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ABSTRACT 

SH3 domains are small protein modules involved in the regulation of important 

cellular pathways. These domains mediate protein-protein interactions recognizing 

motifs rich in proline on the target protein. The SH3 domain from Grb2 (Grb2-SH3) 

presents the typical structure of an SH3 domain composed of two-three stranded 

antiparallel β−sheets orthogonally packed onto each other, to form a single 

hydrophobic core. Grb2 interacts, via SH3 domain, with Gab2, a scaffolding 

disordered protein, triggering some key metabolic pathways involved in cell death 

and differentiation. In this work we report a mutational analysis (Φ-value analysis) of 

the folding pathway of Grb2-SH3 that, coupled with molecular dynamic simulations, 

allows us to asses the structure of the transition state and the mechanism of folding of 

this domain. Data suggest that Grb2-SH3 folds via a native-like, diffused transition 

state with a concurrent formation of native-like secondary and tertiary structure 

(nucleation-condensation mechanism) and without the accumulation of folding 

intermediates. The comparison between our data and previous folding studies on SH3 

domains belonging to other proteins, highlights that proteins of this class may fold via 

alternative pathways, stabilized by different nuclei leading or not to accumulation of 

folding intermediates. This comparative analysis suggests that the alternative folding 

pathways for this class of SH3 domains can be selectively regulated by the specific 

aminoacid sequences.  
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INTRODUCTION 

 

One of the most informative approaches to address the folding mechanism of globular 

proteins is to compare experiments performed on homologous proteins 1-6. In fact, by 

describing the folding of proteins sharing the same topology while displaying a 

different sequence, it is theoretically possible to draw some general rules on the basic 

principles governing folding. Comparative folding studies have been previously 

reported for example on the colicin immunity proteins Im7 and Im9 2,4,7,8, on the 

immunoglobulin domains 3, on c-type cytochromes 9-11, on homeodomain-like 

proteins 5,12, on PDZ domains 1,13-15 and others. Whilst all these studies suggest that 

the overall general features of folding are by-and-large defined by protein topology, it 

appears that a closer look at the folding pathway of the different homologues appears 

to highlight some features specific for each globular protein. 

 

In the context of comparative folding studies, the SH3 domain represents a debated 

system. In fact, whilst earlier comparison between the src and the spectrin SH3 

domains suggested this class of proteins to fold via a robust two-state mechanism 

characterized by a polarized and highly conserved transition state 16-18, studies on the 

Sso7d domain revealed an additional complexity 19. Indeed, while displaying less 

than 10% sequence identity, the Sso7d protein shares the typical topology of SH3 

domains, except for the last β-strand that is a small α-helix in Sso7d. Interestingly, 

experimental and computational comparison of the folding of Sso7d with SH3 

domains, revealed a substantial shift in the folding nucleus from the third to the 

second β-hairpin 19. This finding highlighted that, even if protein topology plays a 
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major role in the selection of the folding pathways, the specific nature of the 

interactions stabilizing the protein is still critical to describe folding mechanisms. 

Furthermore, it is of interest to note that recent studies highlighted how the folding of 

SH3 may also occur via a multi-state scenario, with accumulation of intermediates 

characterized at equilibrium 20-22. It appears therefore that even for a deeply 

investigated protein system, such as the SH3 domain, folding demands a careful study 

to be fully understood.  

 

The SH3 domain from Grb2 (Grb2-SH3) corresponds to the typical structure of an 

SH3 domain composed of two three-stranded antiparallel β−sheets orthogonally 

packed onto each other, to form a single hydrophobic core 23,24. Physiologically, the 

domain is involved in binding a proline rich stretch of amino acids of Gab2 

(encompassing residues 503 to 524), with this interaction triggering some key 

metabolic pathways involved in cell death and differentiation. From the perspective of 

its primary structure, it is interesting to note that Grb2-SH3 displays a similar degree 

of sequence identity towards Sso7d and spectrin SH3 (Figure 1), posing this system as 

an interesting candidate to understand further the folding mechanism of this highly 

studied class of proteins.  

 

Here we present the characterization of the folding of the Grb2-SH3 domain. By 

carrying out kinetic experiments on 23 site-directed variants in combination with 

restrained molecular dynamics simulations, we present the structure of the main 

folding transition state. The transition state is stabilized by contacts involving both the 

first β-hairpin and the N- and C-termini of the protein, a finding which appears 

different from what previously observed for src, spectrin and fyn SH3 16,18,25,26. 
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Furthermore, we present evidence that this protein folds via a nucleation-condensation 

mechanism, with a diffused, rather than structurally polarized transition state. The 

data are discussed in the context of previous work on other SH3 domains. 

 

EXPERIMENTAL AND THEORETICAL METHODS 

 

Site-Directed Mutagenesis 

C-SH3 domain of Grb2 was subcloned in a pET28b+ plasmid vector. The constructs 

encoding the site directed variants of SH3 were obtained using the gene encoding 

Grb2-SH3 wt as a template to perform site-directed mutagenesis using the 

QuickChange Lightning Site-Directed Mutagenesis kit (Agilent technologies) 

according to the manufactorer’s instructions. All mutations are conservative All 

mutations were confirmed by DNA sequencing. 

 

Protein expression and purification 

The C-SH3 domain of Grb2 wt and all the site directed variants were expressed in E. 

coli cells BL21 (DE3). Bacterial cells were grown in LB medium, containing 30 

µg/ml of kanamycin, at 37°C until OD600 = 0.7 - 0.8 and then protein expression was 

induced with 1mM IPTG. After induction cells were grown at 37°C over night and 

then collected by centrifugation.  

To purify the protein, the bacterial pellet was resuspended in buffer 50 mM TrisHCl, 

0.5 M NaCl, pH 7.5 with the addition of antiprotease tablet (Complete EDTA-free, 

Roche), then sonicated and centrifuged. The soluble fraction from bacterial lysate was 

loaded onto a nickel-charged HisTrap Chelating HP (GE Healthcare) column 
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equilibrated with 50 mM TrisHCl, 0.5 M NaCl, pH 7.5. The protein was then eluted 

with a gradient from 0 to 1 M imidazole by using an AKTA-prime system. Fractions 

containing the protein were collected and the buffer was exchanged to 25 mM Hepes 

pH 7.5 100 mM potassium acetate by using a HiTrap Desalting column (GE 

Healthcare). The purity of the protein was analyzed through SDS-page. 

Protein concentration was estimated by measuring the absorbance of tryptophan 

residue at 280nm and calculated through the Lambert-Beer equation. 

Equilibrium experiments 

Equilibrium unfolding experiments were performed on a Fluoromax single photon 

counting spectrofluorometer (Jobin-Yvon, NJ, USA). C-SH3 protein and all the site 

directed variants, at a constant concentration of 3 µM, was excited at 280 nm and 

emission spectra were recorded between 300 and 400 nm, at increasing denaturant 

(urea) concentration. Experiments were performed at 25°C, using a quartz cuvette 

with a path length of 1 cm, in buffer 50 mM sodium phosphate buffer at pH 7.2.   

 

Stopped-flow folding experiments 

Unfolding and refolding kinetics experiments were carried out on a single-mixing SX-

18 stopped-flow instrument (Applied Photophysics), monitoring the change of 

fluorescence emission. The experiments were performed at 25°C in buffer 50 mM 

sodium phosphate pH 7.2, by using urea as the denaturant. The excitation wavelength 

used was 280 nm and the fluorescence emission light was recorded by using a 320 nm 

cut-off glass filter. For each denaturant concentration usually 5 individual traces were 

averaged. The final concentration of Grb2-SH3 and all the variants was typically 1 

µM. In all cases the fluorescence time courses obtained was satisfactorily fitted by 

using a single exponential equation.  
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Molecular Dynamics Simulations 

 

Molecular dynamics simulations of SH3 were performed using the CHARMM22* 

force field 27 with the TIP3P water model 28. All the simulations were run using 

GROMACS 29 and PLUMED2 30. A time step of 2 fs was used together with LINCS 

constraints 31. Van der Waals and Coulomb interactions were implemented with a cut-

off at 0.9 nm, and long-range electrostatic effects were treated with the particle mesh 

Ewald method on a grid with a mesh of 0.1 nm.  

A standard 200 ns molecular dynamics simulation at 300 K was performed as a 

reference for the native state ensemble. The starting conformation was taken from an 

available X-Ray structure (PDB code 2VWF 23) and solvated with 4531 water 

molecules and 4 sodium ions.  

 

The transition state ensemble was determined following a standard procedure based 

on the interpretation of Φ value analysis in terms of fraction of native contacts. 

Briefly, given a set of experimental Φ values, a pseudo energy term has been added to 

the force field as the squared difference between experimental and simulated Φ values 

in order to maximize the agreement with the experimental value while keeping the 

simulation stable. Given two residues that are not nearest neighbours, the native 

contacts between them are defined as the number of heavy side-chain atoms located 

within 0.65 nm in the native structure. The Φ value for a residue i is calculated from 

the fraction of native contacts that it makes in a given conformation. With this 

approach only Φ values between 0 and 1 can be incorporated as structural restraints. 

 

The transition state ensemble was generated using 1000 cycles of simulated 

annealing. Each cycle is 200 ps long, in which the temperature is varied between 300 

K and 400 K. Only the structures sampled at the reference temperature are retained 

for further analysis, resulting in TSE of ~6000 conformations. 
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RESULTS  

 

The kinetic folding mechanism of wild type Grb2-SH3 

 

In order to characterize the folding mechanism of Grb2-SH3 we initially conducted 

experiments on the wild type protein. Urea-induced equilibrium denaturation of Grb2-

SH3 measured at 25°C, pH 7.2 in 50 mM sodium phosphate buffer by decrease in Trp 

emission is reported in Figure 2. The observed transition is consistent with a simple 

two-state behavior, suggesting the absence of stable equilibrium intermediate(s) 32. 

The unfolding free energy in water derived from two-state analysis is 3.1 kcal mol
-1

 

displaying an mD-N value of 0.73 kcal mol
-1 M

-1
. This value, which is proportional to 

the change in accessible surface area upon unfolding, is consistent with what expected 

from a protein of 56 amino acids 33. 

The folding and unfolding kinetics of Grb2-SH3 were measured by stopped-flow 

fluorimetry. As expected for a two-state folder, under all investigated conditions, 

folding and unfolding time courses were consistent with a single exponential decay. 

Furthermore, in analogy to what previously observed on other SH3 domains, the urea 

dependence of the observed rate constant (kobs) on urea concentration conforms to a 

V-shaped chevron plot (Figure 3), a typical signature of two state folding 32.  

 

Since Grb2-SH3 unfolding displays a low cooperativity, with an mD-N of 0.73 kcal 

kcal mol
-1 M

-1
 an accurate determination of the folding parameters from each 

independent experiment is complicated. Therefore, to decrease the fitting error and, at 

the same time, to test the robustness of two-state folding of Grb2-SH3, equilibrium 
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 9

and kinetic experiments were fitted globally to the following equations: 

 

Equilibrium: Yobs =YN +YD

e
(mD−N ([urea]−[urea ]1/2 )

1+ e(mD−N ([urea]−[urea]1/2 )
 

Kinetics: kobs = kFe
(−m

F
[urea ])

+ kUe
(−m

U
[urea])

 ; m
D−N

= m
F

+m
U

 

 

with shared mD-N values. The fitting parameters calculated from the global analysis 

are reported in Table 1.  

 

The structure of the folding transition state of Grb2-SH3  

 

In order to characterize the transition state of folding of Grb2-SH3, we carried out a Φ 

value analysis 34,35, by producing 23 site directed variants. The Φ value is then 

calculated by dividing the effect of the substitution on the activation free energy by 

that of the stability of the native structure. The conservative variants were designed 

and the analysis carried out using the standard rules of Φ value analysis, as formalized 

previously 36.  

 

Unfolding and folding of all the variants were measured both at equilibrium, by urea 

induced denaturation, and by kinetics, using the stopped-flow fluorimetry. In all 

cases, in analogy to what observed for wild type Grb2-SH3, folding and unfolding 

kinetics were consistent with a single exponential decay. Figure 4 shows the 

equilibrium and kinetic experiments carried out on each site directed variant. In all 
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cases, data were consistent with a two-state scenario, indicating that Grb2-SH3 folds 

via a robust mechanism, which does not involve any transient folding intermediates.  

 

To determine the structure of the folding transition state of Grb2-SH3, we used the 

experimentally measured Φ values as restrains in molecular dynamics simulations. 

This method, which has been previously used and validated on several different 

protein systems 1,37-42, is based on the incorporation of the Φ values as biases on the 

fraction of formed native contacts in a molecular dynamics simulation trajectory (cf. 

Methods).  

 

The structure of the folding transition state of Grb2-SH3, together with the associated 

contact map, is reported in Figure 5A. It is evident that the protein seems to fold via a 

native-like transition state that is characterized by the formation of the first β-hairpin, 

together with a consolidation of the interaction between the N- and C-termini of the 

protein.  Structure gradually tapers off, with the region encompassing the β2-β3 

interaction being the most disordered of the ensemble. The structural features of the 

transition state of folding of Grb2-SH3, in comparison to those previously depicted 

for other SH3 domains are analysed in the discussion section.  

 

On the basis of the Φ value analysis of src and spectrin SH3 16,18, it has been 

previously suggested the structure of the transition state of SH3 domains to be highly 

polarized. To test this hypothesis for Grb2-SH3, we analysed the Bronsted plot of this 

protein 43. In fact, whilst a diffused native like structure is expected to return linear 

Bronsted plots, a polarized transition state is more likely to yield a scatter in the 

Bronsted plot, with only some positions playing a key role in stabilizing its structure 
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(characterized by high Φ value), with the others displaying low values of Φ 44. As 

evident from Figure 5B, the transition state of Grb2-SH3 clearly displays a linear 

Bronsted plot, suggesting this protein to fold via a native-like diffused, rather than 

polarized, transition state. This finding appears consistent with a nucleation-

condensation mechanism 45,46 for this SH3, in agreement with what proposed earlier 

by Shakhnovich and co-workers 26.  

 

Robustness of two-state folding in Grb2-SH3 

 

It has been proposed that some SH3 domains may retain some residual structure in 

their denatured state 47,48 and/or populate folding intermediates 20-22. In order to test 

the robustness of the two-state folding in Grb2-SH3, we resorted to analyse the 

dependence of the folding parameters as a function of protein stability. In fact, 

comparing the parameters measured on different site-directed variants represents an 

efficient test to address the overall folding characteristics of transition and denatured 

state 49,50. More specifically, since the dependence of activation and ground states free 

energies on the denaturant concentration (measured by the mU, mF and mD-N values) 

are dependent from the changes in accessible surface area between the pertinent state 

33, an analysis of their dependence may be reveal signatures of shifts of the transition 

and denatured states along the reaction coordinate, as well as the accumulation of 

folding intermediates. Figure 6 depicts the correlation between the mD−N, mU, and mF 

and the ∆∆GD-N for the different site-directed variants. It is evident that, in the case of 

Grb2-SH3, no detectable change in mU, mF and mD-N values could be observed for the 

different variants, spanning a change in protein stability of about 3 kcal mol
-1

. This 

observation suggests that, contrary to what observed in the case of fyn and PI3K SH3 
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domain 20-22, the folding mechanism of this protein is robust and consistent with two-

state. 

 

 

 

DISCUSSION 

 

The first comparative Φ value analysis on globular proteins was presented in a two 

papers describing the folding of src and spectrin SH3 16,17. These studies suggested 

this protein family to fold via a conserved mechanism characterized by a structurally 

robust transition state. Furthermore, it was pointed out that the structure of the 

transition state was primarily stabilized by interactions taking place in the third β-

hairpin of the protein, representing a polarized folding nucleus. Subsequently, also a 

Φ value analysis of fyn SH3 domain was reported, further supporting the robustness 

of the structure of the transition state 25 showing that even drastic non conservative 

mutations caused little structural rearrangements of the transition state 51. A 

breakdown of such robustness could be observed in SSo7d, a protein sharing a similar 

topology with the other SH3 domains while displaying negligible sequence 

homology. In fact, in this case, a shift in the transition state nucleus from the third to 

the second β-hairpin was reported 19. 

In the context of previous work on SH3 domains, it is therefore interesting to note 

how the structure of the transition state of folding of Grb2-SH3 is different from that 

of src, spectrin and fyn SH3. In fact, Grb2-SH3 displays an extended folding nucleus, 

which involves the β-sheet comprising the N- and C-termini of the protein together 

with the first β-hairpin. Since the structural architecture of the folding nucleus of 
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Grb2-SH3 appears to be distinct from that of Sso7d, it appears that this protein family 

may fold through a multitude of mechanisms comprising distinct regions the protein.  

Such pathways may then be selectively stabilized over others by the amino acid 

sequence, indicating that, whilst the overall features of folding are defined by protein 

topology, the nature of the interactions stabilising the native state are still critical to 

influence protein folding mechanisms, In this context, alternative pathways may 

emerge when the sequence is changed extensively. 

A number of studies have shown that proteins may fold with or without folding 

intermediates, depending on solvent conditions and changes in sequence composition 

2,7,8,12,15,38. Accordingly, whilst the folding of SH3 domains has been classically 

descripted with a two-state mechanism, Dokholyan and co-workers predicted 52, by 

analysing different molecular dynamics simulations, that this class of protein may 

populate stable intermediates as a consequence of the local stabilization of individual 

structural elements. This finding was later supported by NMR and by pulse hydrogen 

exchange mass spectrometry, that revealed that presence of at least one folding 

intermediate in the case of Fyn 20,21 and PI3K SH3 22 respectively. In both cases, the 

stabilization of the intermediate appears to arise from the stabilization of non-native 

hydrophobic interactions, leading to a polarized structure formation upon folding. The 

analysis of the Bronsted plot of Grb2-SH3 suggests this protein to fold via a transition 

state with diffused native-like structure. In this case, therefore, the protein seems 

consistent with a nucleation-condensation mechanism, characterized by a concurrent 

formation of native secondary and tertiary structure 45,46. On the light of this finding, 

it is not surprising to observe that, contrary to the SH3 domains of Fyn and PI3K, 

Grb2-SH3 seems to conform to two state folding, even when challenged with 
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different site-directed variants, as illustrated by the robustness of the measured mF, 

mU and mD-N values, which are essentially independent of protein stability.   

Taken together, our analysis of the folding pathway of Grb2-SH3 supports a view 

whereby this class of proteins may fold via alternative pathways, stabilized by 

different nuclei, that can be selectively balanced by sequence composition. In 

agreement with previous finding on other protein systems, local stabilization of such 

alternative nuclei may lead to the accumulation of intermediates, switching two-state 

to multi-state folding. 
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FIGURE LEGENDS 

 

 

Figure 1: Cartoon rapresentation of Grb2-SH3 (A), Spectrin-SH3 (B) and Sso7d-SH3 

(C) structures and sequences alignments. As discussed in the text, Grb2-SH3 displays 

a comparable sequence identity to both Sso7d (18,8%) and  spectrin SH3 (19.5%).  

 

Figure 2: Equilibrium denaturation experiment of the Grb2-SH3 domain carried out in 

buffer 50 mM sodium phosphate pH 7.2 at 25°C. The change of the intrinsic 

fluorescence of the tryptophan residue versus urea concentrations was fitted with a 

two-state equation (see text for details). 

 

Figure 3: Chevron plot of the Grb2-SH3 domain obtained in buffer 50 mM sodium 

phosphate pH 7.2 at 25°C. 

 

Figure 4: Equilibrium denaturations and chevron plots of Grb2-SH3 and its site 

directed mutants. All experiments were carried out at 25 °C and pH 7.2 in 50 mM 

sodium phosphate buffer. Each mutant was globally fitted to a two state mechanism 

by assuming the mD−N value at equilibrium to be equivalent to the sum between the 

kinetic mF and mU values. In all cases, data were consistent with a two-state scenario 

32, indicating the absence of transient folding intermediates. 

Figure 5: Structure of the folding transition state of Grb2-SH3, together with the 

associated contact map (Panel A). The top left of the contact map refers to the 

contacts between amino acids in the native state; whereas the bottom right to the 
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contacts in the transition state. As explained in the text, the protein seems to fold via a 

native-like transition state characterized by the formation of the first β-hairpin, 

together with a consolidation of the interaction between the N- and C-termini of the 

protein.  

Panel B: Bronsted plot. As explained in the Results, the linearity of the Bronsted plot 

suggests that this protein fold via a native-like diffused, transition state. This finding 

appears consistent with a nucleation-condensation mechanism 45,46.  

 

Figure 6: Correlation between the mD−N (open circle), mU (rhombus), and mF (squares) 

and the ∆∆GD-N for the different site-directed variants. As discussed in the text, no 

detectable dependence of mU, mF and mD-N values can be observed for the different 

variants suggesting that the folding mechanism of this protein is robust and consistent 

with two-state. 
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Table 1. Kinetic folding parameters of Grb2-SH3 and its site-directed variants. 

MUTANT 

kF   

(s
-1

) 

kU   

(s
-1

) 

mF  

(kcal/M mol) 

mU  

(kcal/M mol) 

mD-N  

(kcal/M mol) 

[urea]1/2 

(M) φφφφ    

WT 16.0±1.4 0.14±0.02 0.59±0.02 0.14±0.06 0.73±0.01 4.2±1.0 

T1S 13.0±1.3 0.21±0.02 0.59±0.06 0.12±0.12 0.71±0.10 3.1±0.2 0.28±0.26 

Y2A 8.6±0.9 0.69±0.07 0.59±0.10 0.07±0.10 0.73±0.04 1.8±0.1 0.26±0.07 

V3A 4.6±0.6 0.33±0.05 0.75±0.07 0.08±0.09 0.83±0.06 2.5±0.3 0.58±0.11 

A5G 1.7±0.7 0.36±0.04 0.63±0.05 0.12±0.08 0.73±0.06 0.2±0.1 0.70±0.17 

L6A 8.0±0.6 0.67±0.05 0.68±0.04 0.13±0.06 0.81±0.04 2.3±1.1 0.30±0.06 

F7A 6.4±0.64 0.21±0.02 0.66±0.07 0.11±0.10 0.77±0.07 3.2±0.1 0.68±0.15 

F19A 2.6±0.3 1.23±0.05 0.57±0.09 0.07±0.13 0.73±0.09 1.6±0.2 0.45±0.04 

F24A 3.7±0.3 0.70±0.03 0.70±0.04 0.12±0.06 0.81±0.04 1.8±0.2 0.47±0.05 

I25V 6.1±0.5 0.64±0.03 0.70±0.04 0.08±0.06 0.78±0.04 2.4±1.7 0.38±0.06 

H26A 33.0±8.0 0.23±0.05 0.62±0.05 0.15±0.06 0.77±0.03 3.6±1.5 * 

S31A 11.0±1.0 0.42±0.04 0.67±0.03 0.08±0.04 0.75±0.03 2.8±0.4 0.24±0.10 

A39G 16.0±2.0 0.92±0.07 0.71±0.04 0.06±0.06 0.77±0.04 2.4±1.3 -0.03±0.07 

H41A 13.0±1.3 0.56±0.06 0.65±0.07 0.07±0.07 0.72±0.02 3.0±0.1 0.11±0.09 

T44S 14.0±1.0 0.53±0.05 0.69±0.07 0.05±0.07 0.74±0.02 2.8±0.1 0.07±0.09 

Y51A 11.0±0.5 0.43±0.02 0.57±0.02 0.14±0.02 0.71±0.01 2.6±0.4 0.23±0.07 

T53S 11.0±3.0 0.23±0.05 0.53±0.06 0.12±0.09 0.65±0.07 2.7±0.3 0.41±0.37 

A54G 16.2±1.6 0.62±0.06 0.55±0.03 0.12±0.04 0.67±0.02 2.4±1.1 -0.05±0.09 
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Table 1: The mutants F9A, L17A, V27A, F47A and V52A expressed poorly and 

could not be characterized.	 

*This mutant shows ������ < 0.4 kcal mol-1, preventing reliable calculation of 

the Φ-value 36.  

 

  

V55A 15.2±1.5 0.45±0.04 0.47±0.05 0.23±0.09 0.70±0.07 3.4±0.3 -0.01±0.11 
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