacetate–dichloromethane–
methanol) mixture and dissolved in methanol57.

Extraction of fungal metabolites. Fungal metabolite extracts were prepared using 
one of the three following methods29: (1) chloroform–methanol–acetone–
ethylacetate extraction, (2) micro-extraction using methanol–dichloromethane–
ethylacetate, or (3) 75% methanol extraction.

Chemical analysis of secondary metabolites. All chemical analyses were done 
by reversed-phase ultrahigh-performance liquid chromatography (UHPLC) 
coupled to ultraviolet–visible diode array detection (DAD) combined with either 
fluorescence detection (FLD) or high-resolution mass spectrometry (HRMS). 
Three different methods were used:

Method 1. Pure UHPLC–DAD–FLD was performed using a rapid-separation liquid 
chromatography (RSLC) UltiMate 3000 system (Dionex) linked to an 1100 Series 
FLD (Agilent). The system was equipped with an Agilent Poroshell phenyl-hexyl 
column (150 ×​ 2.1 mm, 2.6 μ​m) and was run using a linear gradient of water–
acetonitrile starting at 10% acetonitrile and increasing to 100% (both containing  
50 ppm trifluoroacetic acid) over 8 min, then using 100% acetonitrile for 2 min.  
The column temperature was 60 °C, the flow rate 0.8 ml min−1, and the injection 
volume was 1 µ​l. The ultraviolet spectra 200–640 nm were matched against our 
internal database29.

Method 2. UHPLC–DAD–HRMS was conducted on a Dionex RSLC UltiMate 
system linked to a maXis high-definition quadrupole-time-of-flight mass 
spectrometer (Q-TOF MS) (Bruker Daltonics). Separation was done on a Kinetex 
C18 column (100 ×​ 2.1 mm, 2.6 μ​m), with a linear gradient consisting of water and 
acetonitrile (both buffered with 20 mM formic acid), starting at 10% acetonitrile 
and increasing to 100% over 10 min, where it was held for 2 min and returned 
(0.4 ml min−1, 40 °C). Injection volume, depending on sample concentration, 
typically varied between 0.1 and 1 µ​l. Some samples were analyzed in electrospray 
ionization (ESI)+ and some in ESI− full-scan mode, scanning m/z 100–1,250. Data 
were analyzed by aggressive dereplication55 using lists of compounds considered to 
be from black aspergilli only (~350); a list with all Aspergillus compounds (~2,450); 
and a list of 1,600 reference standards, of which 500 are known to come from 
Aspergillus. Unknown peaks were matched against Antibase2012 and dereplicated 
using accurate mass, isotope patterns, adduct patterns, log D, and ultraviolet–
visible data58.

Method 3. UHPLC–DAD–HRMS was conducted on an Agilent Infinity 1290 
UHPLC system coupled to an Agilent 6550 Q-TOF MS. Separation was obtained 
on an Agilent Poroshell 120 phenyl-hexyl column (2.1 ×​ 250 mm, 2.7 µ​m) using a 
linear gradient of water and acetonitrile (both buffered with 20 mM formic acid), 
progressing from 10% to 100% acetonitrile over 15 min, where it was held for 
2 min. The flow was 0.35 ml min−1 and the temperature 60 °C. Injection volume was 
between 0.1 and 1 µ​l, depending on the sample concentration.

Some samples were analyzed in ESI+ and some in ESI− full-scan mode, 
scanning m/z 100–1,700 and with automatic MS/MS enabled for ion counts above 
100,000 and with a quarantine time of 0.06 min. MS/MS spectra were obtained at 
10, 20, and 40 eV (ref. 59).

Full-scan data were analyzed as above in MassHunter59. MS/MS data were 
matched to our internal MS library (~1,700 compounds) of reference standards 
and tentatively identified compounds59.

Genome annotation and analysis. Genome annotation. All genomes were 
annotated based on the JGI annotation pipeline34 as previously described60.

Swiss-Prot comparison. Swiss-Prot comparisons were done using protein BLAST 
alignments with BLAST+​ (v2.3.0), e-value cut-off 1 ×​ 10−5, -max_target_seqs  
100, -max_hsps 1, and locally optimal Smith-Waterman alignments (-use_sw_tback).

Whole-genome phylogeny. Protein sequences of all organisms were compared 
using BLASTp (e-value cut-off 1 ×​ 10−5). Orthologous groups of sequences were 
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constructed on the basis of best bidirectional hits. Two hundred groups with a 
member from each species were selected, and the sequences of each organism were 
concatenated into one long protein sequence. Concatenated sequences were aligned 
using MAFFT (thread 16), and well-aligned regions were extracted using gBlocks 
(−​t =​ p; −​b4 =​ 5; −​b5 =​ h). Trees were then constructed using multithreaded 
RAxML, the PROTGAMMAWAG model, and 100 bootstrap replicates.

Prediction of SMGCs. For the prediction of SMGCs, we developed a command-line 
Python script roughly following the SMURF algorithm:

According to SMURF the following genes were predicted as a ‘backbone’ genes:
•	 Genes that have at least three PFAM domains—ketoacyl-synt (PF00109), 

Ketoacyl-synt_C (PF02801), and Acyl_transf_1 (PF00698)—were predicted as 
‘PKS’ genes.

•	 Genes that have ketoacyl-synt (PF00109) and Ketoacyl-synt_C (PF02801) but 
not Acyl_transf_1 (PF00698) were predicted as ‘PKS-like’ genes.

•	 Genes that have at least the three domains AMP-binding (PF00501), PP-bind-
ing (PF00550), and Condensation (PF00668) were predicted as ‘NRPS’ genes.

•	 Genes that have an AMP-binding (PF00501) domain and at least one of the 
domains PP-binding (PF00550), Condensation (PF00668), NAD_binding_4 
(PF07993), and Epimerase (PF01370) were predicted as ‘NRPS-like’ genes.

•	 Genes that have both ‘PKS’ and ‘NRPS’ domains were predicted as ‘Hybrid’ 
genes.

•	 Genes that have a Trp_DMAT domain were predicted as ‘DMAT’ genes.
•	 Genes that have Terpene_synth (PF01397) or Terpene_synth_C (PF03936) 

domains were predicted as ‘Terpene cyclase/synthase’ genes.
Secondary metabolite-specific PFAM domains were taken from Supplementary 

Table 2 of the SMURF paper61.
As input, the program takes genomic coordinates and the annotated PFAM 

domains of the predicted genes. Based on the multidomain PFAM composition 
of identified ‘backbone’ genes, it can predict seven types of secondary metabolite 
clusters: (1) polyketide synthases (PKSs), (2) PKS-like, (3) non-ribosomal peptide-
synthetases (NRPSs), (4) NRPS-like, (5) hybrid PKS-NRPS, (6) prenyltransferases 
(DMATS), and (7) terpene cyclases (TCs). Besides backbone genes, PFAM 
domains, which are enriched in experimentally identified secondary metabolite 
clusters (secondary metabolite-specific PFAMs), were used in determining the 
borders of gene clusters. The maximum allowed size of intergenic regions in a 
cluster was set to 3 kb, and each predicted cluster was allowed to have up to 6 genes 
without secondary metabolite-specific domains.

Prediction of secreted proteases. Secretome prediction was done using an  
in-house adaptation of SignalP62.

Gene-compound assignment. Identification of conserved or highly similar fungal 
gene clusters was performed on the basis of the gene cluster predictions above. The 
genomes were compared using the BLASTp function from the BLAST+​ suite63. 
Presence/absence of an orthologous gene to a member in a gene cluster was based 
on a bidirectional best hit, with e <​ 1 ×​ 10−100 and coverage of >​90%. Presence/
absence of a full gene cluster was based on the occurrence of the majority of the 
predicted members in a gene cluster, including the backbone synthetase in  
another species.

Detection of encoded CAZymes. Each Aspergillus protein model was compared 
using BLASTp to proteins listed in the Carbohydrate-Active enZYmes database 
(CAZy)64. Models with over 50% identity over the entire length of an entry in 
CAZy were directly assigned to the same family (or subfamily when relevant). 
Proteins with less than 50% identity to a protein in CAZy were all manually 
inspected, and conserved features, such as the catalytic residues, were searched 
whenever known. Because 30% sequence identity results in widely different  
e-values (from non-significant to highly significant), for CAZy family assignments, 
we examined sequence conservation (percentage identity over CAZy domain 
length). Sequence alignments with isolated functional domains were performed in 
the case of multimodular CAZymes. The same methods were used for Penicillium 
chrysogenum and Neurospora crassa.

Mapping of genes shared by groups of species. All predicted sets of protein 
sequences for the 38 genomes analyzed were aligned using the BLASTp function 
from the BLAST+​ suite version 2.2.27 ( e-value cut-off ≤​1 ×​ 10−10). These 1.444 
whole-genome BLAST tables were analyzed to identify bidirectional hits in all 
pairwise comparisons. Using custom Python scripts, homologs were identified 
within and across the genomes and grouped into sequence-similar families using 
single linkage, if they met the following criterion: The sum of the alignment 
coverage between the pairwise sequences was >​130%, the alignment identity 
between the pairwise sequences was >​50%, and the hit must be found in both 
of the species’ BLAST output (reciprocal hits). Singletons were assigned a family 
having only one gene member. This allowed for identification of species-unique 
genes as well as genes shared by sections, clades, and sub-clades of species. All 
homologs were assigned functional and structural domains using InterPro version 
4865 and checked for annotation and sequencing errors by investigating scaffold 
location and sequence identity.

For the analysis of the pan- and core-genomes of a subset of 38 fungal species 
used in this study, the orthologous and paralogous families were subsetted to 
include only the species of interest. Therefore, the genes representing the core and 
unique portion of the genomes will adjust relative to the accompanying species.

Identification of SMGC families. Our implementation of SMURF was run on 
genomic data from 37 Aspergillus strains. Proteins of the resulting SMGCs were 
compared with each other by alignment using BLASTp (BLAST+​ suite version 
2.2.27, e-value ≤​1 ×​ 10−10). Subsequently, a score based on BLASTp identity and 
shared proteins was created to determine the similarity between gene clusters as 
depicted in the formula below. Using these scores, we created a weighted network of 
SMGC clusters and used a random walk community detection algorithm (R version 
3.3.2, igraph_1.0.166) to determine families of SMGC clusters. Finally, we ran 
another round of random walk clustering on the communities that contained more 
members than species in the analysis (ptailoring/pbackbone =​ sum of percentage 
BLAST alignment of tailoring/backbone enzymes, respectivly; ntailoring/
nbackbone =​ number of tailoring/backbone enzymes with significant hits, 
respectivly; ttailoring/tbackbone =​ total number of tailoring/backbone enzymes):

× × .

+ × × .

ptailoring
ntailoring
ttailoring

0 35

pbackbone nbackbone
tbackbone

0 65

To create a cluster similarity score, a combined score of tailoring and backbone 
enzymes was created. The sum of the BLASTp percent identity (ptailoring/
pbackbone) of all hits for tailoring enzymes between two clusters was divided by 
the maximum amount of tailoring enzyme (ttailoring/tbackbone) and multiplied 
by 0.35. Then the score for the backbone enzymes was calculated in the same 
manner but multiplied by 0.65 to give more weight to the backbone enzymes. The 
scores were added to create an overall cluster similarity score:

× . + × .avg(pident ) 0 35 avg(pident ) 0 65tailoring backbones

Identification of shared SMGC families at nodes of the phylogenetic tree. 
 A list containing organisms of each branch of the phylogenetic tree was created 
and compared with the list of organisms for each SMGC family. If all organisms of 
a family matched, the count on the corresponding node was increased by one.

Prediction of the aurasperone B gene cluster. Lists of organisms for all SMGC 
families were compared with the lists of aurasperone B-producing species and 
filtered for InterPro annotations containing the terms ‘cytochrome P450’ or 
‘methyltransferase’.

Primary metabolism. Copy numbers were assessed using the homologous protein 
families generated during the analysis of genome diversity. The gene pathway 
associations were taken from the A. niger genome-scale model41. All proteins in the 
respective protein families were considered putative isozymes and were included in 
the copy number analyses.

Comparing the putative isoenzymes in the different species, gene sequences 
were aligned and clustered using neighbor-joining with MUSCLE v3.8.3168. 
Resulting trees were visualized and edited for publication using the Python ETE 
Toolkit67. Subcellular localizations for the genes included in the analysis were 
predicted using the TargetP69 web server (see URLs).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Code for generation of gene families of homologs and for 
generation of SMGC families is available from GitHub (see URLs).

Data availability
All genomes used in the study are available from Joint Genome Institute 
fungal genome portal MycoCosm (http://jgi.doe.gov/fungi). All new genomes 
published in the study have been deposited in the DNA Data Bank of Japan 
(DDBJ)/European Molecular Biology Laboratory (EMBL)/GenBank under 
the following accessions: A. aculeatinus (PSTE00000000), A. brunneoviolaceus 
(PSTC00000000), A. costaricaensis (PSTH00000000), A. ellipticus (PSSY00000000), 
A. eucalypticola (MSFU00000000), A. fijiensis (PSTG00000000), A. heteromorphus 
(MSFL00000000), A. homomorphus (PSTJ00000000), A. ibericus (PSTI00000000), 
A. indologenus (PSTB00000000), A. japonicus (PSTF00000000), A. lacticoffeatus 
(MSFR00000000), A. neoniger (MSFP00000000), A. niger ATCC 13157 (A. 
phoenicis) (QQUR00000000), A. niger ATCC 13496 (QQZP00000000), A. piperis 
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